Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = peroxydisulfate activation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2516 KB  
Article
Enhanced Amitriptyline Degradation by Electrochemical Activation of Peroxydisulfate: Mechanisms of Interfacial Catalysis and Mass Transfer
by Teer Wen, Fangying Hu, Yao Yue, Chuqiao Li, Yunfei He and Jiafeng Ding
Molecules 2025, 30(18), 3835; https://doi.org/10.3390/molecules30183835 - 22 Sep 2025
Viewed by 330
Abstract
Amitriptyline (AMT), a widely prescribed antidepressant, and its metabolites have emerged as significant environmental contaminants, posing substantial risks to aquatic organisms and human health. Systematic and in-depth investigations into advanced anode materials, coupled with a profound elucidation of their electrochemical mechanisms, are imperative [...] Read more.
Amitriptyline (AMT), a widely prescribed antidepressant, and its metabolites have emerged as significant environmental contaminants, posing substantial risks to aquatic organisms and human health. Systematic and in-depth investigations into advanced anode materials, coupled with a profound elucidation of their electrochemical mechanisms, are imperative for the development of efficacious technologies for AMT removal. In this study, a series of amorphous carbon-encapsulated zinc oxide (C@ZnO) modified anodes were systematically synthesized and incorporated into a persulfate-based electrochemical system (CZ-PS) to comprehensively elucidate the catalytic mechanisms and mass transfer efficiencies governing the degradation of AMT via electroperoxidation. Notably, the CZ-PS system achieved a 97.5% degradation for 5.0 mg/L AMT within 120 min under optimized conditions (200 C@ZnO electrode, pH 7.0, current density 20 mA/cm2, PS concentration 0.5 mM), significantly outperforming the single PS system (37.8%) or the pure electrocatalytic system. Quenching experiments and EPR analysis confirmed hydroxyl radicals (•OH) and sulfate radicals (SO4) as the dominant reactive species. Both acidic and neutral pH conditions were demonstrated to favorably enhance the electrocatalytic degradation efficiency by improving adsorption performance and inhibiting •OH decomposition. The system retained >90% degradation efficiency after 5 electrode cycles. Three degradation pathways and 13 intermediates were identified via UPLC–MS/MS analysis, including side-chain demethylation and oxidative ring-opening of the seven-membered ring to form aldehyde/carboxylic acid compounds, ultimately mineralizing into CO2 and H2O. It demonstrates strong engineering potential and provides a green, high-efficiency strategy for antibiotic wastewater treatment. Full article
(This article belongs to the Special Issue Advanced Removal of Emerging Pollutants and Its Mechanism)
Show Figures

Figure 1

20 pages, 4270 KB  
Article
Ammonia-Assisted Quadrupled-Yield ZIF-67 Derivation Enables Single Oxygen-Dominated Nonradical Oxidation for Enhanced Ciprofloxacin Degradation
by Xiaoxian Hu, Di Zhang, Xinyu Li, Junfeng Wu, Xiang Guo, Hongbin Gao, Minghui Hao, Yingchun Wang, Bang Li and Xinhai Zhang
Materials 2025, 18(18), 4337; https://doi.org/10.3390/ma18184337 - 16 Sep 2025
Viewed by 319
Abstract
The widespread contamination of aquatic systems by ciprofloxacin (CIP)—a persistent fluoroquinolone antibiotic—poses severe ecological risks due to its antibacterial resistance induction. Conventional sulfate radical-based advanced oxidation processes (SR-AOPs) suffer from inefficient catalyst synthesis, exemplified by low-yield ZIF-67 precursors (typically <25%). To address this, [...] Read more.
The widespread contamination of aquatic systems by ciprofloxacin (CIP)—a persistent fluoroquinolone antibiotic—poses severe ecological risks due to its antibacterial resistance induction. Conventional sulfate radical-based advanced oxidation processes (SR-AOPs) suffer from inefficient catalyst synthesis, exemplified by low-yield ZIF-67 precursors (typically <25%). To address this, a nitrogen-doped carbon composite Co3O4/N@C was synthesized via ammonia-assisted ligand exchange followed by pyrolysis, using N-doped ZIF-67 as a self-sacrificial template. The ammonia incorporation quadrupled precursor yield compared to ammonia-free methods. This catalyst activated peroxydisulfate (PDS) to degrade 95% CIP within 90 min under the optimized conditions (0.5 g/L catalyst, 2 mmol/L PDS, pH 5), representing a 30% enhancement over non-ammonia analogs. Mechanistic studies identified singlet oxygen (1O2) as the dominant reactive species, facilitated by N-doped carbon-mediated electron transfer. This strategy overcomes the scalability barrier of MOF-derived catalysts for practical antibiotic wastewater remediation. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

