Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,180)

Search Parameters:
Keywords = permeability resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 12890 KiB  
Article
Optimization of 3D Borehole Electrical Resistivity Tomography (ERT) Measurements for Real-Time Subsurface Imaging
by Marios Karaoulis
Water 2025, 17(11), 1695; https://doi.org/10.3390/w17111695 - 3 Jun 2025
Abstract
In this work, we explore the optimization of 3D Electrical Resistivity Tomography (ERT) measurement protocols for a 3D borehole grid configuration. Currently, there is no widely accepted standard measurement scheme for such setups. The use of numerous electrodes and the possibility of cross-borehole [...] Read more.
In this work, we explore the optimization of 3D Electrical Resistivity Tomography (ERT) measurement protocols for a 3D borehole grid configuration. Currently, there is no widely accepted standard measurement scheme for such setups. The use of numerous electrodes and the possibility of cross-borehole configurations lead to an extremely large number of potential electrode combinations. However, not all these combinations contribute significantly to the final resistivity model, and a complete measurement cycle requires substantial time to perform. This becomes particularly problematic in dynamic subsurface conditions, where changes may occur during data acquisition. In such cases, the measurements collected within a single cycle may reflect different subsurface states. Conversely, attempting to shorten acquisition time can result in too few measurements to resolve the subsurface structure at high resolution. Furthermore, most existing approaches assume a uniform half-space model and treat all measurements equally, failing to prioritize those that are most sensitive to actual subsurface changes. To address these challenges, we propose a 3D measurement optimization approach that yields an efficient acquisition scheme. This method produces inversion results comparable to those obtained from much larger datasets while reducing both measurement and processing requirements. Our optimization is based on a sensitivity-driven selection algorithm that accounts for the real subsurface structure rather than assuming a generic half-space. The proposed methodology is validated using synthetic data and tested with experimental data obtained from a laboratory tank setup. These experimental measurements were used to monitor permeation grouting; a technique applied to reduce permeability and/or increase the strength of granular soils through targeted injection. Full article
(This article belongs to the Special Issue Application of Geophysical Methods for Hydrogeology—Second Edition)
25 pages, 745 KiB  
Review
Dietary Strategies to Modulate Gut Microbiota in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)
by Federica Perazza, Laura Leoni, Beatrice Selvatici, Francesca Girolami, Alessia Bonalumi, Alice Beretta, Silvia Ferri, Maria Letizia Petroni, Fabio Piscaglia, Federico Ravaioli and Michele Sculati
Nutrients 2025, 17(11), 1906; https://doi.org/10.3390/nu17111906 - 1 Jun 2025
Viewed by 191
Abstract
Gut microbiota has become an area of increasing interest for its potential role in metabolic dysfunction-associated steatotic liver disease (MASLD) and its more advanced form, metabolic dysfunction-associated steatohepatitis (MASH)—now recognized as the most frequent liver disease worldwide. Research suggests that imbalances in the [...] Read more.
Gut microbiota has become an area of increasing interest for its potential role in metabolic dysfunction-associated steatotic liver disease (MASLD) and its more advanced form, metabolic dysfunction-associated steatohepatitis (MASH)—now recognized as the most frequent liver disease worldwide. Research suggests that imbalances in the intestinal microbiota, including dysbiosis and increased intestinal permeability, may contribute to the pathogenesis of MASLD and progression to MASH. These changes affect insulin resistance and trigger inflammatory responses by disrupting the gut–liver axis. This review examined the current evidence connecting gut microbiota to MASLD and MASH, exploring how microbial shifts might influence liver health. Emerging strategies—such as probiotics, prebiotics, and targeted dietary changes—that may help prevent or manage these conditions are also discussed. Finally, key areas where further studies are required to understand the role of microbiota and its therapeutic potential are highlighted. Full article
Show Figures

