Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,218)

Search Parameters:
Keywords = photonics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3717 KB  
Article
The Impact of Fixed-Tilt PV Arrays on Vegetation Growth Through Ground Sunlight Distribution at a Solar Farm in Aotearoa New Zealand
by Matlotlo Magasa Dhlamini and Alan Colin Brent
Energies 2025, 18(20), 5412; https://doi.org/10.3390/en18205412 (registering DOI) - 14 Oct 2025
Abstract
The land demands of ground-mounted PV systems raise concerns about competition with agriculture, particularly in regions with limited productive farmland. Agrivoltaics, which integrates solar energy generation with agricultural use, offers a potential solution. While agrivoltaics has been extensively studied, less is known about [...] Read more.
The land demands of ground-mounted PV systems raise concerns about competition with agriculture, particularly in regions with limited productive farmland. Agrivoltaics, which integrates solar energy generation with agricultural use, offers a potential solution. While agrivoltaics has been extensively studied, less is known about its feasibility and impacts in complex temperate maritime climates such as Aotearoa New Zealand, in particular, the effects of PV-induced shading on ground-level light availability and vegetation. This study modelled the spatial and seasonal distribution of ground-level irradiation and Photosynthetic Photon Flux Density (PPFD) beneath fixed-tilt PV arrays at the Tauhei solar farm in the Waikato region. It quantifies and maps PPFD to evaluate light conditions and its implications for vegetation growth. The results reveal significant spatial and temporal variation over a year. The under-panel ground irradiance is lower than open-field GHI by 18% (summer), 22% (spring), 16% (autumn), and 3% (winter), and this seasonal reduction translates into PPFD gradients. This variation supports a precision agrivoltaic strategy that zones land based on irradiance levels. By aligning crop types and planting schedules with seasonal light profiles, land productivity and ecological value can be improved. These findings are highly applicable in Aotearoa New Zealand’s pasture-based systems and show that effective light management is critical for agrivoltaic success in temperate maritime climates. This is, to our knowledge, the first spatial PPFD zoning analysis for fixed-tilt agrivoltaics, linking year-round ground-light maps to crop/pasture suitability. Full article
(This article belongs to the Special Issue Solar Energy, Governance and CO2 Emissions)
21 pages, 18268 KB  
Article
Fractional-Order Modeling of a Multistable Erbium-Doped Fiber Laser
by Jorge Eduardo Silva Gómez, José de Jesús Barba Franco, Luís Armando Gallegos Infante, Juan Hugo García López, Rider Jaimes Reátegui and Alexander N. Pisarchik
Photonics 2025, 12(10), 1014; https://doi.org/10.3390/photonics12101014 - 14 Oct 2025
Abstract
We propose a novel mathematical model of a multistable erbium-doped fiber laser based on Caputo fractional derivative equations. The model is used to investigate how the laser dynamics evolve as the derivative order is varied. Our results demonstrate that the fractional-order formulation provides [...] Read more.
We propose a novel mathematical model of a multistable erbium-doped fiber laser based on Caputo fractional derivative equations. The model is used to investigate how the laser dynamics evolve as the derivative order is varied. Our results demonstrate that the fractional-order formulation provides a more accurate description of the experimentally observed laser dynamics compared to conventional integer-order models. This study highlights the importance of fractional calculus in modeling complex nonlinear photonic systems and offers new insights into the dynamics of multistable lasers. Full article
(This article belongs to the Special Issue Optical Fiber Lasers and Laser Technology)
20 pages, 4960 KB  
Review
Neuroimaging Biomarkers in Alzheimer’s Disease
by Shailendra Mohan Tripathi, Porimita Chutia and Alison D. Murray
J. Dement. Alzheimer's Dis. 2025, 2(4), 37; https://doi.org/10.3390/jdad2040037 - 14 Oct 2025
Abstract
Alzheimer’s disease accounts for approximately 50% to 80% of all causes of dementia. Co-existence of AD with other diseases causing dementia poses a diagnostic challenge, as we are still far from diagnosing AD accurately in order to manage it appropriately. Neuroimaging techniques, not [...] Read more.
Alzheimer’s disease accounts for approximately 50% to 80% of all causes of dementia. Co-existence of AD with other diseases causing dementia poses a diagnostic challenge, as we are still far from diagnosing AD accurately in order to manage it appropriately. Neuroimaging techniques, not only help diagnose AD but also consistently feature in diagnostic and research criteria for AD as biomarkers. Molecular biomarkers including positron emission tomography (PET) and single-photon emission computed tomography (SPECT), and structural biomarkers including magnetic resonance imaging (MRI), have been used in various therapeutic and prognostic studies in AD. This review highlights the recent advances in neuroimaging biomarkers, including molecular biomarkers (PET and SPECT tracers) and structural biomarkers (MRI), for AD. For the purpose of this review, molecular biomarkers have been further subcategorized into non-specific radiotracers (FDG-PET and blood flow SPECT) and specific amyloid- and tau-related radiotracers. The aim of this review is to discuss the recent advances and evidence of molecular and structural biomarkers of AD. Full article
Show Figures