11 pages, 1561 KB  
Article
Enhanced Peroxydisulfate Activation by Co-Doping of Nitrogen, Chlorine, and Iron: Preparation, Synergistic Effects, and Application
by Zhipeng Li, Hao Zhang, Wanjiang Guo, Tan Meng, Hongru Cui and Chao Ma
Catalysts 2025, 15(9), 880; https://doi.org/10.3390/catal15090880 - 13 Sep 2025
Viewed by 500
Abstract
The continuous increase in solid waste poses a significant environmental challenge. Pyrolysis represents a crucial technology for the valorization of solid waste. As the primary product, biochar has found applications in numerous fields and garnered significant scientific interest. This study investigated the potential [...] Read more.
The continuous increase in solid waste poses a significant environmental challenge. Pyrolysis represents a crucial technology for the valorization of solid waste. As the primary product, biochar has found applications in numerous fields and garnered significant scientific interest. This study investigated the potential of NH4Cl and FeCl3 for modifying biochar. The resultant modified biochar achieved over 70% sulfamethoxazole (SMX) degradation within 30 min. The incorporation of NH4Cl and FeCl3 facilitated the formation of pyridinic nitrogen (N), graphitic nitrogen (N), and Fe(II) 1/2p, while the concomitant increase in persistent free radicals facilitated enhanced electron transfer rates. Notably, NH4Cl/FeCl3-modified biochar demonstrated superior efficacy compared with alternative activation techniques for real wastewater treatment. This study presents a novel material for persulfate (PDS)-based advanced oxidation processes, while also offering a cost-effective strategy for solid waste disposal. Full article
Show Figures

Graphical abstract

20 pages, 2618 KB  
Article
Advanced Oxidation of Dexamethasone by Activated Peroxo Compounds in Water Matrices: A Comparative Study
by Liina Onga, Niina Dulova and Eneliis Kattel-Salusoo
Water 2025, 17(15), 2303; https://doi.org/10.3390/w17152303 - 3 Aug 2025
Viewed by 625
Abstract
The continuous occurrence of steroidal pharmaceutical dexamethasone (DXM) in aqueous environments indicates the need for an efficient removal technology. The frequent detection of DXM in surface water could be substantially reduced by the application of photo-induced advanced oxidation technology. In the present study, [...] Read more.
The continuous occurrence of steroidal pharmaceutical dexamethasone (DXM) in aqueous environments indicates the need for an efficient removal technology. The frequent detection of DXM in surface water could be substantially reduced by the application of photo-induced advanced oxidation technology. In the present study, Fe2+ and UVA-light activated peroxo compounds were applied for the degradation and mineralization of a glucocorticoid, 25.5 µM DXM, in ultrapure water (UPW). The treatment efficacies were validated in real spring water (SW). A 120 min target pollutant degradation followed pseudo first-order reaction kinetics when an oxidant/Fe2+ dose 10/1 or/and UVA irradiation were applied. Acidic conditions (a pH of 3) were found to be more favorable for DXM oxidation (≥99%) regardless of the activated peroxo compound. Full conversion of DXM was not achieved, as the maximum TOC removal reached 70% in UPW by the UVA/H2O2/Fe2+ system (molar ratio of 10/1) at a pH of 3. The higher efficacy of peroxymonosulfate-based oxidation in SW could be induced by chlorine, bicarbonate, and carbonate ions; however, it is not applicable for peroxydisulfate and hydrogen peroxide. Overall, consistently higher efficacies for HO-dominated oxidation systems were observed. The findings from the current paper could complement the knowledge of oxidative removal of low-level DXM in real water matrices. Full article
Show Figures

