Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (257)

Search Parameters:
Keywords = phase demodulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1239 KB  
Article
Non-Intrusive Sleep Monitoring Mattress Based on Optical-Fiber Michelson Interferometer
by Yangming Zeng, Shiyan Li, Yang Lu, Maoke He, Yiao Liu, Kaijie Zhang and Xiaoyang Hu
Photonics 2025, 12(9), 880; https://doi.org/10.3390/photonics12090880 (registering DOI) - 30 Aug 2025
Abstract
A non-intrusive mattress based on an optical-fiber Michelson interferometer is designed for daily sleep monitoring. The optical phase signal of the optical-fiber Michelson interferometer caused by the heartbeat and respiration is demodulated by the phase-generated carrier (PGC) method. The physiological signals and vital [...] Read more.
A non-intrusive mattress based on an optical-fiber Michelson interferometer is designed for daily sleep monitoring. The optical phase signal of the optical-fiber Michelson interferometer caused by the heartbeat and respiration is demodulated by the phase-generated carrier (PGC) method. The physiological signals and vital indicators including heart rate (HR), respiration rate (RR), and signal energy (SE) are extracted from the optical phase by algorithmic processing. A series of experiments are conducted to confirm the feasibility of the mattress for sleep monitoring. The mattress not only can achieve HR and RR counting, but also can record the waveform of the sleep-induced signal accurately. The body states can also be distinguished by the SE. In an all-night sleep monitoring experiment, the HR measured by the mattress is compared with the HR measured by a commercial smart band, showing a maximum error of 6 bpm (beat per minute). The designed mattress based on an optical-fiber Michelson interferometer shows good performance and great potential in non-intrusive sleep monitoring. Full article
(This article belongs to the Special Issue Emerging Trends in Optical Fiber Sensors and Sensing Techniques)
32 pages, 15679 KB  
Article
New Optical Voltage Sensor Based on Closed-Loop Pockels Cell and Sliding Mode Observer: Theory and Experiments
by Luis Miguel Quispe-Valencia, Ricardo Tokio Higuti, Marcelo Carvalho M. Teixeira and Claudio Kitano
Sensors 2025, 25(17), 5319; https://doi.org/10.3390/s25175319 - 27 Aug 2025
Viewed by 333
Abstract
The increasing power demand in substations and the advancement of smart-grid technology point to optical voltage sensors (OVSs) based on the Pockels effect as an attractive solution to replace traditional coil instrument transformers, due to their advantageous characteristics of lower cost and installation [...] Read more.
The increasing power demand in substations and the advancement of smart-grid technology point to optical voltage sensors (OVSs) based on the Pockels effect as an attractive solution to replace traditional coil instrument transformers, due to their advantageous characteristics of lower cost and installation space, absence of explosion risks, as well as nonlinear effects such as magnetic hysteresis. Regarding the measurement, our OVS presents excellent linearity, 3 kHz bandwidth, and high input impedance. The primary contribution of this paper is to demonstrate, for the first time, the efficiency of a versatile nonlinear digital controller, based on sliding mode theory, for the optical phase demodulation of an OVS. A simple proportional-integral feedback control is employed to prevent signal fading and generate the two quadrature signals required by the observer, which includes the nonlinear digital controller. Experimental results, for 60 Hz sinusoidal voltages with amplitudes exceeding the half-wave voltage of the OVS, prove that peak-to-peak relative errors remain below 0.8%, while total harmonic distortion (THD) relative errors are under 1.5% when compared to a commercial high-voltage probe used as a reference. These results confirm compliance with Class 1.0 of the UNE-EN 60044-7 standard and show strong potential for applications in power quality measurements. Full article
(This article belongs to the Special Issue Advanced Sensing and Measurement Control Applications)
Show Figures

