Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = pet-coke

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7119 KiB  
Article
High-Temperature Steam- and CO2-Assisted Gasification of Oil Sludge and Petcoke
by Sergey M. Frolov, Viktor A. Smetanyuk, Ilyas A. Sadykov, Anton S. Silantiev, Fedor S. Frolov, Vera Ya. Popkova, Jaroslav K. Hasiak, Anastasiya G. Buyanovskaya, Rina U. Takazova, Tatiana V. Dudareva, Valentin G. Bekeshev, Alexey B. Vorobyov, Alexey V. Inozemtsev and Jaroslav O. Inozemtsev
Clean Technol. 2025, 7(1), 17; https://doi.org/10.3390/cleantechnol7010017 - 14 Feb 2025
Viewed by 1126
Abstract
A new high-temperature allothermal gasification technology is used to process three types of oil waste: ground oil sludge (GOS), tank oil sludge (TOS), and petcoke. The gasifying agent (GA), mainly composed of H2O and CO2 at a temperature above 2300 [...] Read more.
A new high-temperature allothermal gasification technology is used to process three types of oil waste: ground oil sludge (GOS), tank oil sludge (TOS), and petcoke. The gasifying agent (GA), mainly composed of H2O and CO2 at a temperature above 2300 K and atmospheric pressure, is produced by pulsed detonations of a near-stochiometric methane-oxygen mixture. The gasification experiments show that the dry off-gas contains 80–90 vol.% combustible gas composed of 40–45 vol.% CO, 28–33 vol.% H2, 5–10 vol.% CH4, and 4–7 vol.% noncondensable C2–C3 hydrocarbons. The gasification process is accompanied by the removal of mass from a flow gasifier in the form of fine solid ash particles with a size of about 1 μm. The ash particles have a mesoporous structure with a specific surface area ranging from 3.3 to 15.2 m2/g and pore sizes ranging from 3 to 50 nm. The measured wall temperatures of the gasifier are in reasonable agreement with the calculated value of the thermodynamic equilibrium temperature of the off-gas. The measured CO content in the off-gas is in good agreement with the thermodynamic calculations. The reduced H2 content and elevated contents of CH4, CO2, and CxHy are apparently associated with the nonuniform distribution of the waste/GA mass ratio in the gasifier. To increase the H2 yield, it is necessary to improve the mixing of waste with the GA. It is proposed to mix crushed petcoke with oil sludge to form a paste and feed the combined waste into the gasifier using a specially designed feeder. Full article
(This article belongs to the Special Issue Gasification and Pyrolysis of Biomass and Waste)
Show Figures

Figure 1

25 pages, 5685 KiB  
Article
Deep Learning Techniques for Enhanced Flame Monitoring in Cement Rotary Kilns Using Petcoke and Refuse-Derived Fuel (RDF)
by Jorge Arroyo, Christian Pillajo, Jorge Barrio, Pedro Compais and Valter Domingos Tavares
Sustainability 2024, 16(16), 6862; https://doi.org/10.3390/su16166862 - 9 Aug 2024
Viewed by 2036
Abstract
The use of refuse-derived fuel (RDF) in cement kilns offers a multifaceted approach to sustainability, addressing environmental, economic, and social aspects. By converting waste into a valuable energy source, RDF reduces landfill use, conserves natural resources, lowers greenhouse gas emissions, and promotes a [...] Read more.
The use of refuse-derived fuel (RDF) in cement kilns offers a multifaceted approach to sustainability, addressing environmental, economic, and social aspects. By converting waste into a valuable energy source, RDF reduces landfill use, conserves natural resources, lowers greenhouse gas emissions, and promotes a circular economy. This sustainable practice not only supports the cement industry in meeting regulatory requirements but also advances global efforts toward more sustainable waste management and energy production systems. This research promotes the integration of RDF as fuel in cement kilns to reduce the use of fossil fuels by improving the control of the combustion. Addressing the variable composition of RDF requires continuous monitoring to ensure operational stability and product quality, traditionally managed by operators through visual inspections. This study introduces a real-time, computer vision- and deep learning-based monitoring system to aid in decision-making, utilizing existing kiln imaging devices for a non-intrusive, cost-effective solution applicable across various facilities. The system generates two detailed datasets from the kiln environment, undergoing extensive preprocessing to enhance image quality. The YOLOv8 algorithm was chosen for its real-time accuracy, with the final model demonstrating strong performance and domain adaptation. In an industrial setting, the system identifies critical elements like flame and clinker with high precision, achieving 25 frames per second (FPS) and a mean average precision (mAP50) of 98.8%. The study also develops strategies to improve the adaptability of the model to changing operational conditions. This advancement marks a significant step towards more energy-efficient and quality-focused cement production practices. By leveraging technological innovations, this research contributes to the move of the industry towards sustainability and operational efficiency. Full article
Show Figures

