Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (663)

Search Parameters:
Keywords = phage characterization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 2923 KB  
Article
Co-Occurrence of Toxic Bloom-Forming Cyanobacteria Planktothrix, Cyanophage, and Symbiotic Bacteria in Ohio Water Treatment Waste: Implications for Harmful Algal Bloom Management
by Angela Brooke Davis, Morgan Evans, Katelyn McKindles and Jiyoung Lee
Toxins 2025, 17(9), 450; https://doi.org/10.3390/toxins17090450 - 5 Sep 2025
Abstract
Cyanobacterial blooms are increasingly becoming more intense and frequent, posing a public health threat globally. Drinking water treatment plants that rely on algal bloom-affected waters may create waste (water treatment residuals, WTRs) that concentrates contaminants. Source waters may contain harmful cyanobacteria, cyanophages (bacteriophages [...] Read more.
Cyanobacterial blooms are increasingly becoming more intense and frequent, posing a public health threat globally. Drinking water treatment plants that rely on algal bloom-affected waters may create waste (water treatment residuals, WTRs) that concentrates contaminants. Source waters may contain harmful cyanobacteria, cyanophages (bacteriophages that infect cyanobacteria), and bacteria. Cyanophages are known to affect bloom formation and growth dynamics, so there is a need to understand viral-host dynamics between phage and bacteria in these ecosystems for managing cyanobacteria. This study isolated and characterized lytic cyanophages from WTRs of a HAB-affected lake in Ohio that infect toxic bloom-forming filamentous cyanobacteria Planktothrix agardhii. Phage infections in the Lake Erie cyanobacteria culture were examined visually and via microscopy and fluorometry. Whole genome sequencing and metagenomic analyses were also conducted. Observed changes in Planktothrix included sheared and shriveled filaments, reduced clumping, and buoyancy changes. Photosynthetic pigmentation was unexpectedly more apparent during phage infection. Metagenomic analyses identified nineteen phages and seven other co-existing bacterial genera. Annotated bacterial genomes contained metabolic pathways that may influence phage infection efficiency. Viral genomes were successfully tied to microbial hosts, and annotations identified important viral infection proteins. This study examines cyanobacterial-phage interactions that may have potential for bioremedial applications. Full article
36 pages, 6758 KB  
Article
Integrative In Silico and Experimental Characterization of Endolysin LysPALS22: Structural Diversity, Ligand Binding Affinity, and Heterologous Expression
by Nida Nawaz, Shiza Nawaz, Athar Hussain, Maryam Anayat, Sai Wen and Fenghuan Wang
Int. J. Mol. Sci. 2025, 26(17), 8579; https://doi.org/10.3390/ijms26178579 - 3 Sep 2025
Abstract
Endolysins, phage-derived enzymes capable of lysing bacterial cell walls, hold significant promise as novel antimicrobials against resistant Gram-positive and Gram-negative pathogens. In this study, we undertook an integrative approach combining extensive in silico analyses and experimental validation to characterize the novel endolysin LysPALS22. [...] Read more.
Endolysins, phage-derived enzymes capable of lysing bacterial cell walls, hold significant promise as novel antimicrobials against resistant Gram-positive and Gram-negative pathogens. In this study, we undertook an integrative approach combining extensive in silico analyses and experimental validation to characterize the novel endolysin LysPALS22. Initially, sixteen endolysin sequences were selected based on documented lytic activity and enzymatic diversity, and subjected to multiple sequence alignment and phylogenetic analysis, which revealed highly conserved catalytic and binding domains, particularly localized to the N-terminal region, underscoring their functional importance. Building upon these sequence insights, we generated three-dimensional structural models using Swiss-Model, EBI-EMBL, and AlphaFold Colab, where comparative evaluation via Ramachandran plots and ERRAT scores identified the Swiss-Model prediction as the highest quality structure, featuring over 90% residues in favored conformations and superior atomic interaction profiles. Leveraging this validated model, molecular docking studies were conducted in PyRx with AutoDock Vina, performing blind docking of key peptidoglycan-derived ligands such as N-Acetylmuramic Acid-L-Alanine, which exhibited the strongest binding affinity (−7.3 kcal/mol), with stable hydrogen bonding to catalytic residues ASP46 and TYR61, indicating precise substrate recognition. Visualization of docking poses using Discovery Studio further confirmed critical hydrophobic and polar interactions stabilizing ligand binding. Subsequent molecular dynamics simulations validated the stability of the LysPALS22–NAM-LA complex, showing minimal structural fluctuations, persistent hydrogen bonding, and favorable interaction energies throughout the 100 ns trajectory. Parallel to computational analyses, LysPALS22 was heterologously expressed in Escherichia coli (E. coli) and Pichia pastoris (P. pastoris), where SDS-PAGE and bicinchoninic acid assays validated successful protein production; notably, the P. pastoris-expressed enzyme displayed an increased molecular weight (~45 kDa) consistent with glycosylation, and achieved higher volumetric yields (1.56 ± 0.31 mg/mL) compared to E. coli (1.31 ± 0.16 mg/mL), reflecting advantages of yeast expression for large-scale production. Collectively, these findings provide a robust structural and functional foundation for LysPALS22, highlighting its conserved enzymatic features, specific ligand interactions, and successful recombinant expression, thereby setting the stage for future in vivo antimicrobial efficacy studies and rational engineering efforts aimed at combating multidrug-resistant Gram-negative infections. Full article
(This article belongs to the Special Issue Antimicrobial Agents: Synthesis and Design)
Show Figures