Figure 1

22 pages, 953 KiB  
Review
Alpha-Mangostin: A Review of Current Research on Its Potential as a Novel Antimicrobial and Anti-Biofilm Agent
by Hanna Górecka, Mateusz Guźniczak, Igor Buzalewicz, Agnieszka Ulatowska-Jarża, Kamila Korzekwa and Aleksandra Kaczorowska
Int. J. Mol. Sci. 2025, 26(11), 5281; https://doi.org/10.3390/ijms26115281 - 30 May 2025
Viewed by 188
Abstract
Alpha-mangostin (α-MG) is a prenylated xanthone extracted from the pericarp of the mangosteen tree (Garcinia mangostana) fruit. The compound exhibits a broad range of therapeutic properties, such as anti-inflammatory, antioxidative, and antimicrobial activity. This review highlights new findings in [...] Read more.
Alpha-mangostin (α-MG) is a prenylated xanthone extracted from the pericarp of the mangosteen tree (Garcinia mangostana) fruit. The compound exhibits a broad range of therapeutic properties, such as anti-inflammatory, antioxidative, and antimicrobial activity. This review highlights new findings in antibacterial studies involving α-MG, demonstrates its potent activity against Gram-positive bacteria, including Staphylococcus and Enterococcus genera, and describes the antibacterial mechanisms involved. Most cited literature comes from 2020 to 2025, highlighting the topic’s relevance despite limited new publications in this period. The primary antibacterial mechanism of α-MG consists of the disruption of the bacterial membrane and increased bacterial wall permeability, leading to drug accumulation and cell lysis. Other mechanisms include genomic interference and enzyme activity inhibition, which impair metabolic pathways. α-MG can also disrupt biofilm formation, facilitate its removal, and prevent its maturation. Furthermore, α-MG presents strong synergistic action with common antibiotics and other phytochemicals, even against drug-resistant strains, facilitating infection treatment and allowing for reduced drug dosage. The main challenge in developing α-MG-based drugs is their low aqueous solubility; therefore, nanoformulations have been explored to improve its bioavailability and antibacterial stability. Extended research in this direction may enable the development of effective antibacterial and anti-biofilm therapies based on α-MG. Full article
(This article belongs to the Special Issue Drug Treatment for Bacterial Infections)
Show Figures

Figure 1

30 pages, 9217 KiB  
Article
Navigating Energy Efficiency and Mould Risk in Australian Low-Rise Homes: A Comparative Analysis of Nine External Wall Systems in Southeast Australia
by Liqun Guan, Mark Dewsbury, Louise Wallis and Hartwig Kuenzel
Energies 2025, 18(11), 2843; https://doi.org/10.3390/en18112843 - 29 May 2025
Viewed by 95
Abstract
As energy-efficient buildings become central to climate change mitigation, the opportunity for interior and interstitial moisture accumulation and mould growth can increase. This study investigated the potential simulation-based mould growth risks associated with the current generation of insulated low-rise timber framed external wall [...] Read more.
As energy-efficient buildings become central to climate change mitigation, the opportunity for interior and interstitial moisture accumulation and mould growth can increase. This study investigated the potential simulation-based mould growth risks associated with the current generation of insulated low-rise timber framed external wall systems within southeastern Australia. More than 8000 hygrothermal and bio-hygrothermal simulations were completed to evaluate seasonal moisture patterns and calculate mould growth potential for nine typical external wall systems. Results reveal that the combination of increased thermal insulation and air-tightness measures between the 2010 and 2022 specified building envelope energy efficiency regulations further increased predicted Mould Index values, particularly in cool-temperate climates. This was in part due to insufficient moisture management requirements, like an air space between the cladding and the weather resistive layer and/or the low-water vapour permeability of exterior weather resistive pliable membranes. By contrast, warmer temperate climates and drier cool-temperate climates exhibit consistently lower calculated Mould Index values. Despite the 2022 requirement for a greater water vapour-permeance of exterior pliable membranes, the external walls systems explored in this research had a higher calculated Mould Index than the 2010 regulatory compliant external wall systems. Lower air change rates significantly increased calculated interstitial mould growth risk, while the use of interior vapour control membranes proved effective in its mitigation for most external wall systems. The addition of ventilated cavity in combination with either or both an interior vapour control membrane and a highly vapour-permeable exterior pliable membranes further reduced risk. The findings underscore the need for tailored, climate-responsive design interventions to minimise surface and interstitial mould growth risk and building durability, whilst achieving high performance external wall systems. Full article
Show Figures

