Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (417)

Search Parameters:
Keywords = phononic crystal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2877 KB  
Communication
Localized Surface Phonon Polaritons and Infrared Optical Absorption of ScAlN Nanoresonators
by Huanhuan Zhao, Tao Cheng, Xinlei Duan, Mingxin Lv, Jia-Yue Yang and Linhua Liu
Materials 2025, 18(16), 3906; https://doi.org/10.3390/ma18163906 - 21 Aug 2025
Viewed by 448
Abstract
Alloying AlN with ScN provides a robust strategy for engineering its intrinsic bandgap, phonons and dielectric functions, and ScAlN alloys have demonstrated great promise in applications including the 5G mobile network, surface acoustic wave devices and nanophotonics. Sc doping has been shown to [...] Read more.
Alloying AlN with ScN provides a robust strategy for engineering its intrinsic bandgap, phonons and dielectric functions, and ScAlN alloys have demonstrated great promise in applications including the 5G mobile network, surface acoustic wave devices and nanophotonics. Sc doping has been shown to greatly influence the phonons and infrared dielectric functions of AlN, yet few studies have focused on its influence on surface phonon polaritons, which are crucial to modulating the radiative properties of ScAlN metasurfaces. Herein, we combined first-principles and finite element method (FEM) simulations to fully investigate the effects of Sc incorporation on the phonon dispersion relation, propagation and localization of SPhPs and the modulated radiative properties of ScAlN nanoresonators. As the Sc doping concentration increases, the highest optical phonon frequencies are reduced and are largely directly related to enlarged lattice parameters. Consequently, the coupling strength among incident photons and phonons decreases, which leads to a reduced absorption peak in the infrared dielectric functions. Moreover, the propagation length of the SPhPs in ScAlN is largely reduced, and localized resonance modes gradually disappear at a higher Sc doping concentration. This work provides physical insights into the spectra tuning mechanisms of ScAlN nanoresonators via Sc doping and facilitates their applications in nanophotonic devices. Full article
(This article belongs to the Special Issue Research Progress of Advanced Crystals: Growth and Doping)
Show Figures

Figure 1

25 pages, 3412 KB  
Article
FEM-Based Modeling of Guided Acoustic Waves on Free and Fluid-Loaded Plates
by Johannes Landskron, Alexander Backer, Conrad R. Wolf, Gerhard Fischerauer and Klaus Stefan Drese
Appl. Sci. 2025, 15(16), 9116; https://doi.org/10.3390/app15169116 - 19 Aug 2025
Viewed by 236
Abstract
Nowadays, guided acoustic waves (GAW) are used for many sensor and actuator applications. The use of numerical methods can facilitate the development and optimization process enormously. In this work, a universally applicable finite element method (FEM)-based model is introduced to determine the dispersion [...] Read more.
Nowadays, guided acoustic waves (GAW) are used for many sensor and actuator applications. The use of numerical methods can facilitate the development and optimization process enormously. In this work, a universally applicable finite element method (FEM)-based model is introduced to determine the dispersion relations of guided acoustic waves. A 2-dimensional unit cell model with Floquet periodicity is used to calculate the corresponding band structure diagrams. Starting from a free plate the model is expanded to encompass single-sided fluid loading. Followed by a straightforward algorithm for post-processing, the data is presented. Additionally, a parametric optimizer is used to adapt the simulations to experimental data measured by a laser Doppler vibrometer on an aluminum plate. Finally, the accuracy of the FEM model is compared to two reference models, achieving good consistency. In the case of the fluid-loaded model, the behavior of critical interactions between the dispersion curves and model-based artifacts is discussed. This approach can be used to model 2D structures like phononic crystals, which cannot be simulated by common GAW models. Moreover, this method can be used as input for advanced multiphysics simulations, including acoustic streaming applications. Full article
Show Figures

