Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = phycobilisomes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2238 KB  
Review
The Unique Light-Harvesting System of the Algal Phycobilisome: Structure, Assembly Components, and Functions
by Xiang Li, Wenwen Hou, Jiaxi Lei, Hui Chen and Qiang Wang
Int. J. Mol. Sci. 2023, 24(11), 9733; https://doi.org/10.3390/ijms24119733 - 4 Jun 2023
Cited by 15 | Viewed by 4553
Abstract
The phycobilisome (PBS) is the major light-harvesting apparatus in cyanobacteria and red algae. It is a large multi-subunit protein complex of several megadaltons that is found on the stromal side of thylakoid membranes in orderly arrays. Chromophore lyases catalyse the thioether bond between [...] Read more.
The phycobilisome (PBS) is the major light-harvesting apparatus in cyanobacteria and red algae. It is a large multi-subunit protein complex of several megadaltons that is found on the stromal side of thylakoid membranes in orderly arrays. Chromophore lyases catalyse the thioether bond between apoproteins and phycobilins of PBSs. Depending on the species, composition, spatial assembly, and, especially, the functional tuning of different phycobiliproteins mediated by linker proteins, PBSs can absorb light between 450 and 650 nm, making them efficient and versatile light-harvesting systems. However, basic research and technological innovations are needed, not only to understand their role in photosynthesis but also to realise the potential applications of PBSs. Crucial components including phycobiliproteins, phycobilins, and lyases together make the PBS an efficient light-harvesting system, and these provide a scheme to explore the heterologous synthesis of PBS. Focusing on these topics, this review describes the essential components needed for PBS assembly, the functional basis of PBS photosynthesis, and the applications of phycobiliproteins. Moreover, key technical challenges for heterologous biosynthesis of phycobiliproteins in chassis cells are discussed. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

11 pages, 5467 KB  
Article
Ultrafast Energy Transfer Dynamics in a Cyanobacterial Light-Harvesting Phycobilisome
by Chao Xiao, Na Guo, Zidong Liang, Zhencheng Huang, Wenjun Li, Mingyuan Xie and Fuli Zhao
Processes 2023, 11(6), 1656; https://doi.org/10.3390/pr11061656 - 29 May 2023
Cited by 2 | Viewed by 1943
Abstract
The phycobilisomes (PBSs) of cyanobacteria and red algae are their primary light-harvesting antennas, which play key role in light harvesting and energy transportation to the photosynthetic reaction center with extraordinarily high efficiency. The mechanism of energy transfer in PBS should be investigated with [...] Read more.
The phycobilisomes (PBSs) of cyanobacteria and red algae are their primary light-harvesting antennas, which play key role in light harvesting and energy transportation to the photosynthetic reaction center with extraordinarily high efficiency. The mechanism of energy transfer in PBS should be investigated with a tight combination between biological structural information and an ultrafast time-resolved dynamic analysis. We recently demonstrated the study of energy transfer in PBSs from a thermophilic cyanobacterium, Thermosynechococcus vulcanus NIES 2134 (T. 2134), with the cryo-EM model resolved at a near-atomic resolution. The time-resolved fluorescence spectroscopy of the PBS with a sub-picosecond resolution was discovered at 77 K. Deconvolution of the fluorescence decay curve was then used to reveal the energy transfer channels and the associated transfer rates. Except for the fluorescence lifetimes of terminal emitters, four time components, i.e., 9 ps, 13 ps, 23 ps, and 55 ps, were recognized in the energy transfer in the PBSs. The energy transfer dynamics in the PBSs were further analyzed by combining the cryo-EM structure and the spectral properties in detail. The findings from this study aid in our understanding of the energy transfer mechanisms in PBSs. Full article
(This article belongs to the Special Issue Advances in Solar Thermal Energy Technology)
Show Figures