Figure 1

23 pages, 8093 KiB  
Article
Polymer Composites with Carbon Fillers Based on Coal Pitch and Petroleum Pitch Cokes: Structure, Electrical, Thermal, and Mechanical Properties
by Yevgen Mamunya, Andrii Misiura, Marcin Godzierz, Sławomira Pusz, Urszula Szeluga, Karolina Olszowska, Paweł S. Wróbel, Anna Hercog, Anastasiia Kobyliukh and Andrii Pylypenko
Polymers 2024, 16(6), 741; https://doi.org/10.3390/polym16060741 - 8 Mar 2024
Cited by 5 | Viewed by 2242
Abstract
The effect of particle size and oxidation degree of new carbon microfillers, based on coal pitch (CP) and petroleum pitch (PET) cokes, on the structure as well as thermal, mechanical, and electrical properties of the composites based on ultrahigh molecular weight polyethylene (UHMWPE) [...] Read more.
The effect of particle size and oxidation degree of new carbon microfillers, based on coal pitch (CP) and petroleum pitch (PET) cokes, on the structure as well as thermal, mechanical, and electrical properties of the composites based on ultrahigh molecular weight polyethylene (UHMWPE) was investigated. The composites studied have a segregated structure of filler particle distribution in the UHMWPE matrix. It was found that composite with smaller CP grain fraction has the highest Young’s modulus and electrical conductivity compared to the other composites studied, which can be the result of a large contribution of flake-shaped particles. Additionally, conductivity of this composite turned out to be similar to composites with well-known carbon nanofillers, such as graphene, carbon black, and CNTs. Additionally, the relationship between electrical conductivity and Young’s modulus values of composites studied was revealed, which indicates that electrical conductivity is very sensitive to the structure of the filler phase in the polymer matrix. In general, it was established that the properties, especially the electrical conductivity, of the composites studied strongly depends on the size, shape, and oxidative treatment of CP and PET filler particles, and that the CP coke of appropriately small particle sizes and flake shape has significant potential as a conductive filler for polymer composites. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