Figure 1

14 pages, 2413 KB  
Article
Effect of Carbon and Nitrogen Concentrations on the Superconducting Properties of (NbMoTaW)1CxNy Carbonitride Films
by Gabriel Pristáš, Slavomír Gabáni, Petra Hviščová, Jozef Dobrovodský, Dmitry Albov, Maksym Lisnichuk, Oleksandr Onufriienko, Janina Zorych, František Lofaj and Karol Flachbart
Materials 2025, 18(16), 3732; https://doi.org/10.3390/ma18163732 - 8 Aug 2025
Viewed by 367
Abstract
We report about the effect of nitrogen and carbon concentration on the superconducting transition temperature TC of (NbMoTaW)1CxNy carbonitride films deposited using reactive DC magnetron sputtering. By measuring the temperature dependence of electrical resistance and magnetization of [...] Read more.
We report about the effect of nitrogen and carbon concentration on the superconducting transition temperature TC of (NbMoTaW)1CxNy carbonitride films deposited using reactive DC magnetron sputtering. By measuring the temperature dependence of electrical resistance and magnetization of these carbonitrides, with 0.20 ≤ x ≤ 1.17 and 0 ≤ y ≤ 0.73, we observe a TC enhancement that occurs especially at high (x ≥ 0.76) carbon concentrations, with the largest TC = 9.6 K observed in the over-doped fcc crystal structure with x = 1.17 and y = 0.41. The reason why the largest TC appears at high C concentrations is probably related to the lower atomic mass of carbon compared to nitrogen and to the increase in the electron–phonon interaction due to different bonding of carbon (compared to nitrogen) to the Nb-Mo-Ta-W metallic sublattice. However, for concentrations where y > 0.71 and x + y > 1.58, two structural phases begin to form. Additionally, the proximity to structural instability may play a role in the observed BC2 enhancement. Further measurements in a magnetic field show that the upper critical fields BC2 of (NbMoTaW)1CxNy carbonitrides provide BC2/BC2 < 2 T/K, which falls within the weak-coupling pair breaking limit. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Synthesis, Characterization, and Applications)
Show Figures

Figure 1

15 pages, 5802 KB  
Article
Study on the Influence Mechanism of Alkaline Earth Element Doping on the Thermoelectric Properties of ZnO
by Haitao Zhang, Bo Feng, Yonghong Chen, Peng Jin, Ruolin Ruan, Biyu Xu, Zhipeng Zheng, Guopeng Zhou, Yang Zhang, Kewei Wang, Yin Zhong and Yanhua Fan
Micromachines 2025, 16(8), 850; https://doi.org/10.3390/mi16080850 - 24 Jul 2025
Viewed by 338
Abstract
As a promising n-type semiconductor thermoelectric material, ZnO has great potential in the high-temperature working temperature range due to its advantages of abundant sources, low cost, high thermal stability, and good chemical stability, as well as being pollution-free. Sr-doped ZnO-based thermoelectric materials were [...] Read more.
As a promising n-type semiconductor thermoelectric material, ZnO has great potential in the high-temperature working temperature range due to its advantages of abundant sources, low cost, high thermal stability, and good chemical stability, as well as being pollution-free. Sr-doped ZnO-based thermoelectric materials were prepared using the methods of room-temperature powder synthesis and high-temperature block synthesis. The phase composition, crystal structure, and thermoelectric performances of ZnO samples with different Sr doping levels were analyzed using XRD, material simulation software and thermoelectric testing devices, and the optimal doping concentrations were obtained. The results show that Sr doping could cause the Zn-O bond to become shorter; in addition, the hybridization between Zn and O atoms would become stronger, and the Sr atom would modify the density of states near the Fermi level, which could significantly increase the carrier concentration, electrical conductivity, and corresponding power factor. Sr doping could cause lattice distortion, enhance the phonon scattering effect, and decrease the lattice thermal conductivity and thermal conductivity. Sr doping can achieve the effect of improving electrical transport performance and decreasing thermal transport performance. The ZT value increased to ~0.418 at 873 K, which is ~4.2 times the highest ZT of the undoped ZnO sample. The Vickers hardness was increased to ~351.1 HV, which is 45% higher than the pristine ZnO. Full article
(This article belongs to the Special Issue Functional Materials and Microdevices, 2nd Edition)
Show Figures