Figure 1

34 pages, 6943 KB  
Review
A Review on Recent Advances in Signal Processing in Interferometry
by Yifeng Wang, Fangyuan Zhao, Linbin Luo and Xinghui Li
Sensors 2025, 25(16), 5013; https://doi.org/10.3390/s25165013 - 13 Aug 2025
Viewed by 480
Abstract
Optical interferometry provides high-precision displacement and angle measurement solutions for a wide range of cutting-edge industrial applications. One of the key factors to achieve such precision lies in highly accurate optical encoder signal processing, as well as the calibration and compensation techniques customized [...] Read more.
Optical interferometry provides high-precision displacement and angle measurement solutions for a wide range of cutting-edge industrial applications. One of the key factors to achieve such precision lies in highly accurate optical encoder signal processing, as well as the calibration and compensation techniques customized for specific measurement principles. Optical interferometric techniques, including laser interferometry and grating interferometry, are usually classified into homodyne and heterodyne systems according to their working principles. In homodyne interferometry, the displacement is determined by analyzing the phase variation of amplitude-modulated signals, and common demodulation methods include error calibration methods and ellipse parameter estimation methods. Heterodyne interferometry obtains displacement information through the phase variation of beat-frequency signals generated by the interference of two light beams with shifted frequencies, and its demodulation techniques include pulse-counting methods, quadrature phase-locked methods, and Kalman filtering. This paper comprehensively reviews the widely used signal processing techniques in optical interferometric measurements over the past two decades and conducts a comparative analysis based on the characteristics of different methods to highlight their respective advantages and limitations. Finally, the hardware platforms commonly used for optical interference signal processing are introduced. Full article
Show Figures

Figure 1

13 pages, 2457 KB  
Article
Equivalent Self-Noise Suppression of Distributed Hydroacoustic Sensing System Using SDM Signals Based on Multi-Core Fiber
by Jiabei Wang, Hongcan Gu, Peng Wang, Gaofei Yao, Junbin Huang, Wen Liu, Dan Xu and Su Wu
Sensors 2025, 25(15), 4877; https://doi.org/10.3390/s25154877 - 7 Aug 2025
Viewed by 381
Abstract
To address the demand of equivalent self-noise suppression in a distributed hydroacoustic sensing system, this study proposes a method to enhance the acoustic sensitivity and signal-to-noise ratio (SNR) using space division multiplexed (SDM) technology based on multi-core fiber (MCF). Specifically, a dual-channel demodulation [...] Read more.
To address the demand of equivalent self-noise suppression in a distributed hydroacoustic sensing system, this study proposes a method to enhance the acoustic sensitivity and signal-to-noise ratio (SNR) using space division multiplexed (SDM) technology based on multi-core fiber (MCF). Specifically, a dual-channel demodulation system for distributed acoustic sensing is designed using MCF. The responses of different cores in MCF are almost consistent under external acoustic pressure, while their self-noise is inconsistent. Accordingly, the acoustic pressure phase sensitivity (APPS) and SNR gain based on the accumulation of dual-channel signals are analyzed, which are verified by experiments. It is shown that the self-noise correlation coefficient between the two cores is 0.11, increasing the noise power by 3.46 dB. The APPS is increased by 5.97 dB re 1 rad/μPa after the accumulation of two-core signals, which is close to the theoretical value (6 dB). The equivalent self-noise is reduced by 2.54 dB. The experimental results reveal that the enhancement of acoustic pressure phase shift sensitivity and SNR can be achieved by the space division multiplexing (SDM) of multi-core signals, which is of great significance for suppressing the equivalent self-noise of the system and realizing the acoustic pressure detection of weak underwater signals. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