15 pages, 6578 KiB  
Article
Industrial Rotary Kiln Burner Performance with 3D CFD Modeling
by Duarte M. Cecílio, Margarida Mateus and Ana Isabel Ferreiro
Fuels 2023, 4(4), 454-468; https://doi.org/10.3390/fuels4040028 - 2 Nov 2023
Cited by 2 | Viewed by 3551
Abstract
As the need to minimize environmental impacts continues to rise, it is essential to incorporate, advance, and adopt renewable energy sources and materials to attain climate neutrality in industrial operations. It is established that economic growth is built upon infrastructure, where the cement [...] Read more.
As the need to minimize environmental impacts continues to rise, it is essential to incorporate, advance, and adopt renewable energy sources and materials to attain climate neutrality in industrial operations. It is established that economic growth is built upon infrastructure, where the cement industry plays a crucial role. However, it is also known that this industry is actively looking for ways to transition toward low-carbon practices to encourage sustainable and environmentally conscious practices. To this end, the use of refuse-derived fuels to substitute fossil fuels is very appealing, as these have the potential to lower clinker production costs and CO2 emissions. Bearing this in mind, the primary objective of this work is to gain insights into the combustion behavior in an industrial rotary kiln by studying real-life scenarios and to assess the potential of substituting alternative fuels for fossil fuels to reduce CO2 emissions. A 3D CFD turbulent combustion model was formulated in Ansys® considering a Pillard NOVAFLAM® burner, where refuse-derived and petcoke fuels were used, and different secondary air mass flows were considered. From the obtained results, it was possible to conclude that the outcome of the combustion process is greatly influenced by the fuel-to-air ratio. Increasing the secondary air mass flow promotes the occurrence of a complete and efficient combustion process, leading to enhanced fuel conversion and the decreased formation of pollutants such as CO, soot, and unburned hydrocarbons. An increase in combustion efficiency from 93% to 96% was observed, coupled with a slight decrease in the pollutant mass fraction in the flue gas. Full article
Show Figures

Figure 1

16 pages, 2892 KiB  
Article
Preparation of Carbon-Based Solid Acid Catalyst from High-Sulfur Petroleum Coke with Nitric Acid and Ball Milling, and a Computational Evaluation of Inherent Sulfur Conversion Pathways
by Qing Huang, Natalia M. Cabral, Xing Tong, Annelisa S. Schafranski, Pierre Kennepohl and Josephine M. Hill
Molecules 2023, 28(20), 7051; https://doi.org/10.3390/molecules28207051 - 12 Oct 2023
Cited by 2 | Viewed by 1801
Abstract
A series of petroleum coke (petcoke)-derived solid acid catalysts were prepared via nitric acid treatment with or without ball milling pretreatment. The inherent sulfur in petcoke was converted to sulfonic groups, which were active sites for the esterification of octanoic acid and methanol [...] Read more.
A series of petroleum coke (petcoke)-derived solid acid catalysts were prepared via nitric acid treatment with or without ball milling pretreatment. The inherent sulfur in petcoke was converted to sulfonic groups, which were active sites for the esterification of octanoic acid and methanol at 60 °C, with ester yields of 14–43%. More specifically, samples without ball milling treated at 120 °C for 3 h had a total acidity of 4.67 mmol/g, which was 1.6 times that of the samples treated at 80 °C, despite their −SO3H acidities being similar (~0.08 mmol/g). The samples treated for 24 h had higher −SO3H (0.10 mmol/g) and total acidity (5.25 mmol/g) but not increased catalytic activity. Ball milling increased the defects and exposed aromatic hydrogen groups on petcoke, which facilitated further acid oxidation (0.12 mmol −SO3H/g for both materials and total acidity of 5.18 mmol/g and 5.01 mmol/g for BP-N-3/120 and BP-N-8/90, respectively) and an increased ester yield. DFT calculations were used to analyze the pathways of sulfonic acid group formation, and the reaction pathway with NO2• was the most thermodynamically and kinetically favourable. The activities of the prepared catalysts were related to the number of −SO3H acid sites, the total acidity, and the oxygen content, with the latter two factors having a negative impact. Full article
Show Figures