Figure 1

19 pages, 3447 KB  
Article
Investigation of N-(2-oxo-2H-chromen-3-carbonyl)cytisine’s Crystal Structure and Optical Properties
by Anarkul Kishkentayeva, Kymbat Kopbalina, Zhanar Shaimerdenova, Elvira Shults, Yury Gatilov, Dmitrii Pankin, Mikhail Smirnov, Anastasia Povolotckaia, Dastan Turdybekov and Nurlan Mazhenov
Materials 2025, 18(13), 3153; https://doi.org/10.3390/ma18133153 - 3 Jul 2025
Viewed by 543
Abstract
Coumarin and cytisine and their derivatives have significant biological activity. In addition, the electronic properties of coumarin derivatives are very sensitive to the molecular environment, which allows for their use as sensors for bioluminescent imaging. Due to the fact that cytisine exhibits high [...] Read more.
Coumarin and cytisine and their derivatives have significant biological activity. In addition, the electronic properties of coumarin derivatives are very sensitive to the molecular environment, which allows for their use as sensors for bioluminescent imaging. Due to the fact that cytisine exhibits high activity in binding to nicotinic acetylcholine receptors, a compound combining parts of cytisine and coumarin may have a broader spectrum of biological activity and also act as a photoactive element for promising use in optoelectronic devices. This article reports the synthesis of a crystalline cytisine–coumarin complex (IUPAC: N-(2-oxo-2H-chromene-3-carbonyl)cytisine), along with the results of both theoretical and experimental investigations of its structural and electronic properties. The structure of this new compound was established on the basis of X-ray diffraction and Fourier transform infrared spectroscopy data and was confirmed through density functional theory calculations using periodic crystal and single-molecule approaches. Interpretations of the IR absorption peaks and the atomic patterns of the vibrational modes are given. The electronic band structure and the contributions of individual atoms to the electronic density of states are analyzed. The structural and optical properties considered may be useful for quality control of the compound and for studying similar matrices. Full article
Show Figures

Figure 1

12 pages, 4829 KB  
Article
Pressure-Induced Structural Stabilities and Superconductivity in Rhodium Borides
by Junyi Du, Weiguo Sun, Xiaofeng Li and Xinfang Su
Materials 2025, 18(13), 3125; https://doi.org/10.3390/ma18133125 - 1 Jul 2025
Viewed by 274
Abstract
Transition metal borides have garnered significant research interest due to their versatile properties, including superconductivity and exceptional hardness. This study examines the stable crystal structures of Rhodium-Boron (Rh-B) compounds under high pressure using first-principles structural searching. Beyond the previously known Rh2B, [...] Read more.
Transition metal borides have garnered significant research interest due to their versatile properties, including superconductivity and exceptional hardness. This study examines the stable crystal structures of Rhodium-Boron (Rh-B) compounds under high pressure using first-principles structural searching. Beyond the previously known Rh2B, RhB2, and RhB4 phases, three new boron-rich phases—C2/m-RhB6, Amm2-RhB6, and Cmca-RhB8—are identified, each characterized by three-dimensional covalent bonding networks. Their mechanical and thermodynamic stability is validated through elastic property assessments and phonon dispersion calculations. Surprisingly, these phases exhibit low bulk and shear moduli, ruling them out as candidates for hard materials. The metallic character of these borides is evident from their electronic density of states, which exhibits a sharp peak at the EF-a signature often associated with superconducting systems. Indeed, our calculations predict Tc values of 8.93 K and 9.36 K for Amm2-RhB6 and Cmca-RhB8, respectively, at 100 GPa. Full article
Show Figures

Graphical abstract

22 pages, 3862 KB  
Article
Composition-Dependent Structural, Phonon, and Thermodynamical Characteristics of Zinc-Blende BeZnO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(13), 3101; https://doi.org/10.3390/ma18133101 - 1 Jul 2025
Cited by 1 | Viewed by 368
Abstract
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained [...] Read more.
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained substantial interest to design/improve the operations of highly efficient and flexible nano- and micro-electronics. Attempts are being made to engineer different electronic devices to cover light emission over a wide range of wavelengths to meet the growing industrial needs in photonics, energy harvesting, and biomedical applications. For zb materials, both experimental and theoretical studies of lattice dynamics ωjq have played crucial roles for understanding their optical and electronic properties. Except for zb ZnO, inelastic neutron scattering measurement of ωjq for BeO is still lacking. For the BexZn1-xO ternary alloys, no experimental and/or theoretical studies exist for comprehending their structural, vibrational, and thermodynamical traits (e.g., Debye temperature ΘDT; specific heat CvT). By adopting a realistic rigid-ion model, we have meticulously simulated the results of lattice dynamics, and thermodynamic properties for both the binary zb ZnO, BeO and ternary BexZn1-xO alloys. The theoretical results are compared/contrasted against the limited experimental data and/or ab initio calculations. We strongly feel that the phonon/thermodynamic features reported here will encourage spectroscopists to perform similar measurements and check our theoretical conjectures. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing Processing of Ceramic Materials)
Show Figures

