Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = phase-coded frequency-modulated continuous wave

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 1611 KiB  
Review
Unified Model and Survey on Modulation Schemes for Next-Generation Automotive Radar Systems
by Moritz Kahlert, Tai Fei, Yuming Wang, Claas Tebruegge and Markus Gardill
Remote Sens. 2025, 17(8), 1355; https://doi.org/10.3390/rs17081355 - 10 Apr 2025
Viewed by 354
Abstract
Commercial automotive radar systems for advanced driver assistance systems (ADASs) have relied on frequency-modulated continuous wave (FMCW) waveforms for years due to their low-cost hardware, simple signal processing, and established academic and industrial expertise. However, FMCW systems face several challenges, including limited unambiguous [...] Read more.
Commercial automotive radar systems for advanced driver assistance systems (ADASs) have relied on frequency-modulated continuous wave (FMCW) waveforms for years due to their low-cost hardware, simple signal processing, and established academic and industrial expertise. However, FMCW systems face several challenges, including limited unambiguous velocity, restricted multiplexing of transmit signals, and susceptibility to interference. This work introduces a unified automotive radar signal model and reviews the alternative modulation schemes such as phase-coded frequency-modulated continuous wave (PC-FMCW), phase-modulated continuous wave (PMCW), orthogonal frequency-division multiplexing (OFDM), orthogonal chirp division multiplexing (OCDM), and orthogonal time frequency space (OTFS). These schemes are assessed against key technological and economic criteria and compared with FMCW, highlighting their respective strengths and limitations. Full article
Show Figures

Graphical abstract

15 pages, 4653 KiB  
Article
Binary-Phase vs. Frequency Modulated Radar Measured Performances for Automotive Applications
by Mattia Caffa, Francesco Biletta and Riccardo Maggiora
Sensors 2023, 23(11), 5271; https://doi.org/10.3390/s23115271 - 1 Jun 2023
Cited by 5 | Viewed by 6692
Abstract
Radars have been widely deployed in cars in recent years, for advanced driving assistance systems. The most popular and studied modulated waveform for automotive radar is the frequency-modulated continuous wave (FMCW), due to FMCW radar technology’s ease of implementation and low power consumption. [...] Read more.
Radars have been widely deployed in cars in recent years, for advanced driving assistance systems. The most popular and studied modulated waveform for automotive radar is the frequency-modulated continuous wave (FMCW), due to FMCW radar technology’s ease of implementation and low power consumption. However, FMCW radars have several limitations, such as low interference resilience, range-Doppler coupling, limited maximum velocity with time-division multiplexing (TDM), and high-range sidelobes that reduce high-contrast resolution (HCR). These issues can be tackled by adopting other modulated waveforms. The most interesting modulated waveform for automotive radar, which has been the focus of research in recent years, is the phase-modulated continuous wave (PMCW): this modulated waveform has a better HCR, allows large maximum velocity, permits interference mitigation, thanks to codes orthogonality, and eases integration of communication and sensing. Despite the growing interest in PMCW technology, and while simulations have been extensively performed to analyze and compare its performance to FMCW, there are still only limited real-world measured data available for automotive applications. In this paper, the realization of a 1 Tx/1 Rx binary PMCW radar, assembled with connectorized modules and an FPGA, is presented. Its captured data were compared to the captured data of an off-the-shelf system-on-chip (SoC) FMCW radar. The radar processing firmware of both radars were fully developed and optimized for the tests. The measured performances in real-world conditions showed that PMCW radars manifest better behavior than FMCW radars, regarding the above-mentioned issues. Our analysis demonstrates that PMCW radars can be successfully adopted by future automotive radars. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

9 pages, 2100 KiB  
Communication
Photonic Generation of Background-Free Phase-Coded Microwave Pulses with Elimination of Power Fading
by Mengyuan Guan, Lu Wang, Fangping Li, Xiaoyu Chen, Ming Li, Ninghua Zhu and Wei Li
Photonics 2023, 10(1), 66; https://doi.org/10.3390/photonics10010066 - 7 Jan 2023
Cited by 4 | Viewed by 1939
Abstract
We report a novel photonic scheme to generate background-free phase-coded microwave pulses with elimination of power fading by cascading a dual-polarization dual-parallel Mach–Zehnder modulator (DP-DPMZM) and a polarization modulator (PolM). The DP-DPMZM is driven by a radio frequency (RF) signal to generate two [...] Read more.
We report a novel photonic scheme to generate background-free phase-coded microwave pulses with elimination of power fading by cascading a dual-polarization dual-parallel Mach–Zehnder modulator (DP-DPMZM) and a polarization modulator (PolM). The DP-DPMZM is driven by a radio frequency (RF) signal to generate two first-order optical sidebands with an orthogonal polarization state, while the PolM is driven by a three-level electrical coding signal. By properly adjusting the polarization state, a series of background-free frequency-doubled phase-coded microwave pulses can be generated after optical-to-electrical conversion. Benefiting from the carrier-suppressed single-sideband (CS-SSB) modulation, the proposed signal generator can suppress the chromatic-dispersion-induced power-fading effect, which has excellent potential for long-distance fiber transmission. In addition, the system can directly generate phase-coded microwave signals in pulse mode by truncating continuous wave (CW) microwave signals. Moreover, the microwave signal generator has wideband tunability since no optical filter is involved in our scheme. The proposed method was theoretically analyzed and experimentally verified. Phase-coded microwave pulses centered at 14 GHz and 19.2 GHz with a bit rate of 0.5 Gb/s were successfully generated. Full article
(This article belongs to the Special Issue Integrated Microwave Photonics)
Show Figures