Figure 1

13 pages, 3875 KB  
Article
Enhanced Peroxydisulfate Activation via Fe-Doped BiOBr for Visible-Light Photocatalytic Degradation of Paracetamol
by Zhigang Wang, Mengxi Cheng, Qiong Liu and Rong Chen
Catalysts 2025, 15(6), 594; https://doi.org/10.3390/catal15060594 - 16 Jun 2025
Viewed by 597
Abstract
Fe-doped BiOBr nanomaterials with varying Fe concentrations were synthesized using a solvothermal method. Paracetamol (APAP) was selected as the target pollutant to evaluate the visible-light-driven peroxydisulfate (PDS) activation performance of the prepared catalysts. Among all samples, 5% Fe-doped BiOBr (5% Fe-BOB) exhibited the [...] Read more.
Fe-doped BiOBr nanomaterials with varying Fe concentrations were synthesized using a solvothermal method. Paracetamol (APAP) was selected as the target pollutant to evaluate the visible-light-driven peroxydisulfate (PDS) activation performance of the prepared catalysts. Among all samples, 5% Fe-doped BiOBr (5% Fe-BOB) exhibited the highest catalytic efficiency, which can completely degrade APAP in 30 min under visible light irradiation. The degradation kinetics of APAP, PDS consumption, and the dominant reactive species in the 5% Fe-BOB/PDS/visible light system were systematically investigated. Results revealed that both photocatalyst dosage and PDS concentration significantly influenced activation efficiency. The primary active species responsible for APAP degradation were identified as photogenerated holes (h+) and singlet oxygen (1O2). Furthermore, cycling tests and control experiments confirmed that the 5% Fe-BOB/PDS/visible light system maintained high stability and effectively degraded APAP across a wide pH range. This work provides an efficient and stable photocatalytic system for pharmaceutical wastewater treatment through PDS-based advanced oxidation processes. Full article
Show Figures

Figure 1

18 pages, 1458 KB  
Article
Dependency of Catalytic Reactivity on the Characteristics of Expanded Graphites as Representatives of Carbonaceous Materials
by Do Gun Kim, Seong Won Im, Kyung Hwan Ryu, Seoung Ho Jo, Min Gyeong Choe and Seok Oh Ko
Molecules 2025, 30(11), 2275; https://doi.org/10.3390/molecules30112275 - 22 May 2025
Cited by 1 | Viewed by 601
Abstract
Carbonaceous materials (CMs) have gained great attention as heterogeneous catalysts in water treatment because of their high efficiency and potential contribution to achieving carbon neutrality. Expanded graphite (EG) is ideal for studying CMs because the reactivity in CMs largely depends on graphitic structures, [...] Read more.
Carbonaceous materials (CMs) have gained great attention as heterogeneous catalysts in water treatment because of their high efficiency and potential contribution to achieving carbon neutrality. Expanded graphite (EG) is ideal for studying CMs because the reactivity in CMs largely depends on graphitic structures, and most surface of EG is exposed, minimizing mass transfer resistance. However, EG is poor in adsorption and catalysis. In this study, EG was modified by simple thermal treatment to investigate the effects of characteristics of graphitic structures on reactivity. Tetracycline (TC) removal rate via activating peroxydisulfate (PDS) by the EG treated at 550 °C (EG550) was more than 10 times that of EG. The thermal modification did not significantly increase surfaces but led to increases in damaged, rough surfaces, graphitization degree, C content, defects, and C=O. Radical and non-radical pathways, such as SO4•−, O2•−, 1O2, and electron transfer, were involved in TC removal in EG550+PDS. TC degradation in EG550+PDS was initiated by hydroxylation, followed by demethylation, dehydroxylation, decarbonylation, and ring-opening. The ions ubiquitous in water systems did not significantly affect the performance of EG550+PDS, except for H2PO4 and HCO3, suggesting the high potential of practical applications. This study demonstrated that graphitic structure itself and surface area are not detrimental in the catalytic reactivity of CMs, which is different from previous studies. Rather, the reactivity is governed by the characteristics, i.e., defects and functional groups of the graphitic structure. It is thought that this study provides valuable insights into the development of highly reactive CMs and the catalytic systems using them. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis for Sustainability and Carbon-Neutrality)
Show Figures