Figure 1

18 pages, 1824 KB  
Article
How Light Modulates the Growth of Cyanidioschyzon merolae Cells by Changing the Function of Phycobilisomes
by Tomasz Krupnik, Maksymilian Zienkiewicz, Wioleta Wasilewska-Dębowska, Anna Drożak and Kinga Kania
Cells 2023, 12(11), 1480; https://doi.org/10.3390/cells12111480 - 26 May 2023
Cited by 4 | Viewed by 2498
Abstract
The aim of this study was to examine how light intensity and quality affect the photosynthetic apparatus of Cyanidioschyzon merolae cells by modulating the structure and function of phycobilisomes. Cells were grown in equal amounts of white, blue, red, and yellow light of [...] Read more.
The aim of this study was to examine how light intensity and quality affect the photosynthetic apparatus of Cyanidioschyzon merolae cells by modulating the structure and function of phycobilisomes. Cells were grown in equal amounts of white, blue, red, and yellow light of low (LL) and high (HL) intensity. Biochemical characterization, fluorescence emission, and oxygen exchange were used to investigate selected cellular physiological parameters. It was found that the allophycocyanin content was sensitive only to light intensity, whereas the phycocynin content was also sensitive to light quality. Furthermore, the concentration of the PSI core protein was not affected by the intensity or quality of the growth light, but the concentration of the PSII core D1 protein was. Finally, the amount of ATP and ADP was lower in HL than LL. In our opinion, both light intensity and quality are main factors that play an important regulatory role in acclimatization/adaptation of C. merolae to environmental changes, and this is achieved by balancing the amounts of thylakoid membrane and phycobilisome proteins, the energy level, and the photosynthetic and respiratory activity. This understanding contributes to the development of a mix of cultivation techniques and genetic changes for a future large-scale synthesis of desirable biomolecules. Full article
Show Figures

Figure 1

19 pages, 7864 KB  
Article
Characterization of Molecular Diversity and Organization of Phycobilisomes in Thermophilic Cyanobacteria
by Jie Tang, Huizhen Zhou, Dan Yao, Lianming Du and Maurycy Daroch
Int. J. Mol. Sci. 2023, 24(6), 5632; https://doi.org/10.3390/ijms24065632 - 15 Mar 2023
Cited by 9 | Viewed by 3044
Abstract
Thermophilic cyanobacteria are cosmopolitan and abundant in the thermal environment. Their light-harvesting complexes, phycobilisomes (PBS), are highly important in photosynthesis. To date, there is limited information on the PBS composition of thermophilic cyanobacteria whose habitats are challenging for survival. Herein, genome-based methods were [...] Read more.
Thermophilic cyanobacteria are cosmopolitan and abundant in the thermal environment. Their light-harvesting complexes, phycobilisomes (PBS), are highly important in photosynthesis. To date, there is limited information on the PBS composition of thermophilic cyanobacteria whose habitats are challenging for survival. Herein, genome-based methods were used to investigate the molecular components of PBS in 19 well-described thermophilic cyanobacteria. These cyanobacteria are from the genera Leptolyngbya, Leptothermofonsia, Ocullathermofonsia, Thermoleptolyngbya, Trichothermofonsia, Synechococcus, Thermostichus, and Thermosynechococcus. According to the phycobiliprotein (PBP) composition of the rods, two pigment types are observed in these thermophiles. The amino acid sequence analysis of different PBP subunits suggests several highly conserved cysteine residues in these thermophiles. Certain amino acid contents in the PBP of thermophiles are significantly higher than their mesophilic counterparts, highlighting the potential roles of specific substitutions of amino acid in the adaptive thermostability of light-harvesting complexes in thermophilic cyanobacteria. Genes encoding PBS linker polypeptides vary among the thermophiles. Intriguingly, motifs in linker apcE indicate a photoacclimation of a far-red light by Leptolyngbya JSC-1, Leptothermofonsia E412, and Ocullathermofonsia A174. The composition pattern of phycobilin lyases is consistent among the thermophiles, except for Thermostichus strains that have extra homologs of cpcE, cpcF, and cpcT. In addition, phylogenetic analyses of genes coding for PBPs, linkers, and lyases suggest extensive genetic diversity among these thermophiles, which is further discussed with the domain analyses. Moreover, comparative genomic analysis suggests different genomic distributions of PBS-related genes among the thermophiles, indicating probably various regulations of expression. In summary, the comparative analysis elucidates distinct molecular components and organization of PBS in thermophilic cyanobacteria. These results provide insights into the PBS components of thermophilic cyanobacteria and fundamental knowledge for future research regarding structures, functions, and photosynthetic improvement. Full article
(This article belongs to the Special Issue Advances in Research of Algae, Cyanobacteria, and Phytoplankton)
Show Figures