Figure 1

11 pages, 1606 KB  
Article
Doping Tuned the Carrier Dynamics in Li-Doped Bi2Se3 Crystals Revealed by Femtosecond Transient Optical Spectroscopy
by Qiya Liu, Min Zhang, Xinsheng Yang, Tixian Zeng and Minghu Pan
Nanomaterials 2025, 15(13), 1010; https://doi.org/10.3390/nano15131010 - 30 Jun 2025
Viewed by 335
Abstract
Topological insulators (TIs) can be widely applied in the fields of ultrafast optical and spintronic devices owing to the existence of topologically protected gapless Dirac surface states. However, the study of ultrafast dynamics of carriers in TIs remains elusive. In this work, the [...] Read more.
Topological insulators (TIs) can be widely applied in the fields of ultrafast optical and spintronic devices owing to the existence of topologically protected gapless Dirac surface states. However, the study of ultrafast dynamics of carriers in TIs remains elusive. In this work, the carrier dynamics of Li-doped Bi2−xSe3 single crystals were investigated by femtosecond (fs) transient optical spectroscopy (ΔR/R(t) signals). The temperature dependence for the relaxation rates of the electron–electron interaction and electron–phonon coupling is consistent with the results of electrical transport, which indicates the carrier dynamics of TI is highly related with carrier concentrations. We find that the carrier type and concentration of Bi2Se3 can be tuned by Li doping, leading to a metal-insulation transition at low temperatures (T ≤ 55 K), indicating that electron–electron interactions are dominant at low temperature. For T > 55 K, electron–phonon coupling in the bulk carriers becomes the main electric transport mechanism. Full article
Show Figures

Graphical abstract

23 pages, 888 KB  
Article
Active Feedback-Driven Defect-Band Steering in Phononic Crystals with Piezoelectric Defects: A Mathematical Approach
by Soo-Ho Jo
Mathematics 2025, 13(13), 2126; https://doi.org/10.3390/math13132126 - 29 Jun 2025
Viewed by 399
Abstract
Defective phononic crystals (PnCs) have garnered significant attention for their ability to localize and amplify elastic wave energy within defect sites or to perform narrowband filtering at defect-band frequencies. The necessity for continuously tunable defect characteristics is driven by the variable excitation frequencies [...] Read more.
Defective phononic crystals (PnCs) have garnered significant attention for their ability to localize and amplify elastic wave energy within defect sites or to perform narrowband filtering at defect-band frequencies. The necessity for continuously tunable defect characteristics is driven by the variable excitation frequencies encountered in rotating machinery. Conventional tuning methodologies, including synthetic negative capacitors or inductors integrated with piezoelectric defects, are constrained to fixed, offline, and incremental adjustments. To address these limitations, the present study proposes an active feedback approach that facilitates online, wide-range steering of defect bands in a one-dimensional PnC. Each defect is equipped with a pair of piezoelectric sensors and actuators, governed by three independently tunable feedback gains: displacement, velocity, and acceleration. Real-time sensor signals are transmitted to a multivariable proportional controller, which dynamically modulates local electroelastic stiffness via the actuators. This results in continuous defect-band frequency shifts across the entire band gap, along with on-demand sensitivity modulation. The analytical model that incorporates these feedback gains has been demonstrated to achieve a level of agreement with COMSOL benchmarks that exceeds 99%, while concurrently reducing computation time from hours to seconds. Displacement- and acceleration-controlled gains yield predictable, monotonic up- or down-shifts in defect-band frequency, whereas the velocity-controlled gain permits sensitivity adjustment without frequency drifts. Furthermore, the combined-gain operation enables the concurrent tuning of both the center frequency and the filtering sensitivity, thereby facilitating an instantaneous remote reconfiguration of bandpass filters. This framework establishes a new class of agile, adaptive ultrasonic devices with applications in ultrasonic imaging, structural health monitoring, and prognostics and health management. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