Figure 1

20 pages, 2597 KiB  
Review
Vanadium and Nickel Recovery from the Products of Heavy Petroleum Feedstock Processing: A Review
by Aleksey Vishnyakov
Metals 2023, 13(6), 1031; https://doi.org/10.3390/met13061031 - 27 May 2023
Cited by 6 | Viewed by 4324
Abstract
The steadily growing demand for non-ferrous metals, a shift to heavier crude oil recovery and tightened environmental standards have increased the importance of heavy petroleum feedstock (HPF) as a raw source of metals. This paper reviews the recent developments in the recovery of [...] Read more.
The steadily growing demand for non-ferrous metals, a shift to heavier crude oil recovery and tightened environmental standards have increased the importance of heavy petroleum feedstock (HPF) as a raw source of metals. This paper reviews the recent developments in the recovery of vanadium and nickel from HPF. During crude oil processing and the application of its products, HPF is converted to various metal-enriched byproducts (“heavy oil”, petcoke, ashes and slags) from which the metals can be recovered. This paper briefly describes the sources and recovery pathways (both mainstream and exotic), and discusses the economic viability and possible future directions. Particular attention is paid to (i) the electrochemical recovery of metals from petrofluids and alternative approaches; (ii) pre-combustion metal recovery from petcoke; and (iii) metal reclamation from fly ash from heavy fuel oil or petroleum coke combustion: hydro- and pyro-metallurgical and bio-based techniques. The current stage of development and prospects for the future are evaluated for each method and summarized in the conclusion. Increasing research activity is mostly observed in traditional areas: metal extraction from fly ash and the reduction of metals from the ash to V–Fe and Ni–Fe alloys. Bioengineering approaches to recover vanadium from ashes are also actively developed and have the potential to become commercially viable in the future. Full article
(This article belongs to the Special Issue Metal Recovery and Separation from Wastes)
Show Figures

Figure 1

20 pages, 5115 KiB  
Article
Co-Carbonization of Discard Coal with Waste Polyethylene Terephthalate towards the Preparation of Metallurgical Coke
by Sonwabo E. Bambalaza, Buhle S. Xakalashe, Yolindi Coetsee, Pieter G. van Zyl, Xoliswa L. Dyosiba, Nicholas M. Musyoka and Joalet D. Steenkamp
Materials 2023, 16(7), 2782; https://doi.org/10.3390/ma16072782 - 30 Mar 2023
Cited by 4 | Viewed by 3923
Abstract
Waste plastics such as polyethylene terephthalate (w-PET) and stockpiled discard coal (d-coal) pose a global environmental threat as they are disposed of in large quantities as solid waste into landfills and are particularly hazardous due to spontaneous combustion of d-coal that produces greenhouse [...] Read more.
Waste plastics such as polyethylene terephthalate (w-PET) and stockpiled discard coal (d-coal) pose a global environmental threat as they are disposed of in large quantities as solid waste into landfills and are particularly hazardous due to spontaneous combustion of d-coal that produces greenhouse gases (GHG) and the non-biodegradability of w-PET plastic products. This study reports on the development of a composite material, prepared from w-PET and d-coal, with physical and chemical properties similar to that of metallurgical coke. The w-PET/d-coal composite was synthesized via a co-carbonization process at 700 °C under a constant flow of nitrogen gas. Proximate analysis results showed that a carbonized w-PET/d-coal composite could attain up to 35% improvement in fixed carbon content compared to its d-coal counterpart, such that an initial fixed carbon content of 14–75% in carbonized discard coal could be improved to 49–86% in carbonized w-PET/d-coal composites. The results clearly demonstrate the role of d-coal ash on the degree of thermo-catalytic conversion of w-PET to solid carbon, showing that the yield of carbon derived from w-PET (i.e., c-PET) was proportional to the ash content of d-coal. Furthermore, the chemical and physical characterization of the composition and structure of the c-PET/d-coal composite showed evidence of mainly graphitized carbon and a post-carbonization caking ability similar to that of metallurgical coke. The results obtained in this study show potential for the use of waste raw materials, w-PET and d-coal, towards the development of an eco-friendly reductant with comparable chemical and physical properties to metallurgical coke. Full article
Show Figures

