Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,527)

Search Parameters:
Keywords = physiological conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3163 KB  
Article
Chloroplast Hibernation-Promoting Factor PSRP1 Prevents Ribosome Degradation Under Darkness Independently of 100S Dimer Formation
by Kenta Tanaka, Yusuke Yoshizawa, Takashi Oda and Yasuhiko Sekine
Plants 2025, 14(20), 3155; https://doi.org/10.3390/plants14203155 (registering DOI) - 13 Oct 2025
Abstract
Ribosome hibernation is a conserved translational stress response in bacteria, regulated by the hibernation-promoting factor (HPF). Plastid-specific ribosomal protein 1 (PSRP1) is the chloroplast ortholog of bacterial HPF. Although bacterial HPFs have been extensively characterized, both structurally and mechanistically, the physiological roles and [...] Read more.
Ribosome hibernation is a conserved translational stress response in bacteria, regulated by the hibernation-promoting factor (HPF). Plastid-specific ribosomal protein 1 (PSRP1) is the chloroplast ortholog of bacterial HPF. Although bacterial HPFs have been extensively characterized, both structurally and mechanistically, the physiological roles and mechanisms of PSRP1 in plant chloroplasts remain unclear. Here, we aimed to clarify the role of PSRP1 in chloroplast ribosome hibernation by examining its function under dark-stress conditions in the moss Physcomitrium patens. The PSRP1 knockout mutant exhibited moderate but statistically significant growth defects under both long- and short-day conditions compared to those of the wild-type plants. Moreover, the mutant displayed pronounced growth delay when co-cultured with wild-type plants, indicating a competitive disadvantage. Under dark conditions, wild-type plants exhibit increased PSRP1 protein accumulation, whereas the knockout mutant displayed reduction in chloroplast rRNA content. Notably, although PSRP1 is capable of inducing 100S dimers, we detected no chloroplast 100S dimers either in vivo or in vitro, suggesting a chloroplast-specific ribosome protection mechanism distinct from that of bacteria. These findings reveal PSRP1-mediated chloroplast ribosome protection and could provide new insights into plant stress tolerance. Full article
Show Figures

Figure 1

25 pages, 2084 KB  
Article
The Immune System in Antarctic and Subantarctic Fish of the Genus Harpagifer Is Affected by the Effects of Combined Microplastics and Thermal Increase
by Daniela P. Nualart, Pedro M. Guerreiro, Kurt Paschke, Stephen D. McCormick, Chi-Hing Christina Cheng and Luis Vargas-Chacoff
Int. J. Mol. Sci. 2025, 26(20), 9968; https://doi.org/10.3390/ijms26209968 (registering DOI) - 13 Oct 2025
Abstract
Rising ocean temperatures due to climate change, combined with the intensification of anthropogenic activity, may lead to changes in the physiology and distribution of native species. Compounding climate stress, microplastic particles (MPs) enter the oceans through wastewater and the breakdown of macroplastics. Depending [...] Read more.
Rising ocean temperatures due to climate change, combined with the intensification of anthropogenic activity, may lead to changes in the physiology and distribution of native species. Compounding climate stress, microplastic particles (MPs) enter the oceans through wastewater and the breakdown of macroplastics. Depending on their composition, they can be harmful and act as a vehicle for toxic substances, although their effects on native Antarctic and subantarctic species are unknown. Notothenioid fish are members of this group and are found inside and outside Antarctica, such as the Harpagifer, which has adapted to the cold and is particularly sensitive to thermal increases. Here, we aimed to evaluate the innate immune response in the head kidney, spleen, and foregut of two notothenoid fish, Harpagifer antarcticus and Harpagifer bispinis, exposed to elevated temperatures and PVC (polyvinyl chloride) microplastics. Adults from both species were collected on King George Island (Antarctica) and Punta Arenas (Chile), respectively. Specimens were assigned to a control group or exposed to a temperature increase (TI) or PVC microplastics (MPs), separately or in combination (MPs + TI). MP exposures were oral (gavage) for 24 h or aqueous (in a bath) for 24 and 48 h. Using real-time qPCR, we evaluated the relative gene expression of markers involved in the innate immune response, including tlr2 (toll-like receptor 2), tlr4 (toll-like receptor 4), myd88 (myeloid differentiation factor 88), nfkb (nuclear factor kb), il6 (interleukin 6), and il8 (irterleukin 8). We found differences between treatments when H. antarcticus and H. bispinis were exposed independently to MPs or thermal increase (TI) in the experiment with a cannula, showing an up-regulation in transcripts. In contrast, a down-regulation was observed when exposed in combination to MP + TI, which looked to be tissue-dependent. However, transcripts related to innate immunity in the bath experiment increased when exposure to both stressors was combined, mostly at 48 h. These results highlight the importance of evaluating the effects of multiple stressors, both independently and in combination, and whether these species will have the capacity to adapt or survive under these conditions, especially in waters where temperature is increasing and pollution is also rising, primarily from MP-PVC, a plastic widely used in various industries and among the population. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Immunology in Chile, 2nd Edition)
Show Figures