18 pages, 3713 KB  
Article
Error Analysis and Suppression of Rectangular-Pulse Binary Phase Modulation Technology in an Interferometric Fiber-Optic Sensor
by Qian Cheng, Hong Ding, Xianglei Pan, Nan Chen, Wenxu Sun, Zhongjie Ren and Ke Cui
Sensors 2025, 25(15), 4839; https://doi.org/10.3390/s25154839 - 6 Aug 2025
Viewed by 317
Abstract
In the field of interferometric fiber-optic sensing, the phase-shifting technique is well known as a highly efficient method for retrieving the phase signal from the interference light intensity. The rectangular-pulse binary phase modulation (RPBPM) method is a typical phase-shifting method with the advantages [...] Read more.
In the field of interferometric fiber-optic sensing, the phase-shifting technique is well known as a highly efficient method for retrieving the phase signal from the interference light intensity. The rectangular-pulse binary phase modulation (RPBPM) method is a typical phase-shifting method with the advantages of high efficiency, low complexity, and easy array multiplexing. Exploring the impact of the parameters on the performance is of great significance for guiding its application in practical systems. In this study, the influence of the sampling interval and modulation depth deviation involved in the method is analyzed in detail. Through a comparative simulation analysis with the traditional heterodyne and phase-generated carrier methods, the superiority of the RPBPM method is effectively validated. Meanwhile, an improved method based on the ellipse fitting of the Lissajous figure is proposed to compensate for the error and improve the signal-to-noise-and-distortion ratio (SINAD) from 26.3 dB to 37.1 dB in a specific experiment. Finally, the experimental results guided by the above method show excellent performance in a practical vibration system. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

34 pages, 4238 KB  
Review
Optical Fringe Projection: A Straightforward Approach to 3D Metrology
by Rigoberto Juarez-Salazar, Sofia Esquivel-Hernandez and Victor H. Diaz-Ramirez
Metrology 2025, 5(3), 47; https://doi.org/10.3390/metrology5030047 - 3 Aug 2025
Viewed by 493
Abstract
Optical fringe projection is an outstanding technology that significantly enhances three-dimensional (3D) metrology in numerous applications in science and engineering. Although the complexity of fringe projection systems may be overwhelming, current scientific advances bring improved models and methods that simplify the design and [...] Read more.
Optical fringe projection is an outstanding technology that significantly enhances three-dimensional (3D) metrology in numerous applications in science and engineering. Although the complexity of fringe projection systems may be overwhelming, current scientific advances bring improved models and methods that simplify the design and calibration of these systems, making 3D metrology less complicated. This paper provides an overview of the fundamentals of fringe projection profilometry, including imaging, stereo systems, phase demodulation, triangulation, and calibration. Some applications are described to highlight the usefulness and accuracy of modern optical fringe projection profilometers, impacting 3D metrology in different fields of science and engineering. Full article
(This article belongs to the Special Issue Advancements in Optical Measurement Devices and Technologies)
Show Figures

Figure 1

20 pages, 19642 KB  
Article
SIRI-MOGA-UNet: A Synergistic Framework for Subsurface Latent Damage Detection in ‘Korla’ Pears via Structured-Illumination Reflectance Imaging and Multi-Order Gated Attention
by Baishao Zhan, Jiawei Liao, Hailiang Zhang, Wei Luo, Shizhao Wang, Qiangqiang Zeng and Yongxian Lai
Spectrosc. J. 2025, 3(3), 22; https://doi.org/10.3390/spectroscj3030022 - 29 Jul 2025
Viewed by 280
Abstract
Bruising in ‘Korla’ pears represents a prevalent phenomenon that leads to progressive fruit decay and substantial economic losses. The detection of early-stage bruising proves challenging due to the absence of visible external characteristics, and existing deep learning models have limitations in weak feature [...] Read more.
Bruising in ‘Korla’ pears represents a prevalent phenomenon that leads to progressive fruit decay and substantial economic losses. The detection of early-stage bruising proves challenging due to the absence of visible external characteristics, and existing deep learning models have limitations in weak feature extraction under complex optical interference. To address the postharvest latent damage detection challenges in ‘Korla’ pears, this study proposes a collaborative detection framework integrating structured-illumination reflectance imaging (SIRI) with multi-order gated attention mechanisms. Initially, an SIRI optical system was constructed, employing 150 cycles·m−1 spatial frequency modulation and a three-phase demodulation algorithm to extract subtle interference signal variations, thereby generating RT (Relative Transmission) images with significantly enhanced contrast in subsurface damage regions. To improve the detection accuracy of latent damage areas, the MOGA-UNet model was developed with three key innovations: 1. Integrate the lightweight VGG16 encoder structure into the feature extraction network to improve computational efficiency while retaining details. 2. Add a multi-order gated aggregation module at the end of the encoder to realize the fusion of features at different scales through a special convolution method. 3. Embed the channel attention mechanism in the decoding stage to dynamically enhance the weight of feature channels related to damage. Experimental results demonstrate that the proposed model achieves 94.38% mean Intersection over Union (mIoU) and 97.02% Dice coefficient on RT images, outperforming the baseline UNet model by 2.80% with superior segmentation accuracy and boundary localization capabilities compared with mainstream models. This approach provides an efficient and reliable technical solution for intelligent postharvest agricultural product sorting. Full article
Show Figures

