Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = phosphacoumarins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3586 KB  
Article
Modulation of Human Colon Cell Activity by Synthetic Coumarin Derivatives Bearing a Phosphonate Group
by Katarzyna Szwaczko, Roman Paduch, Kamil Dziuba, Krzysztof Szafrański and Adrian Wiater
Molecules 2025, 30(13), 2846; https://doi.org/10.3390/molecules30132846 - 3 Jul 2025
Viewed by 465
Abstract
In this paper, we will present the synthesis of coumarins bearing a phosphonate group in the C-3 position of the coumarin skeleton and phosphacoumarin derivatives. The compounds were synthesized by Knoevenagel condensation. Notably, the synthetic difficulties in preparing phosphacoumarins have limited previous studies. [...] Read more.
In this paper, we will present the synthesis of coumarins bearing a phosphonate group in the C-3 position of the coumarin skeleton and phosphacoumarin derivatives. The compounds were synthesized by Knoevenagel condensation. Notably, the synthetic difficulties in preparing phosphacoumarins have limited previous studies. Our approach allows us to efficiently produce these derivatives, opening the way to investigate their biological properties. The resulting compounds were fully characterized using spectroscopic techniques and high-resolution mass spectrometry. We then evaluated the cytotoxicity of the compounds against human colon cancer HT-29 tumor and CCD 841 CoTr normal colon epithelial cells. We compared these results with coumarin activity to assess the effect of the introduction of the phosphonate group on their cytotoxicity. In addition, we performed cell cycle analysis by flow cytometry and examined the antioxidant activity of the compounds by the DPPH and FRAP methods. Furthermore, we conducted ADME analysis to gain more insight into the pharmacokinetic properties of the tested coumarins. Our study is in line with current trends in the search for new compounds with potential anticancer properties. Although there are numerous reports in the scientific literature on the anticancer activity of coumarin derivatives, the cytotoxicity of synthetic derivatives with a phosphonate group has not been investigated to date. Full article
Show Figures

Figure 1

16 pages, 1536 KB  
Article
Superelectrophilic Activation of Phosphacoumarins towards Weak Nucleophiles via Brønsted Acid Assisted Brønsted Acid Catalysis
by Alena V. Zalaltdinova, Yulia M. Sadykova, Almir S. Gazizov, Atabek K. Smailov, Victor V. Syakaev, Daria P. Gerasimova, Elena A. Chugunova, Nurgali I. Akylbekov, Rakhmetulla U. Zhapparbergenov, Nurbol O. Appazov, Alexander R. Burilov, Michail A. Pudovik, Igor V. Alabugin and Oleg G. Sinyashin
Int. J. Mol. Sci. 2024, 25(12), 6327; https://doi.org/10.3390/ijms25126327 - 7 Jun 2024
Cited by 4 | Viewed by 1323
Abstract
The electrophilic activation of various substrates via double or even triple protonation in superacidic media enables reactions with extremely weak nucleophiles. Despite the significant progress in this area, the utility of organophosphorus compounds as superelectrophiles still remains limited. Additionally, the most common superacids [...] Read more.
The electrophilic activation of various substrates via double or even triple protonation in superacidic media enables reactions with extremely weak nucleophiles. Despite the significant progress in this area, the utility of organophosphorus compounds as superelectrophiles still remains limited. Additionally, the most common superacids require a special care due to their high toxicity, exceptional corrosiveness and moisture sensitivity. Herein, we report the first successful application of the “Brønsted acid assisted Brønsted acid” concept for the superelectrophilic activation of 2-hydroxybenzo[e][1,2]oxaphosphinine 2-oxides (phosphacoumarins). The pivotal role is attributed to the tendency of the phosphoryl moiety to form hydrogen-bonded complexes, which enables the formation of dicationic species and increases the electrophilicity of the phosphacoumarin. This unmasks the reactivity of phosphacoumarins towards non-activated aromatics, while requiring only relatively non-benign trifluoroacetic acid as the reaction medium. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

14 pages, 4015 KB  
Article
Diastereoselective Synthesis of Novel Spiro-Phosphacoumarins and Evaluation of Their Anti-Cancer Activity
by Valeriia V. Sennikova, Alena V. Zalaltdinova, Yulia M. Sadykova, Ayrat R. Khamatgalimov, Almir S. Gazizov, Alexandra D. Voloshina, Anna P. Lyubina, Syumbelya K. Amerhanova, Julia K. Voronina, Elena A. Chugunova, Nurbol O. Appazov, Alexander R. Burilov and Michail A. Pudovik
Int. J. Mol. Sci. 2022, 23(22), 14348; https://doi.org/10.3390/ijms232214348 - 18 Nov 2022
Cited by 5 | Viewed by 1908
Abstract
Herein we present the regio- and diastereoselective synthesis of novel pyrrolidine-fused spiro-dihydrophosphacoumarins via intermolecular [3 + 2] cycloaddition reaction. The presented approach is complementary to existing ones and provides an easy entry to the otherwise inaccessible derivatives. Additionally, the unprecedented pathway of the [...] Read more.
Herein we present the regio- and diastereoselective synthesis of novel pyrrolidine-fused spiro-dihydrophosphacoumarins via intermolecular [3 + 2] cycloaddition reaction. The presented approach is complementary to existing ones and provides an easy entry to the otherwise inaccessible derivatives. Additionally, the unprecedented pathway of the reaction of 4-hydroxycoumarin with azomethine ylides is described. The anti-cancer activity of the obtained compounds was tested in vitro, the most potent compound being 2.6-fold more active against the HuTu 80 cell line than the reference 5-fluorouracil, with a selectivity index > 32. Full article
Show Figures

Graphical abstract

Back to TopTop