Figure 1

16 pages, 2601 KB  
Article
Real-Time Monitoring of Occupational Radiation Exposure in Nuclear Medicine Technologists: An Initial Study
by Masaki Fujisawa, Masahiro Sota, Yoshihiro Haga, Shigehisa Tanaka, Nozomi Kataoka, Toshiki Kato, Yuji Kaga, Mitsuya Abe, Masatoshi Suzuki, Yohei Inaba and Koichi Chida
Appl. Sci. 2025, 15(20), 11008; https://doi.org/10.3390/app152011008 - 14 Oct 2025
Abstract
Occupational radiation exposure in nuclear medicine presents complex spatial and temporal patterns due to the use of unsealed radiopharmaceuticals and prolonged proximity to patients. Traditional passive dosimetry provides only cumulative dose values, limiting its usefulness in identifying task-specific exposures or capturing momentary fluctuations. [...] Read more.
Occupational radiation exposure in nuclear medicine presents complex spatial and temporal patterns due to the use of unsealed radiopharmaceuticals and prolonged proximity to patients. Traditional passive dosimetry provides only cumulative dose values, limiting its usefulness in identifying task-specific exposures or capturing momentary fluctuations. This study applied a real-time dosimetry system capable of second-by-second measurements, combined with time-series analysis, to evaluate staff exposure during myocardial perfusion imaging using technetium-99m. Dosimeters were placed on the left and right sides of the neck and head of two radiological technologists. Dose rates were continuously recorded throughout the injection and imaging phases. The right side of the neck received the highest cumulative and peak dose rates among all sites. Although no significant difference in total dose was observed between the injection and imaging phases, specific high-exposure events were detected. Notably, ECG lead placement and post-injection handling produced dose spikes. A positive correlation was found between administered activity and dose rate at neck-level sites but not at head-level sites. These findings demonstrate the value of real-time dosimetry in identifying procedural actions associated with elevated exposure. Time-series analysis further contextualized these peaks, supporting improved task-specific protective strategies beyond the capabilities of conventional dosimetry. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

11 pages, 318 KB  
Article
Non-Linear Quantum Dynamics in Coupled Double-Quantum- Dot-Cavity Systems
by Tatiana Mihaescu, Mihai A. Macovei and Aurelian Isar
Physics 2025, 7(4), 47; https://doi.org/10.3390/physics7040047 (registering DOI) - 14 Oct 2025
Abstract
The steady-state quantum dynamics of a compound sample consisting of a semiconductor double-quantum-dot (DQD) system, non-linearly coupled with a leaking superconducting transmission line resonator, is theoretically investigated. Particularly, the transition frequency of the DQD is taken to be equal to the doubled resonator [...] Read more.
The steady-state quantum dynamics of a compound sample consisting of a semiconductor double-quantum-dot (DQD) system, non-linearly coupled with a leaking superconducting transmission line resonator, is theoretically investigated. Particularly, the transition frequency of the DQD is taken to be equal to the doubled resonator frequency, whereas the inter-dot Coulomb interaction is considered weak. As a consequence, the steady-state quantum dynamics of this complex non-linear system exhibit sudden changes in its features, occurring at a critical DQD-cavity coupling strength, suggesting perspectives for designing on-chip microwave quantum switches. Furthermore, we show that, above the threshold, the electrical current through the double-quantum dot follows the mean photon number into the microwave mode inside the resonator. This might not be the case any more below that critical coupling strength. Lastly, the photon quantum correlations vary from super-Poissonian to Poissonian photon statistics, i.e., towards single-qubit lasing phenomena at microwave frequencies. Full article
Show Figures