Figure 1

14 pages, 1289 KB  
Article
Method for Extracting Arterial Pulse Waveforms from Interferometric Signals
by Marian Janek, Ivan Martincek and Gabriela Tarjanyiova
Sensors 2025, 25(14), 4389; https://doi.org/10.3390/s25144389 - 14 Jul 2025
Viewed by 418
Abstract
This paper presents a methodology for extracting and simulating arterial pulse waveform signals from Fabry–Perot interferometric measurements, emphasizing a practical approach for noninvasive cardiovascular assessment. A key novelty of this work is the presentation of a complete Python-based processing pipeline, which is made [...] Read more.
This paper presents a methodology for extracting and simulating arterial pulse waveform signals from Fabry–Perot interferometric measurements, emphasizing a practical approach for noninvasive cardiovascular assessment. A key novelty of this work is the presentation of a complete Python-based processing pipeline, which is made publicly available as open-source code on GitHub (git version 2.39.5). To the authors’ knowledge, no such repository for demodulating these specific interferometric signals to obtain a raw arterial pulse waveform previously existed. The proposed system utilizes accessible Python-based preprocessing steps, including outlier removal, Butterworth high-pass filtering, and min–max normalization, designed for robust signal quality even in settings with common physiological artifacts. Key features such as the rate of change, the Hilbert transform of the rate of change (envelope), and detected extrema guide the signal reconstruction, offering a computationally efficient pathway to reveal its periodic and phase-dependent dynamics. Visual analyses highlight amplitude variations and residual noise sources, primarily attributed to sensor bandwidth limitations and interpolation methods, considerations critical for real-world deployment. Despite these practical challenges, the reconstructed arterial pulse waveform signals provide valuable insights into arterial motion, with the methodology’s performance validated on measurements from three subjects against synchronized ECG recordings. This demonstrates the viability of Fabry–Perot sensors as a potentially cost-effective and readily implementable tool for noninvasive cardiovascular diagnostics. The results underscore the importance of precise yet practical signal processing techniques and pave the way for further improvements in interferometric sensing, bio-signal analysis, and their translation into clinical practice. Full article
(This article belongs to the Special Issue Advanced Sensors for Human Health Management)
Show Figures

Figure 1

13 pages, 3148 KB  
Article
Reconstruction and Separation Method of Ranging and Communication Phase in Beat-Note for Micro-Radian Phasemeter
by Tao Yu, Hongyu Long, Ke Xue, Mingzhong Pan, Zhi Wang and Yunqing Liu
Aerospace 2025, 12(7), 564; https://doi.org/10.3390/aerospace12070564 - 20 Jun 2025
Viewed by 257
Abstract
The primary measurement involves detecting tiny (picometer-level) pathlength fluctuations between satellites using heterodyne laser interferometry for space-based gravitational wave detection. The interference of two laser beams with a MHz-level frequency difference produces a MHz beat-note, in which the gravitational wave signal is encoded [...] Read more.
The primary measurement involves detecting tiny (picometer-level) pathlength fluctuations between satellites using heterodyne laser interferometry for space-based gravitational wave detection. The interference of two laser beams with a MHz-level frequency difference produces a MHz beat-note, in which the gravitational wave signal is encoded in the phase of the beat-note. The phasemeter then performs micro-radian accuracy phase measurement and communication information demodulation for this beat-note. To mitigate the impact of phase modulation, existing solutions mostly alleviate it by reducing the modulation depth and optimizing the structure of the pseudo-random noise (PRN) codes. Since the phase modulation is not effectively separated from the phase of the beat-note phase measurement, it has a potential impact on the phase extraction of the micro-radian accuracy of the beat-note. To solve this problem, this paper analyzes the influence mechanism of phase modulation on beat-note phase measurement and proposes a method to separate the modulated phase based on complex rotation. The beat-note is processed by complex conjugate rotation, which can effectively eliminate the PRN modulated phase. Simulation and analysis results demonstrate that this method can significantly enhance the purity of the measured phase in the beat-note while maintaining the ranging and communication functions. Targeting the application of the micro-radian phasemeter in space-based gravitational wave detection, this study presents the reconstruction and separation method of the ranging and communication phase in beat-note, which also provides a new direction for the final selection of modulation depth in the future. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