Graphical abstract

12 pages, 3752 KB  
Article
Iron-Modified Functional Biochar Activates Peroxydisulfate for Efficient Degradation of Organic Pollutants
by Weijie Chen, Bingbing Zhang, Hao Pu, Zhao Yang, Yixue Qin, Mingze An, Chengtao Gao, Kang Mao, Sheng Wang, Bing Xue and Caiyuan Sun
Catalysts 2025, 15(5), 462; https://doi.org/10.3390/catal15050462 - 8 May 2025
Viewed by 669
Abstract
Tetracycline (TC) contamination in wastewater presents a significant global environmental challenge, with conventional water treatment methods often proving ineffective at eliminating antibiotic pollutants. As a result, there is an urgent need for cost-effective and efficient remediation technologies. In this study, we utilized the [...] Read more.
Tetracycline (TC) contamination in wastewater presents a significant global environmental challenge, with conventional water treatment methods often proving ineffective at eliminating antibiotic pollutants. As a result, there is an urgent need for cost-effective and efficient remediation technologies. In this study, we utilized the abundant and low-cost Eichhornia crassipes as a precursor to prepare sulfuric acid-modified functional biochar (SC-Fe) through a two-step pyrolysis process. This SC-Fe was then employed to activate peroxydisulfate (PDS) for the removal of TC from wastewater. The structural and physicochemical properties of SC-Fe were extensively characterized, and its efficiency in activating PDS for TC degradation was evaluated. The results demonstrated that the SC-Fe/PDS system effectively removed 99.36% of TC within 60 min under optimal conditions (0.3 g/L SC-Fe, 5 mM PDS, initial pH 7.09, and 25 °C). The outstanding removal efficiency can be attributed to the high specific surface area, large porosity, and defect-rich structure of SC-Fe. Furthermore, during the TC removal process, the SC-Fe/PDS system generated SO4•−, •OH, and 1O2, with SO4 and •OH acting as the primary reactive species. The high catalytic efficiency and low consumption of the SC-Fe/PDS system present a promising strategy for effective wastewater treatment. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Figure 1

22 pages, 2918 KB  
Article
Comparative Evaluation of UV-C-Activated Peroxide and Peroxydisulfate for Degradation of a Selected Herbicide
by Jelena Mitrović, Miljana Radović Vučić, Miloš Kostić, Milica Petrović, Nena Velinov, Slobodan Najdanović and Aleksandar Bojić
Separations 2025, 12(5), 116; https://doi.org/10.3390/separations12050116 - 3 May 2025
Viewed by 759
Abstract
Extensive utilization of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has resulted in contamination of the aquatic environment; this situation requires effective treatment technology. Ultraviolet-based advanced oxidation processes (UV-AOPs) are widely employed for the removal of organic contaminants from water. This study’s aim was to [...] Read more.
Extensive utilization of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has resulted in contamination of the aquatic environment; this situation requires effective treatment technology. Ultraviolet-based advanced oxidation processes (UV-AOPs) are widely employed for the removal of organic contaminants from water. This study’s aim was to compare the degradation of the pesticide 2,4-D in UV-C-activated peroxide and peroxydisulfate systems. UV-C irradiation alone exhibited a negligible effect on pesticide degradation, whereas the addition of oxidants significantly enhanced the degradation efficiency relative to 2,4-D. Complete pesticide removal was achieved after 15 min of UV/H2O2 treatment, while twice as much time was required with the UV/S2O82− process. COD decreased by 74% and 28% for UV-C-activated peroxide and peroxydisulfate, respectively. Both investigated systems demonstrated good performance for 2,4-D dechlorination. Pesticide degradation rates increased with increasing dosages of the applied oxidants. Acidic conditions were more favorable for degradation of 2,4-D, compared to neutral and basic conditions, for both systems studied. The degradation efficiency relative to 2,4-D decreased in the presence of HA, Cl and HCO3 in water matrices. The predominant radical for the UV-C-activated peroxydisulfate was determined to be a sulfate radical. These findings are of fundamental and practical significance in understanding UV-C-activated 2,4-D degradation, paving the way for the selection of preferred processes for the optimal removal of pesticides from various aqueous matrices. Full article
(This article belongs to the Special Issue Adsorption/Degradation Methods for Water and Wastewater Treatment)
Show Figures