Figure 1

21 pages, 2022 KB  
Review
Phycobilisomes and Phycobiliproteins in the Pigment Apparatus of Oxygenic Photosynthetics: From Cyanobacteria to Tertiary Endosymbiosis
by Igor N. Stadnichuk and Victor V. Kusnetsov
Int. J. Mol. Sci. 2023, 24(3), 2290; https://doi.org/10.3390/ijms24032290 - 24 Jan 2023
Cited by 14 | Viewed by 5522
Abstract
Eukaryotic photosynthesis originated in the course of evolution as a result of the uptake of some unstored cyanobacterium and its transformation to chloroplasts by an ancestral heterotrophic eukaryotic cell. The pigment apparatus of Archaeplastida and other algal phyla that emerged later turned out [...] Read more.
Eukaryotic photosynthesis originated in the course of evolution as a result of the uptake of some unstored cyanobacterium and its transformation to chloroplasts by an ancestral heterotrophic eukaryotic cell. The pigment apparatus of Archaeplastida and other algal phyla that emerged later turned out to be arranged in the same way. Pigment-protein complexes of photosystem I (PS I) and photosystem II (PS II) are characterized by uniform structures, while the light-harvesting antennae have undergone a series of changes. The phycobilisome (PBS) antenna present in cyanobacteria was replaced by Chl a/b- or Chl a/c-containing pigment–protein complexes in most groups of photosynthetics. In the form of PBS or phycobiliprotein aggregates, it was inherited by members of Cyanophyta, Cryptophyta, red algae, and photosynthetic amoebae. Supramolecular organization and architectural modifications of phycobiliprotein antennae in various algal phyla in line with the endosymbiotic theory of chloroplast origin are the subject of this review. Full article
Show Figures

Figure 1

14 pages, 3000 KB  
Article
A Proteomic Analysis for the Red Seaweed Asparagopsis taxiformis
by Zubaida P. Patwary, Min Zhao, Tianfang Wang, Nicholas A. Paul and Scott F. Cummins
Biology 2023, 12(2), 167; https://doi.org/10.3390/biology12020167 - 20 Jan 2023
Cited by 10 | Viewed by 5794
Abstract
The red seaweed Asparagopsis taxiformis is a promising ruminant feed additive with anti-methanogenic properties that could contribute to global climate change solutions. Genomics has provided a strong foundation for in-depth molecular investigations, including proteomics. Here, we investigated the proteome of A. taxiformis (Lineage [...] Read more.
The red seaweed Asparagopsis taxiformis is a promising ruminant feed additive with anti-methanogenic properties that could contribute to global climate change solutions. Genomics has provided a strong foundation for in-depth molecular investigations, including proteomics. Here, we investigated the proteome of A. taxiformis (Lineage 6) in both sporophyte and gametophyte stages, using soluble and insoluble extraction methods. We identified 741 unique non-redundant proteins using a genome-derived database and 2007 using a transcriptome-derived database, which included numerous proteins predicted to be of fungal origin. We further investigated the genome-derived proteins to focus on seaweed-specific proteins. Ontology analysis indicated a relatively large proportion of ion-binding proteins (i.e., iron, zinc, manganese, potassium and copper), which may play a role in seaweed heavy metal tolerance. In addition, we identified 58 stress-related proteins (e.g., heat shock and vanadium-dependent haloperoxidases) and 44 photosynthesis-related proteins (e.g., phycobilisomes, photosystem I, photosystem II and ATPase), which were in general more abundantly identified from female gametophytes. Forty proteins were predicted to be secreted, including ten rhodophyte collagen-alpha-like proteins (RCAPs), which displayed overall high gene expression levels. These findings provide a comprehensive overview of expressed proteins in A. taxiformis, highlighting the potential for targeted protein extraction and functional characterisation for future biodiscovery. Full article
(This article belongs to the Topic Advances in Environmental Biotechnology (AEB))
Show Figures