14 pages, 6581 KB  
Article
High-Precision Diagnosis of the Whole Process of Laser-Induced Plasma and Shock Waves Using Simultaneous Phase-Shift Interferometry
by Lou Gao, Hongchao Zhang, Jian Lu and Zhonghua Shen
Photonics 2025, 12(6), 601; https://doi.org/10.3390/photonics12060601 - 11 Jun 2025
Viewed by 822
Abstract
This study employs the simultaneous phase-shift interferometry (SPSI) system to diagnose laser-induced plasma (LIP) and shock wave (SW). In high-density LIP diagnostics, the Faraday rotation effect causes probe light polarization deflection, rendering traditional fixed-phase-demodulation methods ineffective, the Carré phase-recovery algorithm is adopted and [...] Read more.
This study employs the simultaneous phase-shift interferometry (SPSI) system to diagnose laser-induced plasma (LIP) and shock wave (SW). In high-density LIP diagnostics, the Faraday rotation effect causes probe light polarization deflection, rendering traditional fixed-phase-demodulation methods ineffective, the Carré phase-recovery algorithm is adopted and its applicability is verified. Uncertainty analysis and precision verification show that the total phase shift uncertainty is controlled within 0.045 radians, equivalent to a refractive index accuracy of 8.55×106, with sensitivity to weak perturbations improved by approximately one order of magnitude compared to conventional carrier-frequency interferometry. Experimental results demonstrate that the SPSI system precisely captures the initial spatiotemporal evolution of LIP and tracks shock waves at varying attenuation levels, exhibiting notable advantages in weak shock wave detection. This research validates the SPSI system’s high sensitivity to transient weak perturbations, offering a valuable diagnostic tool for high-vacuum plasmas, low-pressure shock waves, and stress waves in optical materials. Full article
(This article belongs to the Special Issue Advances in Laser Measurement)
Show Figures

Figure 1

21 pages, 951 KB  
Article
Bit Synchronization-Assisted Frequency Correction in Low-SNR Wireless Systems
by Junfeng Gao, Peiji Yang, Shaoxiang Chen, Zhenghua Luo, Yilin Zhang and Tao Liu
Electronics 2025, 14(12), 2319; https://doi.org/10.3390/electronics14122319 - 6 Jun 2025
Viewed by 399
Abstract
In wireless communication systems, traditional frequency synchronization methods struggle to effectively track carrier frequency in low signal-to-noise ratio (SNR) environments, leading to degraded demodulation performance and severely impacting the stability and reliability of communication systems. To address this challenge, an innovative frequency synchronization [...] Read more.
In wireless communication systems, traditional frequency synchronization methods struggle to effectively track carrier frequency in low signal-to-noise ratio (SNR) environments, leading to degraded demodulation performance and severely impacting the stability and reliability of communication systems. To address this challenge, an innovative frequency synchronization framework is introduced, enhancing frequency synchronization accuracy and robustness in low-SNR environments through bit synchronization techniques. Specifically, the approach constructs a “bit synchronization-frequency synchronization” joint correction mechanism, where clock offset information extracted during the bit synchronization process is utilized to estimate frequency offset. This method enables an indirect measurement and compensation of carrier frequency offset, forming a hierarchical error compensation system. Furthermore, to overcome the limited convergence speed of the classical Gardner algorithm under significant phase offset conditions, an improved error feedback structure is proposed, accelerating bit synchronization convergence and reducing timing synchronization errors, thereby enhancing overall system performance. The effectiveness of the proposed method is validated through theoretical analysis and simulation experiments. Simulation results demonstrate that, compared to conventional frequency synchronization schemes, the proposed method achieves higher frequency correction accuracy in low-SNR scenarios, thereby improving the robustness and anti-interference capability of wireless communication systems in complex environments. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