Figure 1

15 pages, 2665 KiB  
Article
Development of Thermo-Responsive and Salt-Adaptive Ultrafiltration Membranes Functionalized with PNIPAM-co-PDMAC Copolymer
by Lauran Mama, Johanne Pirkin-Benameur, Vincent Bouad, David Fournier, Patrice Woisel, Joël Lyskawa, Karim Aissou and Damien Quemener
Membranes 2025, 15(6), 164; https://doi.org/10.3390/membranes15060164 - 28 May 2025
Viewed by 135
Abstract
Access to clean water remains a critical global challenge, exacerbated by population growth, industrial activity, and climate change. In response, this study presents the development and characterization of thermo-responsive and salt-adaptive ultrafiltration membranes functionalized with a poly(N-isopropylacrylamide)–co-poly(dimethylacrylamide) (PNIPAM-co-PDMAC) copolymer. By combining the thermo-responsive [...] Read more.
Access to clean water remains a critical global challenge, exacerbated by population growth, industrial activity, and climate change. In response, this study presents the development and characterization of thermo-responsive and salt-adaptive ultrafiltration membranes functionalized with a poly(N-isopropylacrylamide)–co-poly(dimethylacrylamide) (PNIPAM-co-PDMAC) copolymer. By combining the thermo-responsive properties of PNIPAM with the hydrophilic characteristics of PDMAC, these membranes exhibit dual-stimuli responsiveness to temperature and ionic strength, allowing for precise control of permeability and fouling resistance. The experimental results demonstrated that the copolymer’s hydration state and dynamic pore size modulation are sensitive to changes in salinity and temperature, with sodium chloride (NaCl) significantly influencing the transition behavior. Preliminary fouling tests confirmed the antifouling capabilities of these membranes, with salt-triggered hydration transitions effectively reducing irreversible fouling and extending membrane durability. The membranes’ reversible properties and adaptability to dynamic operating conditions highlight their potential to enhance the efficiency and sustainability of water treatment processes. Future investigations will focus on scaling up the fabrication process and assessing the long-term stability of these membranes under real-world conditions. This study underscores the promise of smart membrane systems for advancing global water sustainability. Full article
Show Figures

Figure 1

14 pages, 2577 KiB  
Article
Effects of Fiber Length and Content on the Enhancement of Spray-Applied Substrate in Soil Spray Seeding
by Yifei Qu, Pengfei Wang, Wenhao Zhao, Long Wang, Yifan Liu, Gang Yang and Guilong Song
Appl. Sci. 2025, 15(11), 6075; https://doi.org/10.3390/app15116075 - 28 May 2025
Viewed by 38
Abstract
(1) Background: Soil stability is essential for hydroseeding applications, particularly in erosion-prone areas. This study examines the effects of coir fiber reinforcement on soil properties and optimizes fiber length and content for improved performance. (2) Methods: Triaxial tests, soil physical measurements, and cracking [...] Read more.
(1) Background: Soil stability is essential for hydroseeding applications, particularly in erosion-prone areas. This study examines the effects of coir fiber reinforcement on soil properties and optimizes fiber length and content for improved performance. (2) Methods: Triaxial tests, soil physical measurements, and cracking experiments were conducted on sandy and silty soils using five fiber lengths (1–5 cm) and three fiber contents (0.2–0.6%). Principal component analysis (PCA) and Response Surface Methodology (RSM) were applied for optimization. (3) Results: The results show that coir fiber increases soil cohesion, shear strength, porosity, and permeability while reducing bulk density. The best reinforcement occurred at a 3–4 cm fiber length and 0.4–0.6% content, enhancing both the shear strength and crack resistance. Correlation analysis indicated a positive relationship between porosity and shear strength and a negative correlation between crack ratio and shear strength, confirming fiber reinforcement benefits. RSM analysis identified 3.051 cm + 4.07% as optimal for sandy soil and 3.376 cm + 0.456% for silty soil. (4) Conclusions: The optimal coir fiber combination significantly improves soil stability, providing theoretical support for optimizing spray substrates. Full article
Show Figures