Figure 1

11 pages, 3079 KB  
Article
Redshifting and Blueshifting of β82 Chromophores in the Phycocyanin Hexamer of Porphyridium purpureum Phycobilisomes Due to Linker Proteins
by Hiroto Kikuchi
Life 2022, 12(11), 1833; https://doi.org/10.3390/life12111833 - 9 Nov 2022
Cited by 3 | Viewed by 2429
Abstract
Phycobilisomes in cyanobacteria and red algae are large protein complexes that absorb light and transfer energy for use in photosynthesis. The light energy absorbed by chromophores binding to phycobiliproteins in the peripheral rods can be funneled to the core through chromophores at very [...] Read more.
Phycobilisomes in cyanobacteria and red algae are large protein complexes that absorb light and transfer energy for use in photosynthesis. The light energy absorbed by chromophores binding to phycobiliproteins in the peripheral rods can be funneled to the core through chromophores at very high efficiency. The molecular mechanism of excitation energy transfer within a phycobilisome is an example of a higher and unique function in a living organism. However, the mechanism underlying the high efficiency remains unclear. Thus, this study was carried out as a step to resolve this mechanism theoretically. The three-dimensional structure of phycobilisomes containing the linker proteins of the red alga Porphyridium purpureum was determined by cryoelectron microscopy at 2.82 Å resolution in 2020. Using these data, the absorption wavelength of each β82 chromophore in the phycocyanin hexamer located next to the core was calculated using quantum chemical treatment, considering the electric effect from its surrounding phycocyanin proteins and two linker proteins. In addition to unaffected chromophores, chromophores that were redshifted and blueshifted under the electrical influence of the two linker proteins were found. Namely, the chromophore serving as the energy sink in the rod was determined. Full article
Show Figures

Figure 1

17 pages, 2105 KB  
Article
The Interaction of Seasons and Biogeochemical Properties of Water Regulate the Air–Water CO2 Exchanges in Two Major Tropical Estuaries, Bay of Bengal (India)
by Suchismita Pattanaik, Pradipta Kumar Mohapatra, Debasish Mohapatra, Sanhita Swain, Chitta Ranjan Panda and Pradeep Kumar Dash
Life 2022, 12(10), 1536; https://doi.org/10.3390/life12101536 - 2 Oct 2022
Cited by 2 | Viewed by 2642
Abstract
The exchange of CO2 between the air–water interfaces of estuaries is crucial from the perspective of the global carbon cycle and climate change feedback. In this regard, we evaluated the air–water CO2 exchanges in two major estuaries—the Mahanadi estuary (ME) and [...] Read more.
The exchange of CO2 between the air–water interfaces of estuaries is crucial from the perspective of the global carbon cycle and climate change feedback. In this regard, we evaluated the air–water CO2 exchanges in two major estuaries—the Mahanadi estuary (ME) and the Dhamra estuary (DE) in the northern part of the Bay of Bengal, India. Biogeochemical properties of these estuarine waters were quantified in three distinct seasons, namely, pre-monsoon (March to May), monsoon (June to October), and post-monsoon (November to February). The significant properties of water, such as the water temperature, pH, salinity, nutrients, dissolved oxygen, chlorophyll-a (chl a), and photosynthetic pigment fluorescence of phytoplankton, were estimated and correlated with CO2 fluxes. We found that the ME acted as a source of CO2 fluxes in the monsoon and post-monsoon, while DE acted as a sink during the monsoon. The stepwise regression model showed that the fluxes were primarily driven by water temperature, pH, and salinity, and they correlated well with the phytoplankton characteristics. The chl a content, fluorescence yield, and phycobilisomes-to-photosystem II fluorescence ratios were major drivers of the fluxes. Therefore, for predicting air–water CO2 exchanges precisely in a large area over a seasonal and annual scale in the estuaries of the Bay of Bengal, India, critical key parameters such as water temperature, pH, salinity, chl a, and fluorescence yield of phytoplankton should be taken into consideration. However, the responses of phytoplankton, both in terms of production and CO2 capture, are critical research areas for a better understanding of air–water CO2 exchanges in coastal ecology under climate change scenarios. Full article
(This article belongs to the Special Issue Marine Carbon Systems: Dynamics, Conservation, and Management)
Show Figures