Graphical abstract

13 pages, 4452 KB  
Article
Characterization of TMEM16F-Specific Affibodies and Their Cellular Effects
by Eunyoung Kim, Jinho Bang, Sunghyun Kim and Byoung-Cheol Lee
Membranes 2025, 15(9), 255; https://doi.org/10.3390/membranes15090255 - 28 Aug 2025
Viewed by 302
Abstract
The TMEM16 (Anoctamin) family comprises a group of transmembrane proteins involved in diverse physiological processes, including ion transport and phospholipid scrambling. TMEM16F (Anoctamin 6), a phospholipid scramblase and nonselective ion channel, plays a central role in membrane remodeling, blood coagulation, immune responses, and [...] Read more.
The TMEM16 (Anoctamin) family comprises a group of transmembrane proteins involved in diverse physiological processes, including ion transport and phospholipid scrambling. TMEM16F (Anoctamin 6), a phospholipid scramblase and nonselective ion channel, plays a central role in membrane remodeling, blood coagulation, immune responses, and cell death pathways through its ability to externalize phosphatidylserine in response to elevated intracellular calcium levels. Consequently, modulating TMEM16F activity has emerged as a promising strategy for the development of new therapeutic applications. Despite the functional importance of TMEM16F, TMEM16F modulators have received little study. In a previous study, we generated TMEM16F-specific affibodies by biopanning a phage display library for affibodies that bind to brain-specific TMEM16F (hTMEM16F) variant 1. In this study, we selected six other affibodies from among the 38 previously sequenced affibody candidates and characterized them. After purification, we confirmed that two of these affibodies bound to human TMEM16F with high affinity. To provide functional insights into how these affibodies modulate TMEM16F activity, we tested whether they could exert functional effects at the cellular level. Finally, we show that TMEM16F affibody attenuated the neuronal cell death induced by glutamate and microglial phagocytosis, suggesting that these affibodies might have potential therapeutic and diagnostic applications. Full article
Show Figures