Figure 1

16 pages, 9503 KB  
Article
Development of a Rotation-Robust PPG Sensor for a Smart Ring
by Min Wang, Wenqi Shi, Jianyu Zhang, Jiarong Chen, Qingliang Lin, Cheng Chen and Guoxing Wang
Sensors 2025, 25(20), 6326; https://doi.org/10.3390/s25206326 (registering DOI) - 13 Oct 2025
Abstract
Cardiovascular disease (CVD) remains the leading cause of global mortality, highlighting the need for continuous vital sign monitoring. Photoplethysmography (PPG) is well suited for wearable devices. Smart rings, benefiting from dense capillary distribution and minimal tissue interference, can capture high-quality PPG signals with [...] Read more.
Cardiovascular disease (CVD) remains the leading cause of global mortality, highlighting the need for continuous vital sign monitoring. Photoplethysmography (PPG) is well suited for wearable devices. Smart rings, benefiting from dense capillary distribution and minimal tissue interference, can capture high-quality PPG signals with comfort, making them a promising next-generation wearable. However, ring rotation relative to the finger alters the optical path, especially for multi-wavelength light, thus reducing accuracy. This paper proposes a rotation-robust PPG sensor for smart rings. Monte Carlo simulations analyze photon transmission under different LED–photodiode (PD) angles, showing that at ±60°, green, red, and infrared light achieve optimal penetration into the microcirculation layer. Considering non-ideal conditions, the green-light angle is adjusted to ±30°, and a symmetrical sensor design is adopted. A prototype smart ring is developed, capable of recording 4-channel PPG, 3-axis acceleration, and 4-channel temperature signals at 100, 25, and 0.2 Hz, respectively. The system achieves reliable PPG acquisition with only 0.59 mA average current consumption. In continuous testing, heart rate estimation reached mean absolute errors of 0.82, 0.79, and 0.78 bpm for green, red, and IR light. The results provide a reference for future smart ring development. Full article
(This article belongs to the Special Issue Sensors for Heart Rate Monitoring and Cardiovascular Disease)
Show Figures

Figure 1

38 pages, 1914 KB  
Review
Photobiomodulation Meets Mechanotransduction: Immune-Stromal Crosstalk in Orthodontic Remodeling
by Jovan Marković and Miodrag Čolić
Biomedicines 2025, 13(10), 2495; https://doi.org/10.3390/biomedicines13102495 - 13 Oct 2025
Abstract
Orthodontic tooth movement (OTM) arises from force-induced mechanotransduction within the periodontal ligament (PDL), which coordinates osteoblast and osteoclast activity with immune responses to remodel the PDL and alveolar bone. This review integrates contemporary biological insights on OTM and assesses photobiomodulation (PBM) as an [...] Read more.
Orthodontic tooth movement (OTM) arises from force-induced mechanotransduction within the periodontal ligament (PDL), which coordinates osteoblast and osteoclast activity with immune responses to remodel the PDL and alveolar bone. This review integrates contemporary biological insights on OTM and assesses photobiomodulation (PBM) as an adjunctive therapy. We propose that mechanical and photonic inputs may interact and potentiate signaling through the Ca2+-NFAT, MAPK (ERK, p38, JNK), PI3K–Akt–mTOR, NF-kB, TGF-β/Smad, and Wnt/β-catenin pathways. Such interaction could influence processes such as cell proliferation, differentiation, specific cellular functions, apoptosis, autophagy, and communication between stromal and immune cells. This convergence establishes a solid foundation for understanding the context-dependent effects of PBM in OTM. In principle, PBM appears most effective as a phase-tuned adjunct, promoting early inflammatory recruitment of osteoclasts and subsequently facilitating late-phase remodeling through immunomodulatory and reparative mechanisms. However, inconsistent irradiation parameters, small sample sizes, trial heterogeneity, and the absence of mechanistic endpoints undermine current conclusions. Furthermore, the lack of integrated PBM–OTM models limits mechanistic understanding, as much of the available evidence is derived from non-OTM contexts. Overall, PBM remains a promising adjunct in orthodontics, with the potential to integrate mechanical and photonic signals in a phase-dependent manner, though its application is not yet standardized. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