Figure 1

15 pages, 3531 KB  
Article
Chromatic Acclimation Processes and Their Relationships with Phycobiliprotein Complexes
by Fanyue Wang and Min Chen
Microorganisms 2022, 10(8), 1562; https://doi.org/10.3390/microorganisms10081562 - 3 Aug 2022
Cited by 13 | Viewed by 2820
Abstract
Chromatic acclimation (CA) is a widespread mechanism for optimizing the composition of phycobiliprotein complexes to maximize the cyanobacterial light capture efficiency. There are seven CA types, CA1-CA7, classified according to various photoregulatory pathways. Here, we use sequence analyses and bioinformatics to predict the [...] Read more.
Chromatic acclimation (CA) is a widespread mechanism for optimizing the composition of phycobiliprotein complexes to maximize the cyanobacterial light capture efficiency. There are seven CA types, CA1-CA7, classified according to various photoregulatory pathways. Here, we use sequence analyses and bioinformatics to predict the presence of CA types according to three GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA)-containing photoreceptors, CcaS (cyanobacterial chromatic acclimation sensor), RcaE (regulator of chromatic adaptation), and RfpA (regulator for far-red photoacclimation). These photoreceptors were classified into three different phylogenetic groups leading different CA types in a diverse range of cyanobacteria. Combining with genomic information of phycobilisome compositions, the CA capabilities of various cyanobacteria were conjectured. Screening 65 accessible cyanobacterial genomes, we defined 19 cyanobacteria that have the capability to perform far-red light photoacclimation (FaRLiP) under the control of RfpA. Forty out of sixty-five cyanobacteria have the capability to perform green/red light photoacclimation, although they use different photoreceptors (RcaE and/or CcaS) and photoregulatory pathways. The reversible response of photoreceptors in CA regulation pathways trigged by changed light conditions reflects the flexibility of photoregulatory mechanisms in cyanobacteria and the putative independent evolutionary origin of photoacclimation types. Full article
(This article belongs to the Special Issue Phototrophic Bacteria)
Show Figures

Figure 1

16 pages, 3354 KB  
Article
Attachment of Ferredoxin: NADP+ Oxidoreductase to Phycobilisomes Is Required for Photoheterotrophic Growth of the Cyanobacterium Synechococcus sp. PCC 7002
by Xiying Li, Chenhui Huang, Peijun Wei, Kun Zhang, Chunxia Dong, Qing Lan, Zhenggao Zheng, Zhengdong Zhang and Jindong Zhao
Microorganisms 2022, 10(7), 1313; https://doi.org/10.3390/microorganisms10071313 - 29 Jun 2022
Cited by 6 | Viewed by 2938
Abstract
Two types of cyanobacterial phycobilisomes (PBS) are present: the hemidiscoidal PBS (CpcG-PBS) and the membrane-bound PBS (CpcL-PBS). Both types of PBS have ferredoxin:NADP+ oxidoreductase (FNR) attached to the termini of their rods through a CpcD domain. To date, the physiological significance of [...] Read more.
Two types of cyanobacterial phycobilisomes (PBS) are present: the hemidiscoidal PBS (CpcG-PBS) and the membrane-bound PBS (CpcL-PBS). Both types of PBS have ferredoxin:NADP+ oxidoreductase (FNR) attached to the termini of their rods through a CpcD domain. To date, the physiological significance of the attachment remains unknown. We constructed a mutant (dF338) which contains an FNR lacking the N-terminal CpcD domain in Synechococcus sp. PCC 7002. Isolated CpcG-PBS from dF338 did not contain FNR and the cell extracts of the mutant had a 35 kDa protein cross-reacting to anti-FNR antibodies. dF338 grows normally under photoautotrophic conditions, but little growth was observed under photoheterotrophic conditions. A cpcL (cpcG2) mutant grows extremely slowly under photoheterotrophic conditions while a cpcG (cpcG1) mutant, in which PBS rods could not attach to the cores of the CpcG-PBS, can grow photoheterotrophically, strongly suggesting that the attachment of FNR to CpcL-PBS is critical to photoheterotrophic growth. We show that electron transfer to the plastoquinone pool in dF338 and the cpcL mutant was impaired. We also provide evidence that trimeric photosystem I (PSI) and intact CpcL-PBS with a full-length FNR is critical to plastoquinone reduction. The presence of a NADPH-dehydrogenase (NDH)-CpcL-PBS-PSI trimer supercomplex and its roles are discussed. Full article
(This article belongs to the Special Issue Phototrophic Bacteria)
Show Figures