Figure 1

30 pages, 16346 KB  
Article
Isolation of Lytic Bacteriophages of Escherichia coli and Their Combined Use with Antibiotics Against the Causative Agents of Colibacillosis in Calves
by Pavel G. Alexyuk, Andrey P. Bogoyavlenskiy, Kuralay S. Akanova, Yergali S. Moldakhanov, Timur T. Kerimov, Nadezhda S. Sokolova, Vladimir E. Berezin and Madina S. Alexyuk
Vet. Sci. 2025, 12(9), 817; https://doi.org/10.3390/vetsci12090817 - 26 Aug 2025
Viewed by 387
Abstract
The spread of antibiotic-resistant pathogenic Escherichia coli poses a serious threat to calf health on livestock farms. With the decline in antibiotic therapy effectiveness, alternative approaches such as phage therapy are urgently needed. This study aimed to isolate lytic E. coli bacteriophages, characterize [...] Read more.
The spread of antibiotic-resistant pathogenic Escherichia coli poses a serious threat to calf health on livestock farms. With the decline in antibiotic therapy effectiveness, alternative approaches such as phage therapy are urgently needed. This study aimed to isolate lytic E. coli bacteriophages, characterize their properties, and evaluate the synergistic effects of their combined use with veterinary antibiotics against colibacillosis pathogens in calves. As a result of the work, 4 bacteriophages were isolated from wastewater from various cities of Kazakhstan: vB_EcoS_ABO/4, vB_EcoM_PL/4, vB_Eco_CWW/26, vB_EcoM_ShWW/46. Morphological, biological, and genomic analyses showed that the phages belong to different genera of the Caudoviricetes class, possess high lytic activity, broad host range, environmental stability, and lack genes associated with lysogeny, antibiotic resistance, or virulence. Interaction studies with antibiotics revealed synergistic or additive effects in over 75% of cases. These findings highlight the strong potential of the isolated bacteriophages for independent or adjunctive use in the treatment and prevention of colibacillosis in calves. However, further in vivo studies are required to definitively confirm their therapeutic efficacy. Full article
(This article belongs to the Section Veterinary Biomedical Sciences)
Show Figures

Figure 1

23 pages, 717 KB  
Review
Unmasking MRSA’s Armor: Molecular Mechanisms of Resistance and Pioneering Therapeutic Countermeasures
by Yichen Liu, Hao Lu, Gaowei Hu, Jiaqi Liu, Siqi Lian, Shengmei Pang, Guoqiang Zhu and Xueyan Ding
Microorganisms 2025, 13(8), 1928; https://doi.org/10.3390/microorganisms13081928 - 18 Aug 2025
Viewed by 783
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), characterized by high-level β-lactam resistance and increasing multi-drug resistance, poses a severe and growing global threat to human health and public safety. This review examines MRSA’s complex resistance mechanisms, including mecA/mecC-mediated expression of low-affinity PBP2a, regulatory [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA), characterized by high-level β-lactam resistance and increasing multi-drug resistance, poses a severe and growing global threat to human health and public safety. This review examines MRSA’s complex resistance mechanisms, including mecA/mecC-mediated expression of low-affinity PBP2a, regulatory roles of auxiliary genes like fem and vanA, enzymatic inactivation by β-lactamases and modifying enzymes, efflux pump activity, and biofilm formation. We also systematically review novel therapeutic strategies, such as combination therapies, phage-derived biofilm disruptors, membrane-targeting silver nanoparticles, cell-penetrating antimicrobial peptides, colonization-competitive probiotics, and antibiotic-synergizing phytochemicals. These advances provide critical insights for developing effective countermeasures against MRSA, while highlighting the urgent need for global collaboration, antibiotic stewardship, and innovative drug development to combat antimicrobial resistance. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