Figure 1

20 pages, 4225 KiB  
Article
Enhancing Lime-Based Mortars with Multiwalled Carbon Nanotubes—Composites for Historic Building Restoration: Mechanical, Thermal, and Hygric Performance Analysis
by Adam Pivák, Martina Záleská, Milena Pavlíková and Zbyšek Pavlík
J. Compos. Sci. 2025, 9(6), 266; https://doi.org/10.3390/jcs9060266 - 27 May 2025
Viewed by 192
Abstract
The use of binders in construction dates back to antiquity, with lime-based materials historically playing a significant role. However, the 20th century brought the widespread replacement of lime with Portland cement (PC), for its superior mechanical strength, durability, and faster setting time. Despite [...] Read more.
The use of binders in construction dates back to antiquity, with lime-based materials historically playing a significant role. However, the 20th century brought the widespread replacement of lime with Portland cement (PC), for its superior mechanical strength, durability, and faster setting time. Despite these advantages, the restoration of historic masonry structures has revealed the incompatibility of PC with traditional materials, leading to damage due to increased brittleness, stiffness, and reduced permeability. Consequently, lime mortars remain the preferred choice for heritage conservation. To enhance their durability while maintaining compatibility with historic materials, the incorporation of carbon-based nanoparticles has gained attention. This study investigated the impact of the carbon nanotubes (CNTs) additive on two types of lime-based mortars, calcium lime (CL) and hydraulic lime (HL), evaluating structural and mechanical properties, heat transport characteristics, and hygric properties after modification by CNTs with dosages of 0.1%, 0.3%, and 0.5% binder weight. Incorporation of CNTs into CL mortar resulted in an increase in mechanical strength and slight reduction in heat transport and water absorption due to changes in porosity. The addition of CNTs into HL mortars reduced porosity, pore size distribution, and other depending characteristics. The utilisation of CNTs as an additive in the investigated lime-based composites has been identified as a potentially effective approach for the reinforcement and functionalisation of these composite materials, as they exhibited enhanced mechanical resistance while preserving their other engineering properties, making them well suited for use as compatible mortars in building heritage repairs. Full article
(This article belongs to the Special Issue Sustainable Composite Construction Materials, Volume II)
Show Figures

Figure 1

16 pages, 6011 KiB  
Article
Changes in Pore Structure and Gas Adsorption–Desorption Characteristics of Coal Under High-Voltage Electric Pulses
by Changxing Li, Guosheng Xu, Huanying Yao, Chengpeng Xin and Fei Liu
Processes 2025, 13(6), 1662; https://doi.org/10.3390/pr13061662 - 26 May 2025
Viewed by 188
Abstract
High-voltage electrical pulses (HVEPs), a new technology designed to enhance the permeability of coal seams, have received significant attention for their application in gas extraction from low-permeability coal seams. This study designed a high-pressure adjustable electrical pulse experimental system to investigate the effects [...] Read more.
High-voltage electrical pulses (HVEPs), a new technology designed to enhance the permeability of coal seams, have received significant attention for their application in gas extraction from low-permeability coal seams. This study designed a high-pressure adjustable electrical pulse experimental system to investigate the effects of HVEPs on the pore structure and gas adsorption–desorption characteristics of bituminous coal samples. The results revealed that HVEPs effectively restructured pore morphology in coal samples through the opening of previously sealed and partially enclosed pores. This led to a significant increase in the average pore diameter, total pore volume, and porosity. However, the increase in total specific surface area was minimal. Moreover, the connectivity of pores was continuously enhanced. As the discharge voltage increased, the pore structure significantly improved. However, HVEP treatment slightly increased the adsorption pores (micropores and transition pores) and significantly increased the seepage pores (mesopores and macropores), which facilitated the free flow of gas within the coal samples. Additionally, HVEP treatment significantly reduced both the adsorption rate and the maximum gas adsorption capacity of the coal samples, indicating a strong inhibitory effect of HVEPs on gas adsorption. Conversely, HVEPs significantly increased the gas desorption capacity and desorption rate, suggesting that HVEPs facilitated the rapid desorption and release of gas from the coal samples. Furthermore, HVEP treatment increased the gas diffusion coefficient of the coal samples, which reduced their resistance to free diffusion after desorption and promoted gas extraction from the coal seam. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