Figure 1

19 pages, 974 KB  
Review
Boosting Seed Performance with Cold Plasma
by Mohamed Ali Benabderrahim, Imen Bettaieb and Mokhtar Rejili
Appl. Sci. 2025, 15(20), 10996; https://doi.org/10.3390/app152010996 (registering DOI) - 13 Oct 2025
Abstract
In 2015, the global community set 17 Sustainable Development Goals (SDGs), with the second goal aiming to end hunger by 2030. In sustainable agriculture, seed treatment plays a crucial role and cold plasma (CP) has emerged as a promising, eco-friendly technology for improving [...] Read more.
In 2015, the global community set 17 Sustainable Development Goals (SDGs), with the second goal aiming to end hunger by 2030. In sustainable agriculture, seed treatment plays a crucial role and cold plasma (CP) has emerged as a promising, eco-friendly technology for improving seed performance. This review highlights CP as an innovative seed treatment method with significant potential to enhance seed vigor, germination, and crop yield, particularly under stress conditions such as drought, salinity, and biotic challenges. CP works by generating reactive oxygen and nitrogen species (RONS), which modulate key biochemical and physiological responses in seeds. These responses include improvements in water uptake, enhanced germination rates, and better stress tolerance. Moreover, CP exhibits strong antimicrobial properties, making it a chemical-free alternative for seed decontamination. Despite these benefits, the application of CP in large-scale agriculture faces several challenges. Also, this review critically examines the limitations of CP treatment, including the lack of standardized protocols and insufficient field validation. Additionally, it compares CP treatment with conventional chemical and microbial methods, offering insights into its potential advantages and remaining obstacles. This emerging technology holds promise for enhancing crop productivity while minimizing environmental impact, but further research and validation are essential for its broader adoption in sustainable agricultural practices. Full article
12 pages, 2340 KB  
Article
The Effect of Light on Plant Growth and Physiology of Acmella radicans and A. paniculata in China
by Xiaohan Wu, Fengping Zheng, Zhijie Wang, Qiurui Li, Kexin Yang, Gaofeng Xu, Yunhai Yang, David Roy Clements, Shaosong Yang, Bin Yao, Guimei Jin, Shicai Shen, Fudou Zhang and Michael Denny Day
Diversity 2025, 17(10), 709; https://doi.org/10.3390/d17100709 (registering DOI) - 13 Oct 2025
Abstract
Acmella radicans (Jacquin) R.K.Jansen is an annual herb native to Central America. In China, it is becoming increasingly invasive and often co-occurs with the native congener A. paniculata (Wall. ex DC.) R.K.Jansen in some habitats. In order to understand the invasion mechanism of [...] Read more.
Acmella radicans (Jacquin) R.K.Jansen is an annual herb native to Central America. In China, it is becoming increasingly invasive and often co-occurs with the native congener A. paniculata (Wall. ex DC.) R.K.Jansen in some habitats. In order to understand the invasion mechanism of A. radicans, we investigated the growth parameters of both the invasive A. radicans and the native congener, A. paniculata, under different light conditions (5%, 25%, 50%, 75%, and 100% of light availability) using potted plants in a glasshouse. Light level, plant species, and their interaction were significant, with plant species generally having a greater effect than light level. Acmella radicans and A. paniculata showed great phenotypic plasticity to various light intensities and had a similar trend with increased shade. The plasticity indices of all parameters of A. radicans, except for branch length and inflorescence number, were greater than those of A. paniculata under the same light intensity. The physiological parameters for A. radicans under both favorable (high light intensity) and unfavorable (low light intensity) conditions showed less inhibition than those of A. paniculata. All these responses indicated that A. radicans had greater phenotypic plasticity and higher adaptability to low light, which may contribute to its invasion success. Full article
(This article belongs to the Special Issue Ecology, Distribution, Impacts, and Management of Invasive Plants)
Show Figures