24 pages, 10760 KB  
Article
Pseudomonas Phage Banzai: Genomic and Functional Analysis of Novel Pbunavirus with Lytic Activity Against Pseudomonas aeruginosa
by Andrei V. Chaplin, Nina N. Sykilinda, George A. Skvortsov, Konstantin S. Troshin, Anna A. Vasilyeva, Sofia A. Shuraleva, Artem A. Malkov, Vladislav S. Simonov, Boris A. Efimov, Lyudmila I. Kafarskaia, Konstantin A. Miroshnikov, Anna A. Kuznetsova and Peter V. Evseev
Viruses 2025, 17(8), 1088; https://doi.org/10.3390/v17081088 - 6 Aug 2025
Viewed by 685
Abstract
Antibiotic-resistant Pseudomonas aeruginosa presents a critical global health challenge, particularly in hospital-acquired infections. Bacteriophages offer a promising therapeutic avenue due to their ability to target and lyse resistant strains. This study characterizes Pseudomonas phage Banzai, a newly isolated Pbunavirus (family Lindbergviridae) with [...] Read more.
Antibiotic-resistant Pseudomonas aeruginosa presents a critical global health challenge, particularly in hospital-acquired infections. Bacteriophages offer a promising therapeutic avenue due to their ability to target and lyse resistant strains. This study characterizes Pseudomonas phage Banzai, a newly isolated Pbunavirus (family Lindbergviridae) with lytic activity against multiple P. aeruginosa isolates, including multidrug-resistant strains. Genomic analysis revealed a 66,189 bp genome, lacking antibiotic resistance or virulence factors, and suggested a headful packaging mechanism and the presence of a bidirectional component in the replication. In vivo experiments using Galleria mellonella showed therapeutic potential, significantly improving larval survival (87% at 24 h). Host range analysis revealed activity against 13 of 30 P. aeruginosa isolates, including members of O1, O3, O5 and O6 in silico predicted serogroups. Phylogenomic analyses place phage Banzai within the genus Pbunavirus, sharing 94.8% intergenomic similarity with its closest relatives, supporting its classification as a novel species. These findings highlight phage Banzai as a potential candidate for phage therapy, demonstrating genomic stability, a strictly lytic lifestyle, and in vivo efficacy. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

16 pages, 1469 KB  
Article
P3MA: A Promising Mycobacteriophage Infecting Mycobacterium abscessus
by Antonio Broncano-Lavado, John Jairo Aguilera-Correa, Françoise Roquet-Banères, Laurent Kremer, Aránzazu Mediero, Mateo Seoane-Blanco, Mark J. van Raaij, Israel Pagán, Jaime Esteban and Meritxell García-Quintanilla
Antibiotics 2025, 14(8), 801; https://doi.org/10.3390/antibiotics14080801 - 6 Aug 2025
Viewed by 386
Abstract
Background/Objectives: Mycobacterium abscessus is an opportunistic pathogen causing infections mainly in patients with immunosuppression and chronic pulmonary pathologies. Extended treatment periods are needed to tackle this pathogen, bacterial eradication is rare, and recurrence can take place with time. New alternative treatments are being [...] Read more.
Background/Objectives: Mycobacterium abscessus is an opportunistic pathogen causing infections mainly in patients with immunosuppression and chronic pulmonary pathologies. Extended treatment periods are needed to tackle this pathogen, bacterial eradication is rare, and recurrence can take place with time. New alternative treatments are being investigated, such as bacteriophage therapy. This work describes the characterization of the mycobacteriophage P3MA, showing its ability to infect clinical and standard M. abscessus strains. Methods: Phylogenetic analysis, electron microscopy, growth curves, biofilm assays, checkerboard, and granuloma-like medium studies were performed. Results: P3MA inhibited the growth of clinical samples in both planktonic and biofilm states as well as in a granuloma-like model. The study of the interaction with antibiotics revealed that P3MA exhibited an antagonistic effect combined with clarithromycin, indifference with amikacin, and synergy with imipenem. Conclusions: All these results suggest that, after genetic engineering, P3MA could be a promising candidate for phage therapy in combination with imipenem, including lung infections. Full article
Show Figures