Figure 1

16 pages, 3623 KB  
Article
Zam Is a Redox-Regulated Member of the RNB-Family Required for Optimal Photosynthesis in Cyanobacteria
by Patrick E. Thomas, Colin Gates, William Campodonico-Burnett and Jeffrey C. Cameron
Microorganisms 2022, 10(5), 1055; https://doi.org/10.3390/microorganisms10051055 - 20 May 2022
Viewed by 3211
Abstract
The zam gene mediating resistance to acetazolamide in cyanobacteria was discovered thirty years ago during a drug tolerance screen. We use phylogenetics to show that Zam proteins are distributed across cyanobacteria and that they form their own unique clade of the ribonuclease II/R [...] Read more.
The zam gene mediating resistance to acetazolamide in cyanobacteria was discovered thirty years ago during a drug tolerance screen. We use phylogenetics to show that Zam proteins are distributed across cyanobacteria and that they form their own unique clade of the ribonuclease II/R (RNB) family. Despite being RNB family members, multiple sequence alignments reveal that Zam proteins lack conservation and exhibit extreme degeneracy in the canonical active site—raising questions about their cellular function(s). Several known phenotypes arise from the deletion of zam, including drug resistance, slower growth, and altered pigmentation. Using room-temperature and low-temperature fluorescence and absorption spectroscopy, we show that deletion of zam results in decreased phycocyanin synthesis rates, altered PSI:PSII ratios, and an increase in coupling between the phycobilisome and PSII. Conserved cysteines within Zam are identified and assayed for function using in vitro and in vivo methods. We show that these cysteines are essential for Zam function, with mutation of either residue to serine causing phenotypes identical to the deletion of Zam. Redox regulation of Zam activity based on the reversible oxidation-reduction of a disulfide bond involving these cysteine residues could provide a mechanism to integrate the ‘central dogma’ with photosynthesis in cyanobacteria. Full article
(This article belongs to the Special Issue Phototrophic Bacteria)
Show Figures