Figure 1

26 pages, 512 KB  
Review
Artificial Intelligence in Endurance Sports: Metabolic, Recovery, and Nutritional Perspectives
by Gerasimos V. Grivas and Kousar Safari
Nutrients 2025, 17(20), 3209; https://doi.org/10.3390/nu17203209 (registering DOI) - 13 Oct 2025
Abstract
Background: Artificial Intelligence (AI) is increasingly applied in endurance sports to optimize performance, enhance recovery, and personalize nutrition and supplementation. This review synthesizes current knowledge on AI applications in endurance sports, emphasizing implications for metabolic health, nutritional strategies, and recovery optimization, while [...] Read more.
Background: Artificial Intelligence (AI) is increasingly applied in endurance sports to optimize performance, enhance recovery, and personalize nutrition and supplementation. This review synthesizes current knowledge on AI applications in endurance sports, emphasizing implications for metabolic health, nutritional strategies, and recovery optimization, while also addressing ethical considerations and future directions. Methods: A narrative review was conducted using targeted searches of PubMed, Scopus, and Web of Science with cross-referencing. Extracted items included sport/context, data sources, AI methods including machine learning (ML), validation type (internal vs. external/field), performance metrics, comparators, and key limitations to support a structured synthesis; no formal risk-of-bias assessment or meta-analysis was undertaken due to heterogeneity. Results: AI systems effectively integrate multimodal physiological, environmental, and behavioral data to enhance metabolic health monitoring, predict recovery states, and personalize nutrition. Continuous glucose monitoring combined with AI algorithms allows precise carbohydrate management during prolonged events, improving performance outcomes. AI-driven supplementation strategies, informed by genetic polymorphisms and individual metabolic responses, have demonstrated enhanced ergogenic effectiveness. However, significant challenges persist, including measurement validity and reliability of sensor-derived signals and overall dataset quality (e.g., noise, missingness, labeling error), model performance and generalizability, algorithmic transparency, and equitable access. Furthermore, limited generalizability due to homogenous training datasets restricts widespread applicability across diverse athletic populations. Conclusions: The integration of AI in endurance sports offers substantial promise for improving performance, recovery, and nutritional strategies through personalized approaches. Realizing this potential requires addressing existing limitations in model performance and generalizability, ethical transparency, and equitable accessibility. Future research should prioritize diverse, representative, multi-site data collection across sex/gender, age, and race/ethnicity. Coverage should include performance level (elite to recreational), sport discipline, environmental conditions (e.g., heat, altitude), and device platforms (multi-vendor/multi-sensor). Equally important are rigorous external and field validation, transparent and explainable deployment with appropriate governance, and equitable access to ensure scientifically robust, ethically sound, and practically relevant AI solutions. Full article
Show Figures