9 pages, 9003 KB  
Article
Designs of Time-Resolved Resonant Inelastic X-Ray Scattering Branchline at S3FEL
by Weihong Sun, Chuan Yang, Kai Hu, Ye Zhu, Chen Wu, Yuhang Wang, Yinpeng Zhong, Zhongmin Xu and Weiqing Zhang
Photonics 2025, 12(10), 1009; https://doi.org/10.3390/photonics12101009 - 13 Oct 2025
Abstract
With the rapid development of X-ray free-electron lasers (XFELs), time-resolved resonant inelastic X-ray scattering (tr-RIXS) has attracted more attention. The preliminary designs of the tr-RIXS branchline and expected performance characteristics at the Shenzhen Superconducting Soft X-ray Free Electron Laser (S3FEL [...] Read more.
With the rapid development of X-ray free-electron lasers (XFELs), time-resolved resonant inelastic X-ray scattering (tr-RIXS) has attracted more attention. The preliminary designs of the tr-RIXS branchline and expected performance characteristics at the Shenzhen Superconducting Soft X-ray Free Electron Laser (S3FEL) are presented. A start-to-end simulation of the tr-RIXS branchline based on the 6-D phase space ray-tracing method of beamline simulation software package FURION was performed. The simulation design satisfies the key requirements of the tr-RIXS branchline, including spatial dispersion in the vertical dimension, temporal resolution, energy resolution, efficient utilization of SASE spectral photons, and spatial uniformity of the beam spot sizes across different wavelengths. Full article
(This article belongs to the Special Issue Advances in X-Ray Coherent Imaging Technology)
Show Figures

Figure 1

34 pages, 4932 KB  
Review
Recent Progress in Liquid Microlenses and Their Arrays for Adaptive and Applied Optical Systems
by Siyu Lu, Zheyuan Cao, Jinzhong Ling, Ying Yuan, Xin Liu, Xiaorui Wang and Jin-Kun Guo
Micromachines 2025, 16(10), 1158; https://doi.org/10.3390/mi16101158 - 13 Oct 2025
Abstract
Liquid microlenses and their arrays (LMLAs) have emerged as a transformative platform in adaptive optics, offering superior reconfigurability, compactness, and fast response compared to conventional solid-state lenses. This review summarizes recent progress from an application-oriented perspective, focusing on actuation mechanisms, fabrication strategies, and [...] Read more.
Liquid microlenses and their arrays (LMLAs) have emerged as a transformative platform in adaptive optics, offering superior reconfigurability, compactness, and fast response compared to conventional solid-state lenses. This review summarizes recent progress from an application-oriented perspective, focusing on actuation mechanisms, fabrication strategies, and functional performance. Among actuation mechanisms, electric-field-driven approaches are highlighted, including electrowetting for shape tuning and liquid crystal-based refractive-index tuning techniques. The former excels in tuning range and response speed, whereas the latter enables programmable wavefront control with lower optical aberrations but limited efficiency. Notably, double-emulsion configurations, with fast interfacial actuation and inherent structural stability, demonstrate great potential for highly integrated optical components. Fabrication methodologies—including semiconductor-derived processes, additive manufacturing, and dynamic molding—are evaluated, revealing trade-offs among scalability, structural complexity, and cost. Functionally, advances in focal length tuning, field-of-view expansion, depth-of-field extension, and aberration correction have been achieved, though strong coupling among these parameters still constrains system-level performance. Looking forward, innovations in functional materials, hybrid fabrication, and computational imaging are expected to mitigate these constraints. These developments will accelerate applications in microscopy, endoscopy, AR/VR displays, industrial inspection, and machine vision, while paving the way for intelligent photonic systems that integrate adaptive optics with machine learning for real-time control. Full article
(This article belongs to the Special Issue Micro-Nano Photonics: From Design and Fabrication to Application)
Show Figures