15 pages, 1629 KB  
Article
Analysis of Photoelectric Detection Phase Polarity of Fiber-Optic Hydrophones Based on 3 × 3 Coupler Demodulation Technique
by Yatao Li, Jianfei Wang, Mo Chen, Rui Liang, Yuren Chen, Zhou Meng, Xiaoyang Hu and Yang Lu
Photonics 2025, 12(6), 535; https://doi.org/10.3390/photonics12060535 - 25 May 2025
Viewed by 378
Abstract
Phase consistency among hydrophones in fiber-optic hydrophone (FOH) arrays is crucial for effective beamforming. In this study, we investigate the photoelectric detection phase characteristics of FOHs based on the 3 × 3 coupler demodulation technique. We develop a theoretical model combining the 3 [...] Read more.
Phase consistency among hydrophones in fiber-optic hydrophone (FOH) arrays is crucial for effective beamforming. In this study, we investigate the photoelectric detection phase characteristics of FOHs based on the 3 × 3 coupler demodulation technique. We develop a theoretical model combining the 3 × 3 coupler demodulation algorithm with coupled-mode theory to analyze acoustic signal responses. Our model reveals that phase shifts from coupler-to-photodetector and coupler-to-sensing-arm connections arise from different mechanisms, and both are capable of causing π rad phase inversions in demodulated signals. We demonstrate that distinct connection configurations can be classified into groups yielding identical polarity outcomes, and that the input port selection for incident light does not affect output signal phase polarity. Experimental results validate these theoretical predictions. This work establishes critical hardware-level prerequisites for phase polarity consistency in FOH arrays, complementing existing calibration techniques and enhancing array performance in underwater target detection and localization. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

22 pages, 3466 KB  
Article
Hardware-Efficient Phase Demodulation for Digital ϕ-OTDR Receivers with Baseband and Analytic Signal Processing
by Shangming Du, Tianwei Chen, Can Guo, Yuxing Duan, Song Wu and Lei Liang
Sensors 2025, 25(10), 3218; https://doi.org/10.3390/s25103218 - 20 May 2025
Viewed by 926
Abstract
This paper presents hardware-efficient phase demodulation schemes for FPGA-based digital phase-sensitive optical time-domain reflectometry (ϕ-OTDR) receivers. We first derive a signal model for the heterodyne ϕ-OTDR frontend, then propose and analyze three demodulation methods: (1) a baseband reconstruction approach via [...] Read more.
This paper presents hardware-efficient phase demodulation schemes for FPGA-based digital phase-sensitive optical time-domain reflectometry (ϕ-OTDR) receivers. We first derive a signal model for the heterodyne ϕ-OTDR frontend, then propose and analyze three demodulation methods: (1) a baseband reconstruction approach via zero-IF downconversion, (2) an analytic signal generation technique using the Hilbert transform (HT), and (3) a wavelet transform (WT)-based alternative for analytic signal extraction. Algorithm-hardware co-design implementations are detailed for both RFSoC and conventional FPGA platforms, with resource utilization comparisons. Additionally, we introduce an incremental DC-rejected phase unwrapper (IDRPU) algorithm to jointly address phase unwrapping and DC drift removal, minimizing computational overhead while avoiding numerical overflow. Experiments on simulated and real-world ϕ-OTDR data show that the HT method matches the performance of zero-IF demodulation with simpler hardware and lower resource usage, while the WT method offers enhanced robustness against fading noise (3.35–22.47 dB SNR improvement in fading conditions), albeit with slightly ambiguous event boundaries and higher hardware utilization. These findings provide actionable insights for demodulator design in distributed acoustic sensing (DAS) applications and advance the development of single-chip DAS systems. Full article
(This article belongs to the Special Issue Advances in Optical Sensing, Instrumentation and Systems: 2nd Edition)
Show Figures