Figure 1

17 pages, 3781 KB  
Article
Cyclic Electron Flow-Coupled Proton Pumping in Synechocystis sp. PCC6803 Is Dependent upon NADPH Oxidation by the Soluble Isoform of Ferredoxin:NADP-Oxidoreductase
by Neil T. Miller, Ghada Ajlani and Robert L. Burnap
Microorganisms 2022, 10(5), 855; https://doi.org/10.3390/microorganisms10050855 - 21 Apr 2022
Cited by 6 | Viewed by 2970
Abstract
Ferredoxin:NADP-oxidoreductase (FNR) catalyzes the reversible exchange of electrons between ferredoxin (Fd) and NADP(H). Reduction of NADP+ by Fd via FNR is essential in the terminal steps of photosynthetic electron transfer, as light-activated electron flow produces NADPH for CO2 assimilation. FNR also [...] Read more.
Ferredoxin:NADP-oxidoreductase (FNR) catalyzes the reversible exchange of electrons between ferredoxin (Fd) and NADP(H). Reduction of NADP+ by Fd via FNR is essential in the terminal steps of photosynthetic electron transfer, as light-activated electron flow produces NADPH for CO2 assimilation. FNR also catalyzes the reverse reaction in photosynthetic organisms, transferring electrons from NADPH to Fd, which is important in cyanobacteria for respiration and cyclic electron flow (CEF). The cyanobacterium Synechocystis sp. PCC6803 possesses two isoforms of FNR, a large form attached to the phycobilisome (FNRL) and a small form that is soluble (FNRS). While both isoforms are capable of NADPH oxidation or NADP+ reduction, FNRL is most abundant during typical growth conditions, whereas FNRS accumulates under stressful conditions that require enhanced CEF. Because CEF-driven proton pumping in the light–dark transition is due to NDH-1 complex activity and they are powered by reduced Fd, CEF-driven proton pumping and the redox state of the PQ and NADP(H) pools were investigated in mutants possessing either FNRL or FNRS. We found that the FNRS isoform facilitates proton pumping in the dark–light transition, contributing more to CEF than FNRL. FNRL is capable of providing reducing power for CEF-driven proton pumping, but only after an adaptation period to illumination. The results support that FNRS is indeed associated with increased cyclic electron flow and proton pumping, which is consistent with the idea that stress conditions create a higher demand for ATP relative to NADPH. Full article
(This article belongs to the Special Issue Phototrophic Bacteria)
Show Figures

Figure 1

22 pages, 5152 KB  
Article
Discovery of Chlorophyll d: Isolation and Characterization of a Far-Red Cyanobacterium from the Original Site of Manning and Strain (1943) at Moss Beach, California
by Nancy Y. Kiang, Wesley D. Swingley, Dikshyant Gautam, Jared T. Broddrick, Daniel J. Repeta, John F. Stolz, Robert E. Blankenship, Benjamin M. Wolf, Angela M. Detweiler, Kathy Ann Miller, Jacob J. Schladweiler, Ron Lindeman and Mary N. Parenteau
Microorganisms 2022, 10(4), 819; https://doi.org/10.3390/microorganisms10040819 - 14 Apr 2022
Cited by 5 | Viewed by 5049
Abstract
We have isolated a chlorophyll-d-containing cyanobacterium from the intertidal field site at Moss Beach, on the coast of Central California, USA, where Manning and Strain (1943) originally discovered this far-red chlorophyll. Here, we present the cyanobacterium’s environmental description, culturing procedure, pigment [...] Read more.
We have isolated a chlorophyll-d-containing cyanobacterium from the intertidal field site at Moss Beach, on the coast of Central California, USA, where Manning and Strain (1943) originally discovered this far-red chlorophyll. Here, we present the cyanobacterium’s environmental description, culturing procedure, pigment composition, ultrastructure, and full genome sequence. Among cultures of far-red cyanobacteria obtained from red algae from the same site, this strain was an epiphyte on a brown macroalgae. Its Qyin vivo absorbance peak is centered at 704–705 nm, the shortest wavelength observed thus far among the various known Acaryochloris strains. Its Chl a/Chl d ratio was 0.01, with Chl d accounting for 99% of the total Chl d and Chl a mass. TEM imagery indicates the absence of phycobilisomes, corroborated by both pigment spectra and genome analysis. The Moss Beach strain codes for only a single set of genes for producing allophycocyanin. Genomic sequencing yielded a 7.25 Mbp circular chromosome and 10 circular plasmids ranging from 16 kbp to 394 kbp. We have determined that this strain shares high similarity with strain S15, an epiphyte of red algae, while its distinct gene complement and ecological niche suggest that this strain could be the closest known relative to the original Chl d source of Manning and Strain (1943). The Moss Beach strain is designated Acaryochloris sp. (marina) strain Moss Beach. Full article
(This article belongs to the Special Issue Phototrophic Bacteria)
Show Figures