Graphical abstract

22 pages, 2517 KB  
Article
Characterization and Engineering of Two Novel Strand-Displacing B Family DNA Polymerases from Bacillus Phage SRT01hs and BeachBum
by Yaping Sun, Kang Fu, Wu Lin, Jie Gao, Xianhui Zhao, Yun He and Hui Tian
Biomolecules 2025, 15(8), 1126; https://doi.org/10.3390/biom15081126 - 5 Aug 2025
Viewed by 461
Abstract
Polymerase-coupled nanopore sequencing requires DNA polymerases with strong strand displacement activity and high processivity to sustain continuous signal generation. In this study, we characterized two novel B family DNA polymerases, SRHS and BBum, isolated from Bacillus phages SRT01hs and BeachBum, respectively. Both enzymes [...] Read more.
Polymerase-coupled nanopore sequencing requires DNA polymerases with strong strand displacement activity and high processivity to sustain continuous signal generation. In this study, we characterized two novel B family DNA polymerases, SRHS and BBum, isolated from Bacillus phages SRT01hs and BeachBum, respectively. Both enzymes exhibited robust strand displacement, 3′→5′ exonuclease activity, and maintained processivity under diverse reaction conditions, including across a broad temperature range (10–45 °C) and in the presence of multiple divalent metal cofactors (Mg2+, Mn2+, Fe2+), comparable to the well-characterized Phi29 polymerase. Through biochemical analysis of mutants designed using AlphaFold3-predicted structural models, we identified key residues (G96, M97, D486 in SRHS; S97, M98, A493 in BBum) that modulated exonuclease activity, substrate specificity and metal ion utilization. Engineered variants SRHS_F and BBum_Pro_L efficiently incorporated unnatural nucleotides in the presence of Mg2+—a function not observed in Phi29 and other wild-type strand-displacing B family polymerases. These combined biochemical features highlight SRHS and BBum as promising enzymatic scaffolds for nanopore-based long-read sequencing platforms. Full article
(This article belongs to the Section Enzymology)
Show Figures

Figure 1

14 pages, 1450 KB  
Article
Characterization and Complete Genomic Analysis of a Novel Bacteriophage BUCT775 for Acinetobacter baumannii and Its Elimination Efficiency in the Environment
by Yuxuan Liu, Yunfei Huang, Dongxiang Zhu, Lefei Zhang, Jianwei Zhang, Yigang Tong and Mengzhe Li
Int. J. Mol. Sci. 2025, 26(15), 7279; https://doi.org/10.3390/ijms26157279 - 28 Jul 2025
Viewed by 355
Abstract
Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen responsible for a range of severe infections and nosocomial outbreaks. Phage-based therapy and biocontrol represent effective strategies to combat the prevalence of A. baumannii. This study reports a novel phage, BUCT775, capable [...] Read more.
Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen responsible for a range of severe infections and nosocomial outbreaks. Phage-based therapy and biocontrol represent effective strategies to combat the prevalence of A. baumannii. This study reports a novel phage, BUCT775, capable of specifically lysing A. baumannii, and investigates its physiological properties, genomic characteristics, in vivo therapeutic efficacy, and environmental disinfection performance. Phage BUCT775 is a podovirus that forms clear, well-defined plaques with an average diameter of 2.5 ± 0.52 mm. It exhibits a broad range of temperature stability (4–55 °C) and pH stability (pH 3–12). The optimal multiplicity of infection (MOI) for phage BUCT775 is 0.01. At an MOI of 0.01, it demonstrates a latent period of approximately 10 min and exhibits a high burst size. Genomic sequencing and bioinformatics analysis revealed that phage BUCT775 belongs to the order Caudoviricetes and the family Autographiviridae. Its genome has a G + C content of 39.3% and is not known to contain virulence genes or antibiotic resistance genes. Phage BUCT775 exhibited significant therapeutic effects on A. baumannii-infected G. mellonella larvae, increasing the 120 h survival rate of the larvae by 20%. Additionally, phage BUCT775 efficiently eliminated A. baumannii in the environment, with an average clearance rate exceeding 98% within 3 h. These studies suggest that phage BUCT775 holds significant potential for application in phage therapy and environmental disinfection. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 2560 KB  
Article
In Vitro Insights into the Anti-Biofilm Potential of Salmonella Infantis Phages
by Jan Torres-Boncompte, María Sanz-Zapata, Josep Garcia-Llorens, José M. Soriano, Pablo Catalá-Gregori and Sandra Sevilla-Navarro
Antibiotics 2025, 14(8), 744; https://doi.org/10.3390/antibiotics14080744 - 24 Jul 2025
Viewed by 621
Abstract
Background/Objectives: As bacteriophage-based strategies to control bacterial pathogens continue to gain momentum, phage therapy is increasingly being explored across various fields. In the poultry industry, efforts to minimize the public health impact of Salmonella have spurred growing interest in phage applications, particularly [...] Read more.
Background/Objectives: As bacteriophage-based strategies to control bacterial pathogens continue to gain momentum, phage therapy is increasingly being explored across various fields. In the poultry industry, efforts to minimize the public health impact of Salmonella have spurred growing interest in phage applications, particularly as prophylactic and disinfecting agents. Although the disinfecting potential of bacteriophages has been recognized, in-depth studies examining their efficacy under varying environmental conditions remain limited. This study focused on evaluating the effectiveness of bacteriophages as disinfecting agents against biofilm-forming Salmonella Infantis under different environments. Methods: A comprehensive screening of biofilm-producing strains was conducted using Congo Red Agar and 96-well plate assays. Two strains with distinct biofilm-forming capacities were selected for further analysis under different environmental conditions: aerobic and microaerobic atmospheres at both 25 °C and 37 °C. The resulting biofilms were then treated with four phage preparations: three individual phages and one phage cocktail. Biofilm reduction was assessed by measuring optical density and CFU/well. Additionally, scanning electron microscopy was used to visualize both untreated and phage-treated biofilms. Results: The results demonstrated that all S. Infantis strains were capable of forming biofilms (21/21). All three phage candidates exhibited biofilm-disrupting activity and were able to lyse biofilm-embedded Salmonella cells. Notably, the lytic efficacy of the phages varied depending on environmental conditions, highlighting the importance of thorough phage characterization prior to application. Conclusions: These findings underscore that the effectiveness of bacteriophages as surface disinfectants can be significantly compromised if inappropriate phages are used, especially in the presence of biofilms. Full article
Show Figures