Figure 1

12 pages, 1523 KB  
Article
Methodological Approach to the Characterization of Single-Photon Sources Using a Hanbury Brown–Twiss Interferometer in a Laser-Excited Fluorescence Microscope
by Sergey Mikushev and Aleksei Kalinichev
Quantum Beam Sci. 2025, 9(4), 30; https://doi.org/10.3390/qubs9040030 - 13 Oct 2025
Abstract
The development of quantum-enhanced technologies requires single-photon sources, as well as methods for their characterization and verification. Here, we describe a methodology for measuring the correlation function of a single-photon source using an experimental setup that comprises a laser-excited fluorescence microscope equipped with [...] Read more.
The development of quantum-enhanced technologies requires single-photon sources, as well as methods for their characterization and verification. Here, we describe a methodology for measuring the correlation function of a single-photon source using an experimental setup that comprises a laser-excited fluorescence microscope equipped with a Hanbury Brown–Twiss intensity interferometer as one of the detection systems. Measurements of the response function of the device and the reference samples are performed. The second-order autocorrelation function of the exciton state of GaAs quantum dots in AlGaAs nanowires is obtained and reveals a single-photon emission. Full article
(This article belongs to the Section Spectroscopy Technique)
Show Figures

Figure 1

26 pages, 9097 KB  
Article
Nonlinear Dynamics and Hybrid Synchronization of DC Biased Colpitts Chaotic Oscillators
by Darja Cirjulina, Ruslans Babajans, Sergejs Tjukovs, Elisabetta Spinazzola, Jacopo Secco, Dmytro Vovchuk and Dmitrijs Pikulins
Electronics 2025, 14(20), 4005; https://doi.org/10.3390/electronics14204005 - 13 Oct 2025
Abstract
Chaos-based wireless communication systems can enhance the physical-layer security of IoT devices, but their reliability depends on stable chaotic behavior under real conditions. We investigate a modified Colpitts oscillator with a tunable base bias voltage, introduced as an independent control parameter to flexibly [...] Read more.
Chaos-based wireless communication systems can enhance the physical-layer security of IoT devices, but their reliability depends on stable chaotic behavior under real conditions. We investigate a modified Colpitts oscillator with a tunable base bias voltage, introduced as an independent control parameter to flexibly adjust nonlinear regimes. Using numerical studies, SPICE simulations, and hardware experiments, we show that simplified numerical models predict only a DC offset shift, whereas realistic implementations reveal qualitative changes in the dynamics, highlighting the need for experimental validation. We further demonstrate hybrid synchronization between the analog oscillator and an FPGA-based digital model. Despite model simplifications and non-idealities, synchronization is successfully achieved using the Pecora–Carroll method, showing that preserving the core dynamic structure is more critical than exact waveform replication. These results clarify the constraints of idealized models for predicting dynamical patterns while confirming the robustness of hybrid synchronization for secure, resource-constrained communication systems. Full article
Show Figures

Figure 1

25 pages, 812 KB  
Article
Constructing Regular Lovelock Black Holes with Degenerate Vacuum and Λ < 0 Using the Gravitational Tension—Shadow Analysis
by Reginaldo Prado-Fuentes, Rodrigo Aros, Milko Estrada and Bastian Astudillo
Universe 2025, 11(10), 338; https://doi.org/10.3390/universe11100338 - 13 Oct 2025
Abstract
Recently, a link between gravitational tension (GT) and energy density via the Kretschmann scalar (KS) was proposed to construct regular black holes (RBHs) in pure Lovelock (PL) gravity. However, including a negative cosmological constant in PL gravity leads to a curvature singularity. Here, [...] Read more.
Recently, a link between gravitational tension (GT) and energy density via the Kretschmann scalar (KS) was proposed to construct regular black holes (RBHs) in pure Lovelock (PL) gravity. However, including a negative cosmological constant in PL gravity leads to a curvature singularity. Here, we choose the coupling constants such that the Lovelock equations admit an n-fold degenerate AdS vacuum (LnFDGS), allowing us to construct an RBH with Λ<0, where the energy density is analogous to the previously mentioned model. To achieve this, we propose alternative definitions for both the KS and GT. We find that, for mass parameter values greater than the extremal value Mmin, our RBH solution becomes indistinguishable from the AdS vacuum black hole from inside the event horizon out to infinity. At small scales, quantum effects modify the geometry and thermodynamics, removing the singularity. Furthermore, due to the lack of analytical relationships between the event horizon, photon sphere, and shadow in LnFDGS, we propose a numerical method to represent these quantities. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