11 pages, 1497 KB  
Article
Experimental Investigation of Bulk Elastic Wave Propagation in the Volume of Metamaterials
by Aleksandr Korobov, Natalia Shirgina, Aleksey Kokshaiskii, Natalia Odina and Aleksandr Volodarskii
Acoustics 2025, 7(3), 40; https://doi.org/10.3390/acoustics7030040 - 26 Jun 2025
Viewed by 456
Abstract
This paper presents the results of experimental studies on the propagation of longitudinal and transverse ultrasonic waves through a metamaterial—a composite material based on polymer matrix with periodically arranged cylindrical elements. Such structures are known as phononic crystals. Amplitude–frequency characteristics were measured for [...] Read more.
This paper presents the results of experimental studies on the propagation of longitudinal and transverse ultrasonic waves through a metamaterial—a composite material based on polymer matrix with periodically arranged cylindrical elements. Such structures are known as phononic crystals. Amplitude–frequency characteristics were measured for phononic crystals with air and metal cylindrical elements, for both longitudinal waves (in the frequency range from 1.5 to 3 MHz) and transverse waves (in the range from 0.2 to 1.2 MHz). A twofold decrease in the amplitude of the transmitted longitudinal ultrasonic wave was experimentally demonstrated in the passband centered at 1.87 MHz during rotation of the phononic crystal. It was also found that the polarization angle of the transverse ultrasonic wave influences the localization of band gaps and passbands. Band gaps, characterized by amplitude minima near 240 kHz, 290 kHz, and 830 kHz and observed for waves polarized parallel to the crystal axis, are replaced by passbands when the wave is polarized perpendicularly. These results suggest the potential for developing analog ultrasonic frequency filters tunable by the angle of rotation. Full article
Show Figures

Figure 1

22 pages, 4441 KB  
Article
Understanding Shock Response of Body-Centered Cubic Molybdenum from a Specific Embedded Atom Potential
by Yichen Jiang, Yanchun Leng, Xiaoli Chen and Chaoping Liang
Metals 2025, 15(6), 685; https://doi.org/10.3390/met15060685 - 19 Jun 2025
Viewed by 355
Abstract
Extreme conditions induced by shock exert unprecedented force on crystal lattice and push atoms away from their equilibrium positions. Nonequilibrium molecular dynamics (MD) simulations are one of the best ways to describe material behavior under shock but are limited by the availability and [...] Read more.
Extreme conditions induced by shock exert unprecedented force on crystal lattice and push atoms away from their equilibrium positions. Nonequilibrium molecular dynamics (MD) simulations are one of the best ways to describe material behavior under shock but are limited by the availability and reliability of potential functions. In this work, a specific embedded atom (EAM) potential of molybdenum (Mo) is built for shock and tested by quasi-isentropic and piston-driven shock simulations. Comparisons of the equation of state, lattice constants, elastic constants, phase transitions under pressure, and phonon dispersion with those in the existing literature validate the reliability of our EAM potential. Quasi-isentropic shock simulations reveal that critical stresses for the beginning of plastic deformation follow a [111] > [110] > [100] loading direction for single crystals, and then polycrystal samples. Phase transitions from BCC to FCC and BCC to HCP promote plastic deformation for single crystals loading along [100] and [110], respectively. Along [111], void directly nucleates at the stress concentration area. For polycrystals, voids always nucleate on the grain boundary and lead to early crack generation and propagation. Piston-driven shock loading confirms the plastic mechanisms observed from quasi-isentropic shock simulation and provides further information on the spall strength and spallation process. Full article
(This article belongs to the Special Issue Mechanical Structure Damage of Metallic Materials)
Show Figures