Figure 1

8 pages, 2358 KB  
Article
Passive Time-Division Multiplexing Fiber Optic Sensor for Magnetic Field Detection Applications in Current Introduction
by Yong Liu, Junjun Xiong, Junchang Huang, Fubin Pang, Yi Zhao and Li Xia
Photonics 2025, 12(5), 506; https://doi.org/10.3390/photonics12050506 - 19 May 2025
Viewed by 422
Abstract
Under the dual impetus of the “Dual Carbon” goals and the construction of smart grids, the development of new energy power infrastructure has been fully realized. The All-Fiber Optical Current Transformer (FOCT), leveraging its unique advantages, is in the process of supplanting traditional [...] Read more.
Under the dual impetus of the “Dual Carbon” goals and the construction of smart grids, the development of new energy power infrastructure has been fully realized. The All-Fiber Optical Current Transformer (FOCT), leveraging its unique advantages, is in the process of supplanting traditional current transformers to become the core component of power system monitoring equipment. Currently, to achieve higher precision and stability in magnetic field or current detection, FOCT structures frequently incorporate active components such as Y-waveguides and phase modulators, and closed-loop feedback systems are often used in demodulation. This has led to issues of high cost, complex demodulation, and difficult maintenance, significantly hindering the further advancement of FOCTs. Addressing the problems of high cost and complex demodulation, this paper proposes a passive multiplexing structure that achieves time-domain multiplexing of pulsed sensing signals, designs a corresponding intensity demodulation algorithm, and applies this structure to FOCTs. This enables low-cost, simple-demodulation current sensing, which can also be utilized for magnetic field detection, showcasing vast application potential. Full article
(This article belongs to the Special Issue Optical Fiber Sensors: Design and Application)
Show Figures

Figure 1

23 pages, 3783 KB  
Article
Design of Covert Communication Waveform Based on Phase Randomization
by Wenjie Zhou, Zhenyong Wang, Jun Shi and Qing Guo
Entropy 2025, 27(5), 520; https://doi.org/10.3390/e27050520 - 13 May 2025
Viewed by 536
Abstract
Covert wireless communication is designed to securely transmit hidden information between two devices. Its primary objective is to conceal the existence of transmitted data, rendering communication signals difficult for unauthorized parties to detect, intercept, or decipher during transmission. In this paper, we propose [...] Read more.
Covert wireless communication is designed to securely transmit hidden information between two devices. Its primary objective is to conceal the existence of transmitted data, rendering communication signals difficult for unauthorized parties to detect, intercept, or decipher during transmission. In this paper, we propose a Noise-like Multi-Carrier Random Phase Communication System (NRPCS) to enhance covert wireless communication by significantly complicating the detection and interception of transmitted signals. The proposed system utilizes bipolar modulation and Cyclic Code Shift Keying (CCSK) modulation, complemented by a random sequence generation mechanism, to increase the randomness and complexity of the transmitted signals. A mathematical model of the NRPCS waveform is formulated, and detailed analyses of the system’s time-domain basis functions, correlation properties, and power spectral characteristics are conducted to substantiate its noise-like behavior. Simulation results indicate that, compared to traditional fixed-frequency transmission methods, NRPCS substantially improves both the Low Probability of Detection (LPD) and the Low Probability of Interception (LPI). Further research results demonstrate that unauthorized eavesdroppers are unable to effectively demodulate signals without knowledge of the employed modulation scheme, thus significantly enhancing the overall security of communication. Full article
(This article belongs to the Special Issue Wireless Communications: Signal Processing Perspectives)
Show Figures

Figure 1

Back to TopTop