30 pages, 3568 KiB  
Article
Long-Term Corrosion Behavior of Reinforced Concrete: Impact of Supplementary Cementitious Materials and Reservoir Size Under Accelerated Chloride Ingress
by Kazi Naimul Hoque and Francisco Presuel-Moreno
Constr. Mater. 2025, 5(2), 33; https://doi.org/10.3390/constrmater5020033 - 24 May 2025
Viewed by 168
Abstract
This study investigates the long-term corrosion behavior of reinforced concrete (RC) under accelerated chloride exposure for about 1600 days, using electrochemical methods like galvanostatic pulse (GP) testing. Two concrete mixes (T1 and T2), incorporating distinct supplementary cementitious materials (SCMs), were evaluated to determine [...] Read more.
This study investigates the long-term corrosion behavior of reinforced concrete (RC) under accelerated chloride exposure for about 1600 days, using electrochemical methods like galvanostatic pulse (GP) testing. Two concrete mixes (T1 and T2), incorporating distinct supplementary cementitious materials (SCMs), were evaluated to determine their performance in aggressive environments. Specimens with varying reservoir lengths were exposed to a 10% NaCl solution (by weight), with electromigration applied to accelerate chloride transport. Electrochemical assessments, including measurements of rebar potential, concrete solution resistance, concrete polarization resistance, corrosion current, and mass loss, were conducted to monitor the degradation of embedded steel. The findings revealed that smaller reservoirs (2.5 cm) significantly restricted chloride and moisture penetration, reducing corrosion, while larger reservoirs (10 cm) resulted in greater exposure and higher corrosion activity. Additionally, T1 mixes (partial cement replacement with 20% fly ash and 50% slag) showed higher corrosion currents and mass loss, whereas T2 mixes (partial cement replacement with 20% fly ash and 8% silica fume) demonstrated enhanced matrix densification, reduced permeability, and superior durability. These results underscore the importance of mix design and exposure conditions in mitigating corrosion, providing critical insights for improving the longevity of RC structures in aggressive environments. Full article
Show Figures

Figure 1

25 pages, 899 KiB  
Review
New Insights into the Interplay Between Simple Sugars and Liver Diseases
by Simona Parisse, Erika Coltorti, Monica Mischitelli, Flaminia Ferri and Stefano Ginanni Corradini
Curr. Issues Mol. Biol. 2025, 47(6), 390; https://doi.org/10.3390/cimb47060390 - 23 May 2025
Viewed by 239
Abstract
In hepatology, there is growing interest in identifying the mechanisms and risk factors underlying liver diseases with increasing incidence, with particular focus on metabolic dysfunction-associated steatotic liver disease (MASLD) and its complications. Simple sugars have been recognized as key contributors to liver injury [...] Read more.
In hepatology, there is growing interest in identifying the mechanisms and risk factors underlying liver diseases with increasing incidence, with particular focus on metabolic dysfunction-associated steatotic liver disease (MASLD) and its complications. Simple sugars have been recognized as key contributors to liver injury and disease progression, not only in the context of MASLD but also beyond. As a result, numerous studies have aimed to elucidate their role in liver pathophysiology. Specifically, simple sugars have been associated with pivotal mechanisms involved in the onset of liver diseases, including inflammation, de novo lipogenesis, oxidative stress, insulin resistance, and dysbiosis with increased intestinal permeability. These mechanisms collectively contribute to a significant association between simple sugar intake and liver diseases of varying stages and severity. The scientific evidence available to date has not only clarified potential pathogenic mechanisms and clinical correlations but also led to the identification of potential therapeutic targets, encompassing both lifestyle interventions and molecular approaches. This review aims to provide a comprehensive analysis of the associations between simple sugar intake, liver injury, and liver diseases. To this end, we conducted an extensive review of the literature, selecting the most relevant and up-to-date studies on the topic. Full article
(This article belongs to the Special Issue Advances in Molecular Biology Methods in Hepatology Research)
Show Figures