Figure 1

23 pages, 39698 KB  
Article
Anti-C1q Autoantibody-Binding Engineered scFv C1q-Mimicking Fragment Enhances Disease Progression in Lupus-Prone MRL/lpr Mice
by Silviya Bradyanova, Nikolina Mihaylova, Nikola Ralchev, Alexandra Kapogianni, Ginka Cholakova, Kalina Nikolova-Ganeva, Ivanka Tsacheva and Andrey Tchorbanov
Int. J. Mol. Sci. 2025, 26(15), 7048; https://doi.org/10.3390/ijms26157048 - 22 Jul 2025
Viewed by 412
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by tissue damage in multiple organs caused by autoantibodies and the resulting immune complexes. One possible way for complement system contribution to onset of autoimmune disorder could be realized by the impairment [...] Read more.
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by tissue damage in multiple organs caused by autoantibodies and the resulting immune complexes. One possible way for complement system contribution to onset of autoimmune disorder could be realized by the impairment of C1q-mediated apoptotic clearance as part of human homeostasis. The capacity of C1q to bind early apoptotic cells could be decreased or even lost in the presence of anti-C1q antibodies. A monoclonal anti-idiotypic single-chain (scFv) antibody was selected from the phage library Griffin1” to recognize anti-C1q autoantibodies, purified from sera of lupus nephritis patients. Lupus-prone MRL/lpr mice were injected weekly with scFv A1 fragment-binding anti-C1q antibodies. The number of in vitro and ex vivo studies with collected cells, sera, and organs from the treated animals was performed. scFv treatment changed the percentage of different B-, T-, and NK-cell subpopulations as well as plasma cells and plasmablasts in the spleen and bone marrow. An increase in the levels of splenocyte proliferation, anti-C1q antibodies, and the number of plasma cells producing anti-dsDNA and anti-C1q antibodies were also observed in scFv-treated animals. High levels of proteinuria and hematuria combined with unstable levels of IL10 and IFNγ promote the development of severe lupus and shorten the survival of treated MRL/lpr mice. Therapy with the scFv A1 antibody resulted in BCR recognition on the surface of anti-C1q-specific B-cells and had a disease progression effect, enhancing lupus symptoms in the MRL/lpr mouse model of SLE. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 1846 KB  
Article
Structural and Genetic Diversity of Lysis Modules in Bacteriophages Infecting the Genus Streptococcus
by Mathilde Saint-Jean, Olivier Claisse, Claire Le Marrec and Johan Samot
Genes 2025, 16(7), 842; https://doi.org/10.3390/genes16070842 - 19 Jul 2025
Viewed by 494
Abstract
Background/Objectives: Bacteriophages infecting the genus Streptococcus play a crucial role in microbial ecology and have potential applications in biotechnology and medicine. Despite their importance, significant gaps remain in our understanding of their lysis modules. This study aims to address these deficiencies by [...] Read more.
Background/Objectives: Bacteriophages infecting the genus Streptococcus play a crucial role in microbial ecology and have potential applications in biotechnology and medicine. Despite their importance, significant gaps remain in our understanding of their lysis modules. This study aims to address these deficiencies by analyzing the genomic diversity and lysis module organization in Streptococcus phages. Methods: A search was conducted in the NCBI RefSeq database to identify phage genomes infecting Streptococcus. A representative panel was selected based on taxonomic diversity. Lysis modules were annotated and visualized, functional domains in endolysins were identified, and holins were characterized. Results: A total of 205 phage genomes were retrieved from the NCBI RefSeq database, of which 185 complete genomes were analyzed. A subset of 34 phages was selected for in-depth analysis, ensuring the representation of taxonomic diversity. The lysis modules were annotated and visualized, revealing five distinct organizations. Among the 256 identified endolysins, 25 distinct architectural organizations were observed, with amidase activity being the most prevalent. Holins were classified into 9 of the 74 families listed in the Transporter Classification Database, exhibiting one to three transmembrane domains. Conclusions: This study provides insights into the structural diversity of lysis modules in Streptococcus phages, paving the way for future research and potential biotechnological applications. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