Graphical abstract

11 pages, 2764 KiB  
Article
Preparation of High-Performance Zn-Based Catalysts Using Printing and Dyeing Wastewater and Petroleum Coke as a Carrier in Acetylene Acetoxylation
by Yuhao Chen, Mengli Li, Zhuang Xu, Guowang Shen, Xugeng Wang and Bin Dai
Catalysts 2023, 13(3), 539; https://doi.org/10.3390/catal13030539 - 8 Mar 2023
Cited by 1 | Viewed by 1686
Abstract
In this study, novel Zn catalysts were prepared by the wet impregnation method using printing and dyeing wastewater (PDW)-modified petroleum coke (petcoke) as a carrier, and they were applied to the acetylene acetoxylation. The pretreated petroleum coke has a high specific surface area [...] Read more.
In this study, novel Zn catalysts were prepared by the wet impregnation method using printing and dyeing wastewater (PDW)-modified petroleum coke (petcoke) as a carrier, and they were applied to the acetylene acetoxylation. The pretreated petroleum coke has a high specific surface area which provides sufficient space for the loading of Zn. Calcination further increases catalyst activity, but when calcination temperatures exceed 1000 °C, a significant loss of Zn occurs, resulting in a dramatic decrease in catalyst activity. This enables the conversion of acetic acid up to 85%. X-ray photoelectron spectroscopy confirmed that a large amount of N is introduced into PC from PDW, which changes the electron transfer around Zn. Temperature-programmed desorption (TPD) analysis revealed that the nitrogen-doped Zn(OAc)2 catalyst enhanced the catalytic activity by modulating the intensity of the catalyzed adsorption of acetic acid and acetylene. This study provides a new way to reuse petroleum coke and printing and dyeing wastewater to support the sustainable development of the vinyl acetate industry. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

17 pages, 2104 KiB  
Review
A Critical Review of Extraction Methods for Vanadium from Petcoke Ash
by Hari Jammulamadaka and Sarma V. Pisupati
Fuels 2023, 4(1), 58-74; https://doi.org/10.3390/fuels4010005 - 8 Feb 2023
Cited by 9 | Viewed by 7076
Abstract
Petcoke is a solid carbon-rich residue produced during petroleum refining. Petcoke mineral matter is rich in vanadium that, when alloyed with other metals, can significantly improve its properties. Vanadium extraction from steel slags is well studied, while extraction from secondary sources such as [...] Read more.
Petcoke is a solid carbon-rich residue produced during petroleum refining. Petcoke mineral matter is rich in vanadium that, when alloyed with other metals, can significantly improve its properties. Vanadium extraction from steel slags is well studied, while extraction from secondary sources such as petcoke is not well understood. Vanadium is one of the 50 critical minerals identified by the United States Department of Interior. Considering the annual production of petcoke, it is a valuable secondary source of vanadium, especially in places with no steel production. This review paper critically examines the compositional differences between steel and petcoke slags and the various extraction methods that apply to vanadium production, particularly from petcoke, considering the environmental issues associated with each technique. Information on the characterization of US petcoke is also included to identify specific extraction methods for vanadium. Full article
Show Figures