Figure 1

16 pages, 6872 KiB  
Article
Eco-Friendly Removal and IoT-Based Monitoring of CO2 Emissions Released from Gasoline Engines Using a Novel Compact Nomex/Activated Carbon Sandwich Filter
by Saad S. M. Hassan, Nora R. G. Mohamed, Mohamed M. A. Saad, Yasser H. Ibrahim, Alia A. Elshakour and Mahmoud Abdelwahab Fathy
Polymers 2025, 17(11), 1447; https://doi.org/10.3390/polym17111447 - 23 May 2025
Viewed by 275
Abstract
A novel cost-effective, rapid, and eco-friendly method was described for the removal of carbon dioxide (CO2) from the gaseous emissions of gasoline engines. This involved the use of a sandwich filter (~10 cm diameter) made of a nonwoven poly (m [...] Read more.
A novel cost-effective, rapid, and eco-friendly method was described for the removal of carbon dioxide (CO2) from the gaseous emissions of gasoline engines. This involved the use of a sandwich filter (~10 cm diameter) made of a nonwoven poly (m-phenylene isophthalamide) (Nomex) fabric loaded with a thin layer of activated carbon. The optimized filter, with an activated carbon mass of 2.89 mg/cm2, a thickness of 4.8 mm, and an air permeability of 0.5 cm3/cm2/s, was tested. A simple homemade sampling device equipped with solid-state electrochemical sensors to monitor the concentration levels of CO2 before and after filtration of the emissions was utilized. The data were transmitted via a General Packet Radio Service (GPRS) link to an Internet of Things (IoT)-based gas monitoring system for remote management, and real-time data visualization. The proposed device achieved a 70 ± 3.4% CO2-removal efficiency within 7 min of operation. Characterization of the filter was conducted using a high-resolution scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and Brunauer–Emmett–Teller (BET) analysis. The effects of loaded activated carbon mass, fabric type, filter porosity, gaseous removal time, and adsorption kinetics were also examined. The proposed filter displayed several advantages, including simplicity, compactness, dry design, ease of regeneration, scalability, durability, low cost, and good efficiency. Heat resistance, fire retardancy, mechanical stability, and the ability to remove other gasoline combustion products such as CO, SOx, NOx, VOCs, and particulates were also offered. The filtration system enabled both in situ and on-line CO2 real-time continuous emission monitoring. Full article
(This article belongs to the Special Issue Polymers in Inorganic Chemistry: Synthesis and Applications)
Show Figures

Graphical abstract

23 pages, 16849 KiB  
Article
Preparation and Corrosion Resistance Research of Eco-Friendly Strong Penetration Sealant for Fe-Based Amorphous Coatings
by Guangyu Wang, Yinfang Jiang, Zehua Zhou, Jianhua Sun, Yang Cheng, Shenghua Zhang and Yuzhi Tang
Coatings 2025, 15(6), 623; https://doi.org/10.3390/coatings15060623 - 23 May 2025
Viewed by 284
Abstract
Sealing treatment is widely used as a simple and low-cost process to improve the long-term corrosion resistance of Fe-based amorphous coatings. In this study, an eco-friendly graphene modified waterborne acrylic sealant(WFS) with strong permeability was prepared by emulsion polymerization and GO@SiO2 was [...] Read more.
Sealing treatment is widely used as a simple and low-cost process to improve the long-term corrosion resistance of Fe-based amorphous coatings. In this study, an eco-friendly graphene modified waterborne acrylic sealant(WFS) with strong permeability was prepared by emulsion polymerization and GO@SiO2 was introduced as a reinforcing material to increase the withstand resistance of the hybrid sealant to Cl. A combination of ultrasonic excitation and vacuum sealing effectively promotes the penetration of the waterborne hybrid sealant into the pores of the coating. A 3D X-ray scan confirmed the sealant penetration depth of 160 μm. The natural properties of the emulsion were characterized by a particle size analyzer, FTIR, TGA-DSC and TEM. Potentiodynamic polarization curves and AC impedance spectroscopy analysis showed that GO@SiO2 has a strong blocking ability to Cl, which greatly promotes the integrity of the passive film. It is anticipated that the novel eco-friendly waterborne hybrid sealants with strong permeability will find applications in a variety of porous hard coatings. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