Graphical abstract

27 pages, 3716 KB  
Article
Raman Characterization of Dioxygen Species as Defects in Single-Crystal ZnO Including Their Pressure Dependence
by Dieter Fischer, Dominik Bloos, Aleksandra Krajewska, Graham M. McNally, Dejan Zagorac and Johann Christian Schön
Crystals 2025, 15(6), 574; https://doi.org/10.3390/cryst15060574 - 18 Jun 2025
Viewed by 554
Abstract
The defects in zinc oxide crystals are of crucial importance for their usability in many applications and are not yet fully understood. Here, we demonstrate that dioxygen species are present as defects in the grown ZnO, resulting in a bending of the atom [...] Read more.
The defects in zinc oxide crystals are of crucial importance for their usability in many applications and are not yet fully understood. Here, we demonstrate that dioxygen species are present as defects in the grown ZnO, resulting in a bending of the atom layers that lie perpendicular to the c-axis. In the Raman spectra, these defects cause the appearance of bands different from the known bands of perfect ZnO crystals allowed by symmetry. These additional Raman bands, which have been frequently reported for ZnO in the past, can thus be fully explained by the presence of dioxygen species, and the widespread assumption of second-order modes for the assignments of these bands is not necessary. Furthermore, the Raman spectrum belonging to perfect zinc oxide in the ideal wurtzite structure is presented, obtained from small domains in ZnO(0001) crystals exposed to pressures up to 2 GPa. The dependence of the O-O stretching modes on the applied pressure proves the presence of dioxygen species in ZnO, which is also confirmed by phonon calculations of structure models with embedded dioxygen species. The surface quality of the ZnO crystals studied is also reflected in the Raman spectra and is included in the analysis. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

13 pages, 5748 KB  
Article
First-Principles Investigation of Excited-State Lattice Dynamics and Mechanical Properties in Diamond
by Ying Tian, Fangfang Meng, Duanzheng Wu, Dong Yang, Xiaoma Tao, Zian Li, Jau Tang, Xiang Sun and Junheng Pan
Micromachines 2025, 16(6), 668; https://doi.org/10.3390/mi16060668 - 31 May 2025
Viewed by 790
Abstract
The study of the excited-state properties of diamond is crucial for understanding its electronic structure and surface physicochemical properties, providing theoretical support for its applications in optoelectronic devices, quantum technologies, and catalysis. This research employs Density Functional Theory (DFT) with the fixed electron [...] Read more.
The study of the excited-state properties of diamond is crucial for understanding its electronic structure and surface physicochemical properties, providing theoretical support for its applications in optoelectronic devices, quantum technologies, and catalysis. This research employs Density Functional Theory (DFT) with the fixed electron occupation method to simulate the electron excitation. Using the Generalized Gradient Approximation (GGA) within DFT, we systematically investigated the excited-state characteristics of diamond by simulating the transfer of a fraction of electrons from the Highest Occupied Crystal Orbital (HOCO) to the Lowest Unoccupied Crystal Orbital (LUCO). Theoretical calculations indicate that with increasing electron excitation levels, the diamond crystal structure transitions from cubic to tetragonal, accompanied by a gradual decrease in the bandgap. Mechanical property analysis reveals that both Young’s modulus and shear modulus decrease with increasing excitation rate, while the bulk modulus remains nearly constant. These findings indicate a significant impact of electronic excitation on the mechanical stability of diamond. Phonon dispersion curves exhibit reduced degeneracy in high-frequency optical branches and a marked decrease in crystal symmetry upon excitation. This study not only advances the understanding of diamond’s excited-state properties but also offers valuable theoretical insights into its structural evolution and performance tuning under such extreme conditions. Full article
(This article belongs to the Special Issue Emerging Quantum Optical Devices and Their Applications)
Show Figures