Figure 1

23 pages, 1962 KB  
Article
A Home-Based Balance Exercise Training Program with Intermittent Visual Deprivation for Persons with Chronic Incomplete Spinal Cord Injury: A Pilot Study on Feasibility, Acceptability, and Preliminary Outcomes
by Riccardo Bravi, Sara Guarducci, Giulia Panconi, Magdalena Sicher, Lorenzo Mucchi, Giacomo Lucchesi, Gabriele Righi, Giulio Del Popolo and Diego Minciacchi
Sensors 2025, 25(20), 6320; https://doi.org/10.3390/s25206320 (registering DOI) - 13 Oct 2025
Abstract
Incomplete spinal cord injury (iSCI) results in impaired postural control and walking ability. Visual over-reliance may occur in iSCI individuals to maintain postural control. This can challenge their postural stability in various contexts of daily life activities. The present study assessed the feasibility, [...] Read more.
Incomplete spinal cord injury (iSCI) results in impaired postural control and walking ability. Visual over-reliance may occur in iSCI individuals to maintain postural control. This can challenge their postural stability in various contexts of daily life activities. The present study assessed the feasibility, acceptability, and preliminary outcomes of balance training with intermittent visual deprivation using stroboscopic glasses on postural control and visual reliance during quiet standing in iSCI individuals. Training impact on walking performance was also evaluated. Seven chronic iSCI individuals participated in a 6-week home-based balance training program, three times weekly, using stroboscopic glasses. Postural and walking abilities were assessed pre- and post-training using a bipedal stance test (BST) and 10 m walking test (10 MWT). BST was performed, with open-eyes (OE) and closed-eyes (CE), on a force plate for three 30 s trials. The center of pressure (CoP) variables included were CoP area (A-CoP) and CoP mean velocity (MV-CoP). Romberg ratios (CE/OE) for two CoP variables were calculated. Duration and speed were measured in 10 MWT. Intervention feasibility was assessed using the feasibility and acceptability questionnaire. Data from able-bodied individuals were recorded and used as references of physiological performance. iSCI individuals were significantly less stable and showed visual over-reliance for postural steadiness compared to controls. Also, their walking ability was impaired. All iSCI individuals completed the training (adherence rate: 84%) and rated it highly feasible. A-CoP and MV-CoP significantly reduced after training in CE condition (p = 0.018, respectively) but not in OE condition (p > 0.05). The Romberg ratio of A-CoP was significantly lower (p = 0.018), but the Romberg ratio of MV-CoP was not (p > 0.05). A significant reduction in duration and increase in speed (p = 0.018, respectively) in performing the 10 MWT were observed. Preliminary findings from this explorative study indicated that 6-week home-based balance training with intermittent visual deprivation was feasible, acceptable, and had promising potential benefits in improving postural control with a reduction in visual over-reliance in iSCI individuals. The training enhanced also their walking performance. Full article
Show Figures

Figure 1

27 pages, 5449 KB  
Article
High-Blue/Low-Red Mixed Light Modulates Photoperiodic Flowering in Chrysanthemum via Photoreceptor and Sugar Pathways
by Jingli Yang, Zhengyang Cheng, Jinnan Song and Byoung Ryong Jeong
Plants 2025, 14(20), 3151; https://doi.org/10.3390/plants14203151 (registering DOI) - 13 Oct 2025
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat.), a typical short-day plant (SDP), relies on photoperiod and light quality signals to regulate flowering and growth. Red light interruptions inhibit its flowering, whereas supplemental blue light can counteract this inhibitory effect. To investigate how “high-blue/low-red” mixed light [...] Read more.
Chrysanthemum (Chrysanthemum morifolium Ramat.), a typical short-day plant (SDP), relies on photoperiod and light quality signals to regulate flowering and growth. Red light interruptions inhibit its flowering, whereas supplemental blue light can counteract this inhibitory effect. To investigate how “high-blue/low-red” mixed light (RBL) regulates chrysanthemum flowering and growth, we treated ‘Gaya Glory’ plants with 4 h of supplemental or night-interruptional RBL (S-RBL4 or NI-RBL4, 0 or 30 ± 3 μmol m−2 s−1 PPFD) under 10 h short-day and 13 h long-day conditions (SD10 and LD13; white light, WL; 300 ± 5 μmol m−2 s−1 PPFD), recorded as SD10, SD10 + S-RBL4, SD10 + NI-RBL4, LD13, LD13 + S-RBL4, and LD13 + NI-RBL4, respectively. Under SD10 conditions, S-RBL4 promoted flowering and enhanced nutritional quality, whereas NI-RBL4 suppressed flowering. Under LD13 conditions, both treatments alleviated flowering inhibition, with S-RBL4 exhibiting a more pronounced inductive effect. Chrysanthemums displayed superior vegetative growth and physiological metabolism under LD13 compared to SD10, as evidenced by higher photosynthetic efficiency, greater carbohydrate accumulation, and more robust stem development. Furthermore, S-RBL4 exerted a stronger regulatory influence than NI-RBL4 on photosynthetic traits, the activities of sugar metabolism-related enzymes, and gene expression. The photoperiodic flowering of chrysanthemum was coordinately regulated by the photoreceptor-mediated and sugar-induced pathways: CmCRY1 modulated the expression of florigenic genes (CmFTLs) and anti-florigenic gene (CmAFT) to transmit light signals, while S-RBL4 activated sucrose-responsive flowering genes CmFTL1/2 through enhanced photosynthesis and carbohydrate accumulation, thereby jointly regulating floral initiation. The anti-florigenic gene CmTFL1 exhibited dual functionality—its high expression inhibited flowering and promoted lateral branch and leaf growth, but only under sufficient sugar availability, indicating that carbohydrate status modulates its functional activity. Full article
(This article belongs to the Special Issue Advances in Plant Cultivation and Physiology of Horticultural Crops)
Show Figures