15 pages, 1600 KB  
Article
Characterization of a Potential Therapeutic Anti-Canine PD-1 Single Domain Antibody Produced in Yeast
by Kartikeya Vijayasimha, Andrew J. Annalora, Dan V. Mourich, Carl E. Ruby, Brian P. Dolan, Laura Crowell, Vu Ha Minh Le, Maureen K. Larson, Shay Bracha and Christopher K. Cebra
Vet. Sci. 2025, 12(7), 649; https://doi.org/10.3390/vetsci12070649 - 8 Jul 2025
Viewed by 866
Abstract
A single domain antibody (SDAb) targeting canine PD-1 was developed as a potential immunotherapeutic for canine cancer. An alpaca was immunized with canine PD-1 protein, and a phage-display library was constructed using mRNA isolated from peripheral lymphocytes. Screening of the library yielded multiple [...] Read more.
A single domain antibody (SDAb) targeting canine PD-1 was developed as a potential immunotherapeutic for canine cancer. An alpaca was immunized with canine PD-1 protein, and a phage-display library was constructed using mRNA isolated from peripheral lymphocytes. Screening of the library yielded multiple SDAb candidates capable of nanomolar binding to canine PD-1. Among these, clone STX-1b5 demonstrated high expression in a yeast-based recombinant system and was selected for further characterization. Binding and competition assays using ELISA confirmed its ability to bind canine PD-1 and block PDL-1 interaction. In silico structural modeling supported the interaction of STX-1b5 with key PD-1 residues implicated in ligand binding. These findings support the feasibility of using SDAbs and cost-effective yeast expression systems to generate immunotherapeutics for veterinary use, with STX-1b5 representing a promising lead candidate for future clinical development. Full article
(This article belongs to the Section Nutritional and Metabolic Diseases in Veterinary Medicine)
Show Figures