Figure 1

16 pages, 3007 KB  
Communication
Homologs of Phycobilisome Abundance Regulator PsoR Are Widespread across Cyanobacteria
by Alicia Layer and Beronda L. Montgomery
Microbiol. Res. 2022, 13(2), 167-182; https://doi.org/10.3390/microbiolres13020014 - 12 Apr 2022
Viewed by 2752
Abstract
During chromatic acclimation (CA), cyanobacteria undergo shifts in their physiology and metabolism in response to changes in their light environment. Various forms of CA, which involves the tuning of light-harvesting accessory complexes known as phycobilisomes (PBS) in response to distinct wavelengths of light, [...] Read more.
During chromatic acclimation (CA), cyanobacteria undergo shifts in their physiology and metabolism in response to changes in their light environment. Various forms of CA, which involves the tuning of light-harvesting accessory complexes known as phycobilisomes (PBS) in response to distinct wavelengths of light, have been recognized. Recently, a negative regulator of PBS abundance, PsoR, about which little was known, was identified. We used sequence analyses and bioinformatics to predict the role of PsoR in cyanobacteria and PBS regulation and to examine its presence in a diverse range of cyanobacteria. PsoR has sequence similarities to the β-CASP family of proteins involved in DNA and RNA processing. PsoR is a putative nuclease widespread across Cyanobacteria, of which over 700 homologs have been observed. Promoter analysis suggested that psoR is co-transcribed with upstream gene tcpA. Multiple transcription factors involved in global gene regulation and stress responses were predicted to bind to the psoR-tcpA promoter. The predicted protein–protein interactions with PsoR homologs included proteins involved in DNA and RNA metabolism, as well as a phycocyanin-associated protein predicted to interact with PsoR from Fremyella diplosiphon (FdPsoR). The widespread presence of PsoR homologs in Cyanobacteria and their ties to DNA- and RNA-metabolizing proteins indicated a potentially unique role for PsoR in CA and PBS abundance regulation. Full article
Show Figures

Figure 1

10 pages, 3020 KB  
Article
Time-Resolved Fluorescence Spectroscopy Study of Energy Transfer Dynamics in Phycobilisomes from Cyanobacteria Thermosynechococcus vulcanus NIES 2134 and Synechocystis sp. PCC 6803
by Mingyuan Xie, Wenjun Li, Chao Xiao, Zhanghe Zhen, Jianfei Ma, Hanzhi Lin, Song Qin and Fuli Zhao
Crystals 2021, 11(10), 1233; https://doi.org/10.3390/cryst11101233 - 13 Oct 2021
Cited by 5 | Viewed by 2903
Abstract
As the largest light-harvesting complex in cyanobacteria, phycobilisomes (PBSs) show high efficiency and a high rate of energy transfer, owing to an elegant antenna-like assembly. To understand the structural influence on the dynamic process of the energy transfer in PBSs, two cyanobacterium species [...] Read more.
As the largest light-harvesting complex in cyanobacteria, phycobilisomes (PBSs) show high efficiency and a high rate of energy transfer, owing to an elegant antenna-like assembly. To understand the structural influence on the dynamic process of the energy transfer in PBSs, two cyanobacterium species Thermosynechococcus vulcanus NIES 2134 (T. 2134) and Synechocystis sp. PCC 6803 (S. 6803) with different rod–core-linked assemblies were chosen for this study. The dynamic process of the energy transfer in both PBSs was investigated through time-resolved fluorescence spectroscopy (TRFS) with a time resolution of sub-picosecond. Via the fluorescence decay curves deconvolution, the pathways and related rates of the excitation energy transfer (EET) were determined. Three time components, i.e., 10, 80, and 1250 ps, were identified in the EET in the PBSs of T. 2134 and three, i.e., 9, 115, and 1680 ps, in the EET in the PBSs of S. 6803. In addition, a comparison of the dynamic process of the energy transfer between the two cyanobacteria revealed how the PBS assembly affects the energy transfer in PBSs. The findings will provide insight into future time-resolved crystallography. Full article
Show Figures

Figure 1

Back to TopTop