Figure 1

18 pages, 9277 KiB  
Article
Application of Continuous Wavelet Transform and Artificial Naural Network for Automatic Radar Signal Recognition
by Marta Walenczykowska and Adam Kawalec
Sensors 2022, 22(19), 7434; https://doi.org/10.3390/s22197434 - 30 Sep 2022
Cited by 18 | Viewed by 3204
Abstract
This article aims to propose an algorithm for the automatic recognition of selected radar signals. The algorithm can find application in areas such as Electronic Warfare (EW), where automatic recognition of the type of intra-pulse modulation or the type of emitter operation mode [...] Read more.
This article aims to propose an algorithm for the automatic recognition of selected radar signals. The algorithm can find application in areas such as Electronic Warfare (EW), where automatic recognition of the type of intra-pulse modulation or the type of emitter operation mode can aid the decision-making process. The simulations carried out included the analysis of the classification possibilities of linear frequency modulated pulsed waveform (LFMPW), stepped frequency modulated pulsed waveform (SFMPW), phase coded pulsed waveform (PCPW), rectangular pulsed waveforms (RPW), frequency modulated continuous wave (FMCW), continuous wave (CW), Stepped Frequency Continuous Wave SFCW) and Phase Coded Continuous Waveform (PCCW). The algorithm proposed in this paper is based on the use of continuous wavelet transform (CWT) coefficients and higher-order statistics (HOS) in the feature determination of selected signals. The Principal Component Analysis (PCA) method was used for dimensionality reduction. An artificial neural network was then used as a classifier. Simulation studies took into account the presence of noise interference with signal-to-noise ratio (SNR) in the range from −5 to 10 dB. Finally, the obtained classification efficiency is presented in the form of a confusion matrix. The simulation results show a high recognition test accuracy, above 99% with a signal-to-noise ratio greater than 0 dB. The article also deals with the selection of the type and parameters of the wavelet. The authors also point to the problems encountered during the research and examples of how to solve them. Full article
(This article belongs to the Collection Navigation Systems and Sensors)
Show Figures

Figure 1

12 pages, 20183 KiB  
Article
Coherent Random-Modulated Continuous-Wave LiDAR Based on Phase-Coded Subcarrier Modulation
by Zhongyang Xu, Fengxi Yu, Bowen Qiu, Yawei Zhang, Yu Xiang and Shilong Pan
Photonics 2021, 8(11), 475; https://doi.org/10.3390/photonics8110475 - 25 Oct 2021
Cited by 14 | Viewed by 8325
Abstract
A coherent random-modulated continuous-wave (RMCW) LiDAR transmits a lightwave modulated by a pseudo-random binary sequence (PRBS). The lightwave backscattered from targets is received and used to reconstruct the PRBS. Then, the time-of-flight is extracted by correlating the reconstructed PRBS and the original PRBS. [...] Read more.
A coherent random-modulated continuous-wave (RMCW) LiDAR transmits a lightwave modulated by a pseudo-random binary sequence (PRBS). The lightwave backscattered from targets is received and used to reconstruct the PRBS. Then, the time-of-flight is extracted by correlating the reconstructed PRBS and the original PRBS. We propose a coherent RMCW LiDAR based on phase-coded subcarrier modulation, in which the impacts of internal reflection and optical Doppler frequency shift (DFS) are mitigated. A continuous lightwave is amplitude-modulated by an RF signal which is phase-coded with a PRBS. Coherent detection is used in the receiver. A beat signal that consisted of a low-frequency signal and a high-frequency signal is obtained by a single balanced photodetector (BPD). The optical DFS can be directly extracted from the low-frequency signal. It is used to compensate for the frequency offset of PRBS, which is extracted from the high-frequency signal. In addition, the background noise caused by internal reflection is suppressed by averaging over successive measurement spots. In this paper, the performance of a coherent RMCW LiDAR is firstly analyzed by numeric simulations and demonstration experiments. Then, line-scanning measurements for moving targets are implemented to demonstrate the 3D imaging capability of the proposed coherent RMCW LiDAR. Full article
(This article belongs to the Special Issue Microwave Photonic Signal Processing)
Show Figures

Figure 1

21 pages, 11732 KiB  
Article
Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors
by Keum-Won Ha, Jeong-Yun Lee, Jeong-Geun Kim and Donghyun Baek
Sensors 2018, 18(4), 1057; https://doi.org/10.3390/s18041057 - 1 Apr 2018
Cited by 6 | Viewed by 7034
Abstract
Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW) radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is [...] Read more.
Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW) radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW) radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO) is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL) is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG) block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs), the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor. Full article
(This article belongs to the Special Issue Sensors for Microwave Imaging and Detection)
Show Figures

Figure 1

Back to TopTop