Figure 1

13 pages, 2748 KB  
Article
Experimental Demonstration of Nanoscale Pillar Phononic Crystal-Based Reflector for Surface Acoustic Wave Devices
by Temesgen Bailie Workie, Lingqin Zhang, Junyao Shen, Jianli Jiang, Wenfeng Yao, Quhuan Shen, Jingfu Bao and Ken-ya Hashimoto
Micromachines 2025, 16(6), 663; https://doi.org/10.3390/mi16060663 - 31 May 2025
Cited by 1 | Viewed by 545
Abstract
This article presents an investigation into the use of nanoscale phononic crystals (PnCs) as reflectors for surface acoustic wave (SAW) resonators, with a focus on pillar-based PnCs. Finite element analysis was employed to simulate the phononic dispersion characteristics and to study the effects [...] Read more.
This article presents an investigation into the use of nanoscale phononic crystals (PnCs) as reflectors for surface acoustic wave (SAW) resonators, with a focus on pillar-based PnCs. Finite element analysis was employed to simulate the phononic dispersion characteristics and to study the effects of the pillar shape, material and geometric dimensions on achievable acoustic bandgap. To validate our concept, we fabricated SAW resonators and filters incorporating the proposed pillar-based PnC reflectors. The PnC-based reflector shows promising performance, even with smaller number of PnC arrays. In this regard, with a PnC array reflector consisting of 20 lattice periods, the SAW resonator exhibits a maximum bode-Q of about 1600, which can be considered to be a reasonably high value for SAW resonators on bulk 42° Y-X lithium tantalate (42° Y-X LiTaO3) substrate. Furthermore, we implemented SAW filters using pillar-based PnC reflectors, resulting in a minimum insertion loss of less than 3 dB and out-of-band attenuation exceeding 35 dB. The authors believe that there is still a long way to go in making it fit for mass production, especially due to issues related with the accuracy of fabrication. But, upon its successful implementation, this approach of using PnCs as SAW reflectors could lead to reducing the foot-print of SAW devices, particularly for SAW-based sensors and filters. Full article
(This article belongs to the Special Issue Recent Progress in RF MEMS Devices and Applications)
Show Figures

Graphical abstract

30 pages, 4446 KB  
Review
Electrical Transport Interplay with Charge Density Waves, Magnetization, and Disorder Tuned by 2D van der Waals Interface Modification via Elemental Intercalation and Substitution in ZrTe3, 2H-TaS2, and Cr2Si2Te6 Crystals
by Xiao Tong, Yu Liu, Xiangde Zhu, Hechang Lei and Cedomir Petrovic
Nanomaterials 2025, 15(10), 737; https://doi.org/10.3390/nano15100737 - 14 May 2025
Viewed by 863
Abstract
Electrical transport in 2D materials exhibits unique behaviors due to reduced dimensionality, broken symmetries, and quantum confinement. It serves as both a sensitive probe for the emergence of coherent electronic phases and a tool to actively manipulate many-body correlated states. Exploring their interplay [...] Read more.
Electrical transport in 2D materials exhibits unique behaviors due to reduced dimensionality, broken symmetries, and quantum confinement. It serves as both a sensitive probe for the emergence of coherent electronic phases and a tool to actively manipulate many-body correlated states. Exploring their interplay and interdependence is crucial but remains underexplored. This review integratively cross-examines the atomic and electronic structures and transport properties of van der Waals-layered crystals ZrTe3, 2H-TaS2, and Cr2Si2Te6, providing a comprehensive understanding and uncovering new discoveries and insights. A common observation from these crystals is that modifying the atomic and electronic interface structures of 2D van der Waals interfaces using heteroatoms significantly influences the emergence and stability of coherent phases, as well as phase-sensitive transport responses. In ZrTe3, substitution and intercalation with Se, Hf, Cu, or Ni at the 2D vdW interface alter phonon–electron coupling, valence states, and the quasi-1D interface Fermi band, affecting the onset of CDW and SC, manifested as resistance upturns and zero-resistance states. We conclude here that these phenomena originate from dopant-induced variations in the lattice spacing of the quasi-1D Te chains of the 2D vdW interface, and propose an unconventional superconducting mechanism driven by valence fluctuations at the van Hove singularity, arising from quasi-1D lattice vibrations. Short-range in-plane electronic heterostructures at the vdW interface of Cr2Si2Te6 result in a narrowed band gap. The sharp increase in in-plane resistance is found to be linked to the emergence and development of out-of-plane ferromagnetism. The insertion of 2D magnetic layers such as Mn, Fe, and Co into the vdW gap of 2H-TaS2 induces anisotropic magnetism and associated transport responses to magnetic transitions. Overall, 2D vdW interface modification offers control over collective electronic behavior, transport properties, and their interplays, advancing fundamental science and nanoelectronic devices. Full article
Show Figures

Figure 1

Back to TopTop