16 pages, 2574 KB  
Article
Addressing a Special Case of Zero-Crossing Range Adjustment Detection in a Passive Autoranging Circuit for the FBG/PZT Photonic Current Transducer
by Burhan Mir, Grzegorz Fusiek and Pawel Niewczas
Sensors 2025, 25(20), 6311; https://doi.org/10.3390/s25206311 (registering DOI) - 12 Oct 2025
Abstract
This paper analyses a special case in evaluating the passive autoranging (AR) technique that dynamically extends the measurement range of a fiber Bragg grating/piezoelectric transducer (FBG/PZT) operating with a current transformer (CT) to realize a dual-purpose metering and protection photonic current transducer (PCT). [...] Read more.
This paper analyses a special case in evaluating the passive autoranging (AR) technique that dynamically extends the measurement range of a fiber Bragg grating/piezoelectric transducer (FBG/PZT) operating with a current transformer (CT) to realize a dual-purpose metering and protection photonic current transducer (PCT). The technique relies on shorting serially connected burden resistors operating with the CT, using MOSFET switches that react to a changing input current to extend measurement range. The rapid changes in the voltage at the FBG/PZT transducer that are associated with the MOSFET switching are then used on the FBG interrogator side to select the correct measurement range. However, when the MOSFET switching in the AR circuit occurs near the zero-crossing of the input current, the rapid changes in the voltage presented to the FBG/PZT no longer occur, rendering the correct range setting at the interrogator side problematic. The basic switching detection algorithm based on voltage derivative (dV/dt) thresholds proposed in the previous research is not sufficiently sensitive in these conditions, leading to incorrect range selection. To address this, a new detection algorithm based on temporal slope differencing around the zero-crossing is proposed as an additional detection mechanism for these special cases. Thus, the improved hybrid algorithm additionally computes the derivative dV/dt at the FBG/PZT voltage signal within a focused 6 ms temporal window centered around the zero-crossing point, a 3 ms window before and after each zero-crossing instance. It then compares the difference between these two values to a predefined threshold. If the difference exceeds the threshold, a switching event is identified. This method reliably detects even subtle switching events near zero crossings, enabling the accurate reconstruction of the burden current. The performance of the improved algorithm is validated through simulations and experimental results involving zero-crossing switching scenarios. Results indicate that the proposed algorithm improves MOSFET switching detection and facilitates reliable waveform reconstruction without requiring additional hardware. Full article
(This article belongs to the Special Issue Optical Sensing in Power Systems)
Show Figures