16 pages, 989 KiB  
Review
Effect of Sodium Butyrate Supplementation on Type 2 Diabetes—Literature Review
by Wiktoria Krauze, Nikola Busz, Weronika Pikuła, Martyna Maternowska, Piotr Prowans and Dominika Maciejewska-Markiewicz
Nutrients 2025, 17(11), 1753; https://doi.org/10.3390/nu17111753 - 22 May 2025
Viewed by 391
Abstract
Background: Type 2 diabetes mellitus (T2DM) represents a major global health burden, with prevalence rates escalating due to rapid urbanization, economic growth, and the obesity epidemic. Despite intensive research, the underlying molecular mechanisms remain incompletely understood, with emerging evidence suggesting multifactorial origins involving [...] Read more.
Background: Type 2 diabetes mellitus (T2DM) represents a major global health burden, with prevalence rates escalating due to rapid urbanization, economic growth, and the obesity epidemic. Despite intensive research, the underlying molecular mechanisms remain incompletely understood, with emerging evidence suggesting multifactorial origins involving genetic, epigenetic, lifestyle, and environmental factors. Methods: This review synthesizes current epidemiological data on T2DM prevalence, risk factors, and demographic patterns from 1990 to 2017, and discusses projected trends through 2030. We examine the role of intestinal barrier dysfunction and gut microbiota dysbiosis in T2DM pathogenesis, highlighting key mechanistic insights. Furthermore, we analyze recent findings on the role of butyrate, a major short-chain fatty acid, in preserving gut integrity and its potential therapeutic effects on metabolic health. Results: Global T2DM prevalence has risen markedly across all age groups, with particularly high rates in Western Europe and Pacific Island nations. Disruption of the intestinal barrier (“leaky gut”) and gut microbiota alterations contribute significantly to systemic inflammation and insulin resistance, which are pivotal features in T2DM development. Butyrate plays a central role in maintaining epithelial barrier function, modulating immune responses, and regulating glucose metabolism. Preclinical studies have demonstrated that sodium butyrate supplementation improves gut integrity, reduces systemic endotoxemia, and ameliorates metabolic parameters. Emerging clinical evidence suggests benefits of sodium butyrate, particularly when combined with prebiotic fibers, in improving glycemic control and reducing inflammatory markers in T2DM patients. Conclusions: Gut barrier integrity and microbiota composition are critical factors in T2DM pathogenesis. Sodium butyrate shows promise as a complementary therapeutic agent in T2DM management, although further large-scale, long-term clinical trials are required to confirm its efficacy and safety. Targeting gut health may represent a novel strategy for the prevention and treatment of T2DM. Full article
(This article belongs to the Special Issue Diabetes Mellitus and Nutritional Supplements)
Show Figures