Figure 1

15 pages, 4289 KB  
Article
Green Regeneration and Resource Recovery of Nickel-Plating Waste Solution: A Synergistic Study of Electrodialysis and Advanced Oxidation
by Xiaolong Xiong, Kangping Cui, Haiyang Li and Wenming Wu
Water 2025, 17(7), 1071; https://doi.org/10.3390/w17071071 - 3 Apr 2025
Viewed by 998
Abstract
Electroless nickel plating is a chemical deposition process in which nickel ions within a plating solution are reduced by a chemical reducing agent and subsequently deposited onto the surface of a solid substrate. Chemical nickel-plating wastewater contains substantial amounts of phosphorus as well [...] Read more.
Electroless nickel plating is a chemical deposition process in which nickel ions within a plating solution are reduced by a chemical reducing agent and subsequently deposited onto the surface of a solid substrate. Chemical nickel-plating wastewater contains substantial amounts of phosphorus as well as abundant nickel resources. In this study, electrodialysis coupled with advanced oxidation techniques was utilized for the efficient recovery of nickel and phosphorus from spent nickel-plating solutions. The end-of-life tank solution from chemical nickel plating was treated via electrodialysis to remove harmful phosphite and sulfate ions, enabling the purified solution to be reused in plating production by supplementing it with appropriate amounts of sodium hypophosphite and nickel sulfate. Subsequently, the concentrate generated from electrodialysis was treated using peroxydisulfate (PDS)-based advanced oxidation technology to break nickel complexation and simultaneously promote the oxidation of hypophosphite and phosphite ions. Finally, Ca(OH)2 was employed as a precipitating agent to effectively recover phosphorus from the treated concentrate. From an economic perspective, optimal process conditions were determined as follows: a current density of 20 mA/cm2, concentrate-to-dilute water volume ratio of 1:1, current speed of 1.0 m3/h, and a sodium sulfate concentration in concentrate of 20 g/L. Under these conditions, the migration rates of H2PO2 and HPO32− ions reached 67.3% and 62.53%, respectively, whereas Ni2+ exhibited significantly lower mobility at only 6.77%. The purified wastewater recovered approximately 60% of its initial plating activity. Regarding the concentrate—which is a by-product of electrodialysis—the hypophosphite ions were nearly completely oxidized using a PDS dosage of 0.3 mol/L. Furthermore, when the Ca/P molar ratio was adjusted to 2.0, total phosphorus (TP) and nickel (Ni) removal efficiencies exceeded 98% and 93%, respectively. Full article
Show Figures

Graphical abstract

13 pages, 2744 KB  
Article
Study of Biochar with Different Cellulose/Lignin Ratios for Organic Pollutant Removal in Water Through Fenton-like Catalysis Assisted with Adsorption
by Xinyan Yu, Wanting Xu and Lu Gan
Catalysts 2025, 15(4), 327; https://doi.org/10.3390/catal15040327 - 29 Mar 2025
Viewed by 726
Abstract
In the present study, cellulose and lignin with different weight ratios were mixed and pyrolyzed to prepare biochars for organic dye pollutant removal in water via Fenton-like catalysis. The results indicated that a higher cellulose content in a biomass precursor could result in [...] Read more.
In the present study, cellulose and lignin with different weight ratios were mixed and pyrolyzed to prepare biochars for organic dye pollutant removal in water via Fenton-like catalysis. The results indicated that a higher cellulose content in a biomass precursor could result in a lower biochar yield with a lower carbon content in the biochar. Moreover, with the increase in cellulose content, the resulting biochar had a higher graphitization degree with higher levels of crystallinity, as well as a richer porosity. When using Rhodamine B (RhB) as the dye probe, the biochar derived from a higher cellulose/lignin ratio precursor exhibited better adsorptive performance. It was further found that the biochar could act as a Fenton-like catalyst to activate peroxydisulfate (PDS) and accelerate RhB removal via a degradation route, in which single oxygen (1O2) was identified as the active species. Therefore, the biochar/PDS catalytic system exhibited prominent RhB removal stability in various water matrices with a wide pH application range. This study develops a new approach to prepare biomass-derived biochar with high organic removal capacity via Fenton-like catalysis assisted with adsorption synergy. Full article
Show Figures