Figure 1

16 pages, 10896 KiB  
Article
Impact of Plastic Blends on the Gaseous Product Composition from the Co-Pyrolysis Process
by Roksana Muzyka, Grzegorz Gałko, Miloud Ouadi and Marcin Sajdak
Energies 2023, 16(2), 947; https://doi.org/10.3390/en16020947 - 14 Jan 2023
Cited by 4 | Viewed by 2931
Abstract
The co-pyrolysis of various biomasses mixed with two types of plastic waste was investigated in this study. Mixture M1 consisted of 30% m/m styrene–butadiene rubber (SBR), 40% m/m polyethylene terephthalate (PET), and 30% m/m polypropylene (PP). M2 consisted of 40% m/m PET, 30% [...] Read more.
The co-pyrolysis of various biomasses mixed with two types of plastic waste was investigated in this study. Mixture M1 consisted of 30% m/m styrene–butadiene rubber (SBR), 40% m/m polyethylene terephthalate (PET), and 30% m/m polypropylene (PP). M2 consisted of 40% m/m PET, 30% m/m PP, and 30% m/m acrylonitrile–butadiene–styrene copolymer (ABS). The SBR, ABS, and PP used in this study were from the automotive industry, while the PET originated from scrap bottles. Co-pyrolysis was performed using wood biomass, agricultural biomass, and furniture trash. Thermal treatment was performed on samples from room temperature to 400 or 600 °C at a heating rate of 10 °C/min under N2 at a flow rate of 3 dm3/min. Based on the findings of the experiments, an acceptable temperature was found for the fixed-bed pyrolysis of biomass–plastic mixtures with varying ratios, and the raw materials were pyrolyzed under the same conditions. The composition of the derived gaseous fraction was investigated. The co-pyrolysis studies and variance analysis revealed that combining biomass with plastic materials had a good influence on the gaseous fraction, particularly in the presence of 6.6–7.5% v/v hydrogen and a lower heating value of 15.11 MJ/m3. This type of gaseous product has great potential for use as a replacement for coke oven gas in metallurgy and other applications. Full article
Show Figures

Figure 1

25 pages, 3068 KiB  
Article
Modeling and Simulation of an Industrial-Scale 525 MWth Petcoke Chemical Looping Combustion Power Plant
by Odile Vekemans, Mahdi Yazdanpanah, Florent Guillou, Stéphane Bertholin and Benoit Haut
Processes 2023, 11(1), 211; https://doi.org/10.3390/pr11010211 - 9 Jan 2023
Cited by 1 | Viewed by 2288
Abstract
This paper presents the modeling and simulation of an industrial-scale chemical looping combustion (CLC) power plant, including all process units (reactors, flue gas treatment units, heat integration, steam cycle, and CO2 compression train). A model of a 525 MWth CLC power plant [...] Read more.
This paper presents the modeling and simulation of an industrial-scale chemical looping combustion (CLC) power plant, including all process units (reactors, flue gas treatment units, heat integration, steam cycle, and CO2 compression train). A model of a 525 MWth CLC power plant was built using a rigorous representation of the solid fuel and oxygen carrier. Petcoke was considered the main fuel of interest in this study, and it is compared with other solid fuels. The flue gas compositions obtained with the model show that cleanup units are mandatory to comply with CO2 quality requirements. High levels of flue gas treatment, including 97.1% deNOx and 99.4% deSOx, are needed to achieve typical specifications for captured CO2. This is mainly due to the high level of contaminants in the fuel, but also to the absence of nitrogen in the CLC flue gas, thus resulting in higher concentrations for all substances. The high level of flue gas treatment is thus one of the important challenges for solid fuel combustion in CLC. The overall CO2 capture efficiency of the plant is estimated to be as high as 94%. Regarding the energy balance, a process net efficiency of 38% is obtained. Comparing the results with other available technologies shows that CLC exhibits one of the highest net plant efficiencies and carbon capture rates. CLC is thus a promising technology to produce clean energy from solid fuels. Finally, based on a sensitivity analysis, it is shown that process efficiency is mainly affected by the design and performance of the CLC furnace, the steam injection rate in the fuel reactor, the char separation efficiency, and the excess oxygen in the air reactor. Full article
Show Figures