Figure 1

51 pages, 3113 KiB  
Review
Effect of Hybrid Fiber Compositions on Mechanical Properties and Durability of Ultra-High-Performance Concrete: A Comprehensive Review
by Paulina Dziomdziora and Piotr Smarzewski
Materials 2025, 18(11), 2426; https://doi.org/10.3390/ma18112426 - 22 May 2025
Viewed by 422
Abstract
Ultra-high-performance concrete (UHPC) has emerged as a revolutionary material in structural engineering due to its exceptional mechanical properties and durability. This review comprehensively examines the influence of hybrid fiber compositions on UHPC, focusing on mechanical performance and resistance to environmental degradation. Hybrid fibers, [...] Read more.
Ultra-high-performance concrete (UHPC) has emerged as a revolutionary material in structural engineering due to its exceptional mechanical properties and durability. This review comprehensively examines the influence of hybrid fiber compositions on UHPC, focusing on mechanical performance and resistance to environmental degradation. Hybrid fibers, which combine steel and synthetic and basalt fibers, improve compressive, tensile, and flexural strengths by bridging microcracks and limiting macrocrack propagation. Studies reveal that steel fiber combinations, particularly those with varying lengths and shapes, significantly improve ductility and load-bearing capacity, while steel–synthetic hybrids balance strength and flexibility. However, excessive synthetic fibers can reduce compressive strength. Basalt–synthetic hybrids, though less effective in compression, excel in tensile strength and crack resistance. Durability assessments highlight the superior resistance of UHPCs to chloride penetration, carbonation, freeze–thaw cycles, and high temperatures, and hybrid fibers further mitigate spalling and permeability. Polypropylene fibers, for instance, enhance fire resistance by creating vapor release channels. The challenge of optimizing fiber proportions and mix designs remains to minimize trade-offs between strength and workability. Future research should explore advanced fiber combinations, long-term environmental performance, and eco-friendly additives to expand the applicability of UHPC in sustainable infrastructure. This review underscores the potential of hybrid fibers to tailor UHPCs for diverse engineering demands while addressing current limitations. Full article
(This article belongs to the Special Issue Characterization and Optimization of Cement-Based Materials)
Show Figures

Graphical abstract

49 pages, 24112 KiB  
Review
Synergistic Cancer Therapies Enhanced by Nanoparticles: Advancing Nanomedicine Through Multimodal Strategies
by Seyed Mohamad Sadegh Mousavi-Kiasary, Ahmood Senabreh, Ashkan Zandi, Rogelio Pena, Frances Cruz, Ali Adibi and Nasrin Hooshmand
Pharmaceutics 2025, 17(6), 682; https://doi.org/10.3390/pharmaceutics17060682 - 22 May 2025
Viewed by 575
Abstract
Cancer remains a formidable global health challenge due to its complex pathophysiology and resistance to conventional treatments. In recent years, the convergence of nanotechnology and oncology has paved the way for innovative therapeutic platforms that address the limitations of traditional modalities. This review [...] Read more.
Cancer remains a formidable global health challenge due to its complex pathophysiology and resistance to conventional treatments. In recent years, the convergence of nanotechnology and oncology has paved the way for innovative therapeutic platforms that address the limitations of traditional modalities. This review examines how nanoparticle (NP)-based strategies enhance the efficacy of chemotherapy, radiotherapy, phototherapy, immunotherapy, and gene therapy by enabling targeted delivery, controlled drug release, and tumor-specific accumulation via the enhanced permeability and retention (EPR) effect. We discuss the design and functionalization of various organic, inorganic, and hybrid NPs, highlighting their roles in improving pharmacokinetics, overcoming multidrug resistance, and modulating the tumor microenvironment. Particular emphasis is placed on dual and multimodal therapies, such as chemo-phototherapy, chemo-immunotherapy, and gene-radiotherapy, that leverage nanoparticle carriers to amplify synergistic effects, minimize systemic toxicity, and improve clinical outcomes. We also explore cutting-edge advances in gene editing and personalized nanomedicine, as well as emerging strategies to address biological barriers and immunosuppressive mechanisms in the tumor niche. Despite the undeniable promise of nanoparticle-based cancer therapies, challenges related to toxicity, scalable manufacturing, regulatory oversight, and long-term biocompatibility must be overcome before they can fully enter clinical practice. By synthesizing recent findings and identifying key opportunities for innovation, this review provides insight into how nanoscale platforms are propelling the next generation of precision oncology. Full article
Show Figures

Figure 1

Back to TopTop