Graphical abstract

19 pages, 8318 KB  
Article
Activation of H2O2/PDS/PMS by Iron-Based Biochar Derived from Fenton Sludge for Oxidative Removal of 2,4-DCP and As(III)
by Chutong Ling, Renting Huang, Wei Mao, Zhiming Wu, Cui Wei, Anze Li and Jinghong Zhou
Water 2025, 17(5), 765; https://doi.org/10.3390/w17050765 - 6 Mar 2025
Cited by 3 | Viewed by 1753
Abstract
In this study, the catalytic performance of the Fenton sludge iron-based biochar catalyst (Fe@BC700), generated during the Fenton process, was investigated regarding its role in oxidizing 2,4-dichlorophenol (2,4-DCP) and As(III) from aqueous solutions in peroxymonosulfate (PMS), peroxydisulfate (PDS), and hydrogen peroxide (H2 [...] Read more.
In this study, the catalytic performance of the Fenton sludge iron-based biochar catalyst (Fe@BC700), generated during the Fenton process, was investigated regarding its role in oxidizing 2,4-dichlorophenol (2,4-DCP) and As(III) from aqueous solutions in peroxymonosulfate (PMS), peroxydisulfate (PDS), and hydrogen peroxide (H2O2) systems. The characteristics of the as-prepared catalyst, operational parameters of H2O2/UV/Fe@BC700, PDS/UV/Fe@BC700, and PMS/UV/Fe@BC700 systems, and the kinetics of 2,4-DCP degradation were evaluated. Fe@BC700 exhibited excellent capabilities for activating persulfate and an outstanding oxidant performance as a heterogeneous photocatalyst under UV irradiation. Among the tested systems, PMS/UV/Fe@BC700 showed the highest oxidation capabilities for both 2,4-DCP and As(III) within 40 min. The total organic carbon (TOC) removal efficiency for 2,4-DCP was up to 95.9% in the PMS/UV/Fe@BC700 system. The presence of free radicals in the PMS/PDS system included ·OH, SO4·−, and ·O2, which were facilitated by both UV irradiation and the catalyst. The by-products generated during the PMS/UV/Fe@BC700 treatment were identified via LC-MS analysis, which showed that catalytic degradation substantially reduced the chronic and acute toxicity of 2,4-DCP intermediates. The present study demonstrates that the iron-based biochar derived from Fenton sludge exhibited remarkable persulfate activation capabilities and was highly effective in removing 2,4-DCP and As(III). Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

20 pages, 6022 KB  
Article
Nitrogen/Sulfur Co-Doped Biochar for Peroxymonosulfate Activation in Paracetamol Degradation: Mechanism Insight and Toxicity Evaluation
by Jiaqi Cui, Hong Meng, Yu Chen, Yongqing Zhang, Waseem Hayat and Charles Q. Jia
Catalysts 2025, 15(2), 121; https://doi.org/10.3390/catal15020121 - 26 Jan 2025
Cited by 1 | Viewed by 1729
Abstract
Advanced oxidation processes based on either peroxydisulfate (PDS) or peroxymonosulfate (PMS), collectively termed persulfate-based advanced oxidation processes (PS-AOPs), show potential in wastewater treatment applications. In this work, the nitrogen (N) and sulfur (S) co-doped biochar (NSBC) was prepared via a one-step pyrolysis of [...] Read more.
Advanced oxidation processes based on either peroxydisulfate (PDS) or peroxymonosulfate (PMS), collectively termed persulfate-based advanced oxidation processes (PS-AOPs), show potential in wastewater treatment applications. In this work, the nitrogen (N) and sulfur (S) co-doped biochar (NSBC) was prepared via a one-step pyrolysis of coffee grounds at 400 to 800 °C as a PMS activator for degrading paracetamol (PCT). The non-metallic NSBC demonstrated exceptional catalytic activity in activating PMS. In the NSBC-800/PMS system, 100% of PCT was completely degraded within 20 min, with a high reaction rate constant (kobs) of 0.2412 min−1. The system’s versatility was highlighted by its degradation potential across a wide pH range (3–11) and in the presence of various background ions and humic acids. The results of various experiments and characterization techniques showed that the system relied on an NSBC-800-mediated electron transfer as the main mechanism for PCT degradation. Additionally, there was a minor involvement of 1O2 in a non-radical degradation pathway. The graphitic N and thiophene-S (C-S-C) moieties introduced by N/S co-doping, as well as the carbonyl (C=O) groups of the biochar, were considered active sites promoting 1O2 generation. The total organic carbon (TOC) removal rate reached 37% in 120 min, while the assessment of the toxicity of the degradation products also affirmed the system’s environmental safety. This research provides a novel method for preparing environmentally friendly and cost-effective carbon-based catalysts for environmental remediation. Full article
Show Figures