Figure 1

18 pages, 682 KB  
Article
Antimicrobial Potential of Bacteriophages JG005 and JG024 Against Pseudomonas aeruginosa Isolates from Canine Otitis
by Maura R. Lourenço, Eva Cunha, Luís Tavares and Manuela Oliveira
Vet. Sci. 2025, 12(7), 646; https://doi.org/10.3390/vetsci12070646 - 7 Jul 2025
Viewed by 1106
Abstract
Canine otitis externa caused by Pseudomonas aeruginosa is a relevant disease in veterinary medicine. Given P. aeruginosa’s high priority status for the development of new antimicrobials, innovative strategies like bacteriophage therapy are essential. Lytic bacteriophages are viruses with high specificity for their bacterial [...] Read more.
Canine otitis externa caused by Pseudomonas aeruginosa is a relevant disease in veterinary medicine. Given P. aeruginosa’s high priority status for the development of new antimicrobials, innovative strategies like bacteriophage therapy are essential. Lytic bacteriophages are viruses with high specificity for their bacterial hosts, making them a promising therapeutic choice in both human and veterinary medicine. This study aimed to evaluate the antimicrobial potential of bacteriophages JG005 and JG024, first characterized in terms of their biofilm-forming ability and antimicrobial susceptibility profile, against P. aeruginosa isolates obtained from dogs with otitis externa,. Bacteriophages titer, host range, and activity were assessed against P. aeruginosa biofilms via microtiter assays using crystal violet and Alamar Blue. JG024 showed lytic activity against 61.2% (n = 30/49) of the isolates, while JG005 showed lytic activity against 38.8% (n = 19/49) of the isolates. Crystal violet quantification showed that JG005 can promote strong microbial suppression of 60% (n = 6/10) and 50% (n = 5/10) of the isolates at a multiplicity of infection (MOI) of 10 and 100, respectively. JG024 presented strong microbial suppression of 20% (n = 2/10) of the isolates regardless of the MOI level tested. These phages show promising potential as an innovative treatment for canine otitis externa caused by P. aeruginosa, but further studies are needed before future clinical use. Full article
Show Figures

Figure 1

16 pages, 2785 KB  
Article
Characterization, Genomic Analysis and Application of Five Lytic Phages Against Carbapenem-Resistant Pseudomonas aeruginosa
by Li-Ping Zhang, Chang-An Li, Yongda Zhao, Zeqing Wang, Junjie Wang, Feng-Jing Song and Bao-Tao Liu
Microorganisms 2025, 13(7), 1587; https://doi.org/10.3390/microorganisms13071587 - 5 Jul 2025
Viewed by 376
Abstract
The high pathogenicity rate of carbapenem-resistant Pseudomonas aeruginosa (CRPA) has resulted in substantial economic losses for humans and the breeding industry. Consequently, there is an urgent need to develop new alternatives to mitigate antibiotic use. Phage therapy has demonstrated promising results in numerous [...] Read more.
The high pathogenicity rate of carbapenem-resistant Pseudomonas aeruginosa (CRPA) has resulted in substantial economic losses for humans and the breeding industry. Consequently, there is an urgent need to develop new alternatives to mitigate antibiotic use. Phage therapy has demonstrated promising results in numerous studies. In this study, lytic phages targeting CRPA were isolated from feces and river water samples in Shandong, China. A total of 94 phage strains with CRPA as hosts were obtained, exhibiting lysis rates that ranged from 29% to 76% for P. aeruginosa derived from humans and different types of animals (n = 246). We further examined five representative phages, the host bacteria of which were CRPA from clinical patients and poultry, and these phages included two myoviruses and three podoviruses. Their optimal multiplicities of infection (MOIs) ranged from 10−3 to 10−5, with latent periods of less than 5 to 15 min and burst durations of 140 to 175 min, resulting in burst sizes of 133 to 352 PFU/cell. All five phages exhibited the ability to survive at temperatures up to 60 °C and within pH levels of 3 to 11. Whole-genome sequencing revealed that these five phages were all double-stranded DNA phages and did not possess resistance genes or virulence factors. The two myoviruses, sharing similar sequences, were classified into the genus Pakpunavirus, with a size of 92,509 bp and 92,293 bp, 149 to 152 ORFs and 20 to 22 tRNAs. In contrast, the three similar podoviruses belong to the genus Phikmvvirus and all contained a perforin–lyase system, with a size of 43.35 kb, a GC content of 62%, 49 to 50 ORFs and 16 to 20 tRNAs. A spray disinfection experiment demonstrated that the phage cocktail exhibited a high sterilization effect after spraying and showed good efficacy against cement and metal surfaces. This study provides foundational information for further research into the elimination of CRPA in the environment. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

Back to TopTop