Figure 1

20 pages, 2118 KB  
Article
Effects of Canopy Litter Removal on Canopy Structure, Understory Light and Vegetation Dynamics in Cunninghamia lanceolata Plantations of Varying Densities
by Lili Zhou, Lixian Zhang, Qi Liu, Yulong Chen, Zongming He, Shubin Li and Xiangqing Ma
Plants 2025, 14(20), 3144; https://doi.org/10.3390/plants14203144 - 12 Oct 2025
Viewed by 45
Abstract
The prolonged retention of senescent branches and needles (canopy litter) in Cunninghamia lanceolata canopies is an evolutionary adaptation, yet its impacts on stand microenvironment and understory succession remain poorly quantified. To address this gap, we conducted a 5-year field experiment across six planting [...] Read more.
The prolonged retention of senescent branches and needles (canopy litter) in Cunninghamia lanceolata canopies is an evolutionary adaptation, yet its impacts on stand microenvironment and understory succession remain poorly quantified. To address this gap, we conducted a 5-year field experiment across six planting densities (1800, 2400, 3000, 3600, 4200, and 4800 trees·ha−1), aiming to evaluate the effects of canopy litter removal on canopy structure, forest light environment, and understory biodiversity. Results demonstrated that leaf area index (LAI) and mean tilt angle of the leaf (MTA) significantly increased with density (p < 0.05), leading to marked reductions in photosynthetic photon flux density (PPFD) and light transmittance (T). Canopy litter removal significantly reduced LAI across all densities after 4–5 years (p < 0.05) and consistently enhanced PPFD and transmittance (p < 0.01). MTA and light quality parameters (red:blue and red:far-red ratios) both exhibited variable responses to litter removal, driven by density and time interactions, with effects diminishing over time. Understory vegetation diversity exhibited pronounced temporal dynamics and density-dependent responses to canopy litter removal, with increases in species richness (S), Simpson diversity (D), and Shannon–Wiener diversity (H), while Pielou Evenness (J) responded more variably. The most notable increase in species richness occurred in the 4th year, when 21 new species were recorded, largely due to the expansion of light-demanding bamboos (e.g., Indocalamus tessellatus and Pleioblastus amarus), heliophilic grasses (e.g., Lophatherum gracile) and pioneer ferns (e.g., Pteris dispar and Microlepia hancei). Correlation analyses confirmed PPFD as a key positive driver of all diversity indices (p < 0.01), whereas LAI was significantly negatively correlated with PPFD, light transmittance, and understory diversity (p < 0.01). These findings demonstrate that strategic management of canopy litter incorporating stand density regulation can improve understory light availability, thereby facilitating heliophilic species recruitment and biodiversity enhancement in subtropical coniferous plantations. Full article
Show Figures

Figure 1

50 pages, 2689 KB  
Review
Inkjet Printing for Batteries and Supercapacitors: State-of-the-Art Developments and Outlook
by Juan C. Rubio and Martin Bolduc
Energies 2025, 18(20), 5348; https://doi.org/10.3390/en18205348 (registering DOI) - 11 Oct 2025
Viewed by 138
Abstract
Inkjet printing enables contactless deposition onto fragile substrates for printed energy-storage devices and supports flexible batteries and supercapacitors with reduced material use. This review examines multilayer and interdigital architectures and analyzes how ink rheology, droplet formation, colloidal interactions, and the printability window govern [...] Read more.
Inkjet printing enables contactless deposition onto fragile substrates for printed energy-storage devices and supports flexible batteries and supercapacitors with reduced material use. This review examines multilayer and interdigital architectures and analyzes how ink rheology, droplet formation, colloidal interactions, and the printability window govern performance. For batteries, reported inkjet-printed electrodes commonly deliver capacities of ~110–150 mAh g−1 for oxide cathodes at C/2–1 C, with coulombic efficiency ≥98% and stability over 102–103 cycles; silicon anodes reach ~1.0–2.0 Ah g−1 with efficiency approaching 99% under stepwise formation. Typical current densities are ~0.5–5 mA cm−2 depending on areal loading, and multilayer designs with optimized drying and parameter tuning can yield rate and discharge behavior comparable to cast films. For supercapacitors, inkjet-printed microdevices report volumetric capacitances in the mid-hundreds of F cm−3, translating to ~9–34 mWh cm−3 and ~0.25–0.41 W cm−3, with 80–95% retention after 10,000 cycles and coulombic efficiency near 99%. In solid-state configurations, stability is enhanced, although often accompanied by reduced areal capacitance. Although solids loading is lower than in screen printing, precise material placement together with thermal or photonic sintering enables competitive capacity, rate capability, and cycle life while minimizing waste. The review consolidates practical guidance on ink formulation, printability, and defect control and outlines opportunities in greener chemistries, oxidation-resistant metallic systems, and scalable high-throughput printing. Full article
(This article belongs to the Special Issue Power Electronics Technology and Application)
Show Figures

Figure 1

Back to TopTop