Graphical abstract

18 pages, 4906 KB  
Article
Peroxydisulfate Persistence in ISCO for Groundwater Remediation: Temperature Dependence, Batch/Column Comparison, and Sulfate Fate
by Lenka McGachy, Radek Škarohlíd, Richard Kostrakiewicz, Karel Kühnl, Pavlína Těšínská, Barbora Müllerová, Marek Šír and Marek Martinec
Water 2024, 16(24), 3552; https://doi.org/10.3390/w16243552 - 10 Dec 2024
Viewed by 1069
Abstract
The persistence of peroxydisulfate anion (S2O82−) in soil is a key factor influencing the effectiveness of in situ chemical oxidation (ISCO) treatments, which use S2O82− (S2O82− based ISCO) [...] Read more.
The persistence of peroxydisulfate anion (S2O82−) in soil is a key factor influencing the effectiveness of in situ chemical oxidation (ISCO) treatments, which use S2O82− (S2O82− based ISCO) to remediate contaminated groundwater. However, only a few studies have addressed aspects of S2O82− persistence, such as the effect of temperature and the fate of sulfates (SO42−) generated by S2O82− decomposition in real soil and/or aquifer materials. Additionally, there are no studies comparing batch and dynamic column tests. To address these knowledge gaps, we conducted batch tests with varying temperatures (30–50 °C) and initial S2O82− concentrations (2.7 g/L and 16.1 g/L) along with dynamic column experiments (40 °C, 16.1 g/L) with comprehensively characterized real soil/aquifer materials. Furthermore, the principal component analysis (PCA) method was employed to investigate correlations between S2O82− decomposition and soil material parameters. We found that S2O82− decomposition followed the pseudo-first-order rate law in all experiments. In all tested soil materials, thermal dependence of S2O82− decomposition followed the Arrhenius law with the activation energies in the interval 65.2–109.1 kJ/mol. Decreasing S2O82− concentration from 16.1 g/L to 2.7 g/L led to a several-fold increase (factor 2–11) in bulk S2O82− decomposition rate coefficients (k′) in individual soil/aquifer materials. Although k′ in the dynamic column tests showed higher values compared to the batch tests (factor 1–3), the normalized S2O82− decomposition rate coefficients to the total BET surface were much lower, indicating the inevitable formation of preferential pathways in the columns. Furthermore, mass balance analysis of S2O82− decomposition and SO42− generation suggests the ability of some systems to partially accumulate the produced SO42−. Principal Component Analysis (PCA) identified total organic carbon (TOC), Ni, Mo, Co, and Mn as key factors influencing the decomposition rate under varying soil conditions. These findings provide valuable insights into how S2O82− behaves in real soil and aquifer materials, which can improve the design and operation of ISCO treatability studies for groundwater remediation. Full article
(This article belongs to the Special Issue Fate, Transport, Removal and Modeling of Pollutants in Water)
Show Figures