Figure 1

25 pages, 5028 KiB  
Article
Use of Biomass as Alternative Fuel in Magnesia Sector
by Nikolaos Margaritis, Christos Evaggelou, Panagiotis Grammelis, Haris Yiannoulakis, Polykarpos Papageorgiou, Stefan Puschnigg and Johannes Lindorfer
Fuels 2022, 3(4), 642-666; https://doi.org/10.3390/fuels3040039 - 9 Nov 2022
Cited by 4 | Viewed by 3830
Abstract
The European Union has started a progressive decarbonization pathway with the aim to become carbon neutral by 2050. Energy-intensive industries (EEIs) are expected to play an important role in this transition as they represent 24% of the final energy consumption. To stay competitive [...] Read more.
The European Union has started a progressive decarbonization pathway with the aim to become carbon neutral by 2050. Energy-intensive industries (EEIs) are expected to play an important role in this transition as they represent 24% of the final energy consumption. To stay competitive as EEI, a clear and consistent long-term strategy is required. In the magnesia sector, an essential portion of CO2 emissions result from solid fossil fuels (MgCO3, pet coke) during the production process. This study concerns the partial substitution of fossil fuels with biomass to reduce carbon emissions. An experimental campaign is conducted by implementing a new low-NOx burner at the magnesia plant of Grecian Magnesite (GM). Life cycle assessment (LCA) is performed to quantify the carbon reduction potential of various biomass mixtures. The experimental analysis revealed that even with a 100% pet coke feed of the new NOx burner, NOx emissions are decreased by 41%, while the emissions of CO and SOx increase slightly. By applying a biomass/pet coke mixture as fuel input, where 50% of the required energy input results from biomass, a further 21% of NOx emission reduction is achieved. In this case, SOx and CO emissions are additionally reduced by 50% and 13%, respectively. LCA results confirmed the sustainable impact of applying biomass. Carbon emissions could be significantly decreased by 32.5% for CCM products to 1.51 ton of CO2eq and by 38.2% for DBM products to 1.64 ton of CO2eq per ton of MgO in a best case scenario. Since the calcination of MgCO3 releases an essential and unavoidable amount of CO2 naturally bound in the mineral, biomass usage as a fuel is a promising way to become sustainable and resilient against future increased CO2 prices. Full article
(This article belongs to the Special Issue Emerging Sustainable Technologies in Biofuel Production)
Show Figures

Graphical abstract

17 pages, 4652 KiB  
Article
Large Eddy Simulation and Thermodynamic Design of the Organic Rankine Cycle Based on Butane Working Fluid and the High-Boiling-Point Phenyl Naphthalene Liquid Heating System
by Alon Davidy
Entropy 2022, 24(10), 1461; https://doi.org/10.3390/e24101461 - 13 Oct 2022
Cited by 1 | Viewed by 2457
Abstract
Large Eddy Simulation (LES) and Thermodynamic study have been performed on Organic Rankine Cycle (ORC) components (boiler, evaporator, turbine, pump, and condenser). The petroleum Coke burner provided the heat flux needed for the butane evaporator. High boiling point fluid (called phenyl-naphthalene) has been [...] Read more.
Large Eddy Simulation (LES) and Thermodynamic study have been performed on Organic Rankine Cycle (ORC) components (boiler, evaporator, turbine, pump, and condenser). The petroleum Coke burner provided the heat flux needed for the butane evaporator. High boiling point fluid (called phenyl-naphthalene) has been applied in the ORC. The high boiling liquid is safer (steam explosion hazard may be prevented) for heating the butane stream. It has best exergy efficiency. It is non-corrosive, highly stable, and flammable. Fire Dynamics Simulator software (FDS) has been applied in order to simulate the pet-coke combustion and calculate the Heat Release Rate (HRR). The maximal temperature of the 2-Phenylnaphthalene flowing in the boiler is much less than its boiling temperature (600 K). Enthalpy, entropy and specific volume required for evaluating the heat rates and the power have been computed by employing the THERMOPTIM thermodynamic code. The proposed design ORC is safer. This is because the flammable butane is separated from the flame produced in the petroleum coke burner. The proposed ORC obeys the two fundamental laws of thermodynamics. The calculated net power is 3260 kW. It is in good agreement with net power is reported in the literature. The thermal efficiency of the ORC is 18.0%. Full article
(This article belongs to the Special Issue Applications of Thermofluids in Power Generation Systems)
Show Figures