Figure 1

18 pages, 3744 KB  
Article
Peroxydisulfate Activation by Biochar from Banana Peel Promoted with Copper Phosphide for Bisphenol S Degradation in Aqueous Media
by Alexandra A. Ioannidi, Orestia Logginou, Konstantinos Kouvelis, Athanasia Petala, Maria Antonopoulou, Dionissios Mantzavinos and Zacharias Frontistis
Catalysts 2024, 14(11), 789; https://doi.org/10.3390/catal14110789 - 6 Nov 2024
Cited by 2 | Viewed by 1242
Abstract
In this work, the decomposition of bisphenol S (BPS) by biochar derived from banana peel (BPB) promoted by copper phosphide (Cu3P) was examined. Different materials with Cu3P loadings from 0.25 to 4.00 wt.% on biochar were synthesized, characterized using [...] Read more.
In this work, the decomposition of bisphenol S (BPS) by biochar derived from banana peel (BPB) promoted by copper phosphide (Cu3P) was examined. Different materials with Cu3P loadings from 0.25 to 4.00 wt.% on biochar were synthesized, characterized using the Brunauer–Emmett–Teller (BET) method, X-ray diffraction (XRD) and a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS), and evaluated. Nearly all of the synthesized materials exhibited low to moderate adsorption capacity, attributable to their limited surface area (<3.1 m2/g). However, in the presence of sodium persulfate (SPS), the 2%Cu3P/ΒPB/SPS system was capable of removing 90% of 500 μg/L BPS in less than 10 min. The system’s performance was enhanced under inherent pH, and the reaction rate followed pseudo-first-order kinetics with respect to BPS and persulfate concentrations. Interestingly, the presence of 250 mg/L of sodium chloride had a negligible effect, while low to moderate inhibition was observed in the presence of bicarbonates and humic acid. In contrast, significant retardation was observed in experiments performed in real matrices, such as secondary effluent (WW) and bottled water (BW). According to scavenging experiments, both radical and non-radical mechanisms participated in the BPS degradation. Four transformation products were identified using the UHPLC/TOF-MS system in negative ionization mode, with two of them having higher molecular weights than BPS, while the other two TBPs involved the ring-opening reaction, and a BPS decomposition pathway was proposed. Full article
(This article belongs to the Special Issue Environmental Catalysis in Advanced Oxidation Processes, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 11209 KB  
Article
Natural Vanadium–Titanium Magnetite Activated Peroxydisulfate and Peroxymonosulfate for Acid Orange II Degradation: Different Activation Mechanisms and Influencing Factors
by Zheng Zhang, Libin Zhao, Jingyuan Tian, Shaojie Ren and Wei Zhang
Water 2024, 16(21), 3109; https://doi.org/10.3390/w16213109 - 30 Oct 2024
Viewed by 1169
Abstract
Persulfate-based advanced oxidation processes have emerged as a promising approach for the degradation of organic pollutants in aqueous environments due to their ability to generate sulfate radicals (SO4−·) within catalytic systems. In this study, peroxydisulfate (PDS) and peroxymonosulfate (PMS) were [...] Read more.
Persulfate-based advanced oxidation processes have emerged as a promising approach for the degradation of organic pollutants in aqueous environments due to their ability to generate sulfate radicals (SO4−·) within catalytic systems. In this study, peroxydisulfate (PDS) and peroxymonosulfate (PMS) were investigated with the natural vanadium–titanium magnetite (VTM) as the activator for the degradation of acid orange II. The degradation efficiency increased with higher dosages of VTM or persulfate (both PDS and PMS) at lower concentrations (below 10 mM). However, excessive PMS (higher than 10 mM) in the PMS/VTM system led to the self-consumption of free radicals, significantly inhibiting the degradation of acid orange II. The VTM-activated PDS or PMS maintained an effective degradation of acid orange II in a wide pH range (3~11), suggesting remarkable pH stability. The SO4−· was the main active species in the PDS/VTM system, while hydroxyl radical (·OH) also contributed significantly to the PMS/VTM system. In addition, PMS exhibited better thermal stability during VTM activation. Coexisting ions in an aqueous environment such as bicarbonate (HCO3), carbonate (CO32–), and hydrogen phosphate (HPO42–) had obvious effects on persulfate activation. Our study systematically investigated the different activation processes and influencing factors associated with PDS and PMS when the natural VTM was used as a catalyst, thereby providing new insights into the persulfate-mediated degradation of organic pollutants in aqueous environments. Full article
(This article belongs to the Topic Advanced Oxidation Processes for Wastewater Purification)
Show Figures

Graphical abstract

Back to TopTop