Graphical abstract

28 pages, 5821 KiB  
Review
Analytics for Recovery and Reuse of Solid Wastes from Refineries
by Barbara Apicella, Carmela Russo and Osvalda Senneca
Energies 2022, 15(11), 4026; https://doi.org/10.3390/en15114026 - 30 May 2022
Cited by 5 | Viewed by 2271
Abstract
Heavy fractions of petroleum have for long time been bypassed in favour of lighter fractions. Nowadays, in the framework of the “circular economy”, there is a growing interest in residual petroleum heavy fractions. The present work briefly reviews the use and characterization at [...] Read more.
Heavy fractions of petroleum have for long time been bypassed in favour of lighter fractions. Nowadays, in the framework of the “circular economy”, there is a growing interest in residual petroleum heavy fractions. The present work briefly reviews the use and characterization at laboratory scale of some low valuable solid or semi-solid products of the oil refinery industry: asphaltenes (bitumen/asphalt), pet-coke and pitch for use as fuels. The use of solid and semi-solid refinery residues, in particular, of coke as a coal substitute in thermochemical processes and of pitch and asphaltenes as material precursors, requires careful analysis, and an understanding of their structure at the molecular level is mandatory for the development of processing technology. Techniques for the characterization of typical petroleum heavy fractions such as pitches, asphaltenes and cokes are reviewed. An experimental protocol for investigating at the laboratory scale the thermochemical conversion behavior of solid and semi-solid refinery wastes is proposed. Full article
Show Figures

Graphical abstract

16 pages, 4988 KiB  
Article
Thermodynamic Design of Organic Rankine Cycle (ORC) Based on Petroleum Coke Combustion
by Alon Davidy
ChemEngineering 2021, 5(3), 37; https://doi.org/10.3390/chemengineering5030037 - 16 Jul 2021
Cited by 2 | Viewed by 4492
Abstract
Thermodynamic analysis of Organic Rankine Cycle (ORC) was performed in this work. The Petroleum Coke burner provided the required heat flux for the Butane Boiler. The simulation of pet-coke combustion was carried out by using Fire Dynamics Simulator software (FDS) version 5.0. Validation [...] Read more.
Thermodynamic analysis of Organic Rankine Cycle (ORC) was performed in this work. The Petroleum Coke burner provided the required heat flux for the Butane Boiler. The simulation of pet-coke combustion was carried out by using Fire Dynamics Simulator software (FDS) version 5.0. Validation of the FDS calculation results was carried out by comparing the temperature of the gaseous mixture and CO2 mole fractions to the literature. It was discovered that they are similar to those reported in the literature. An Artificial Intelligence (AI) time forecasting analysis was performed on this work. The AI algorithm was applied to the temperature and soot sensor readings. Two Python libraries were applied in order to forecast the time behaviour of the thermocouple readings: Statistical model—ARIMA (Auto-Regressive Integrated Moving Average) and KERAS—deep learning library. ARIMA is a class of model that captures a suite of different standard temporal structures in time series data. Keras is a python library applied for deep learning and runs on top of Tensor-Flow. It has been developed in order to perform deep learning models as fast and easily as possible for research and development. The model accuracy and model loss plot shows comparable performance (train and test). Butane has been employed as a working fluid in the ORC. Butane is considered one of the best pure fluids in terms of exergy efficiency. It has low specific radiative forcing (RF) compared to Ethane and Propane. Moreover, it has zero ozone depletion potential and low Global Warming Potential. It is considered flammable, highly stable and non-corrosive. The thermodynamic properties of Butane needed to evaluate the heat rate and the power were calculated by applying the ASIMPTOTE online thermodynamic calculator. It was shown that the calculated net power of the ORC cycle is similar to the net power reported in the literature (relative error of 4.8%). The proposed ORC energetic system obeys the first and second laws of thermodynamics. The thermal efficiency of the cycle is 20.4%. Full article
Show Figures

Graphical abstract

Back to TopTop