Figure 1

15 pages, 943 KB  
Systematic Review
Development and Clinical Significance of the Human Fetal Adrenal Gland as a Key Component of the Feto-Placental System: A Systematic Review
by Martiniuc Ana-Elena, Laurentiu-Camil Bohiltea, Pop Lucian Gheorghe and Suciu Nicolae
Reprod. Med. 2025, 6(4), 31; https://doi.org/10.3390/reprodmed6040031 (registering DOI) - 13 Oct 2025
Abstract
Background: The human fetal adrenal gland is a unique endocrine organ with distinct morphology and functional dynamics, which is significantly different from the postnatal adrenal. Its rapid growth and vital steroidogenic role during gestation have positioned it as a key regulator of fetal [...] Read more.
Background: The human fetal adrenal gland is a unique endocrine organ with distinct morphology and functional dynamics, which is significantly different from the postnatal adrenal. Its rapid growth and vital steroidogenic role during gestation have positioned it as a key regulator of fetal development and pregnancy maintenance. Objectives: To provide a comprehensive overview of the morphogenesis, function, regulatory mechanisms, and clinical implications of the human fetal adrenal gland, highlighting recent advances in understanding its development and its role in prenatal and postnatal health outcomes. Methods: A systematic review was conducted, including original research articles focused on human fetuses or validated animal models, examining the genetic, molecular, and hormonal mechanisms underlying adrenal development and function. Studies were excluded if they were editorials, case reports, focused on adult adrenal physiology, had small sample sizes, or were non-English publications. Study quality was evaluated using PRISMA guidelines. Results: The fetal adrenal gland develops from both mesodermal and ectodermal origins, forming three primary zones: fetal, transitional, and definitive. Each zone has distinct functions and developmental pathways. The fetal zone, which predominates, is responsible for producing dehydroepiandrosterone sulfate, DHEA-S, which is crucial for placental estrogen synthesis. The adrenal gland undergoes rapid growth and functional maturation, regulated by ACTH, placental CRH, IGF, and the renin–angiotensin system. Disruption of adrenal function is associated with conditions such as preterm birth, adrenal hypoplasia, congenital adrenal hyperplasia, and intrauterine growth restriction. Emerging evidence suggests that fetal adrenal hormones may influence long-term health through fetal programming mechanisms. Conclusions: The fetal adrenal gland plays a critical and multifaceted role in fetal and placental development. This gland influences placental development via steroid precursors (DHEA-S → estrogen synthesis), while also being regulated by placental factors such as the corticotropin-releasing hormone. Understanding its complex structure–function relationships and regulatory networks is essential for predicting and managing prenatal and postnatal pathologies. Future research should focus on elucidating molecular mechanisms, improving diagnostic tools, and exploring long-term outcomes of altered fetal adrenal function. Full article
Show Figures

Figure 1

25 pages, 672 KB  
Review
Damage Control Surgery in Obstetrics and Gynecology: Abdomino-Pelvic Packing in Multimodal Hemorrhage Management
by Stoyan Kostov, Yavor Kornovski, Angel Yordanov, Stanislav Slavchev, Yonka Ivanova, Ibrahim Alkatout and Rafał Watrowski
J. Clin. Med. 2025, 14(20), 7207; https://doi.org/10.3390/jcm14207207 (registering DOI) - 13 Oct 2025
Abstract
Damage control surgery (DCS) is a staged surgical strategy for rapid control of life-threatening bleeding, followed by physiological stabilization and delayed definitive repair. Abdomino-pelvic packing (APP)—placing compressive material within the pelvis and/or abdomen to tamponade bleeding—is a cornerstone of DCS as a temporizing [...] Read more.
Damage control surgery (DCS) is a staged surgical strategy for rapid control of life-threatening bleeding, followed by physiological stabilization and delayed definitive repair. Abdomino-pelvic packing (APP)—placing compressive material within the pelvis and/or abdomen to tamponade bleeding—is a cornerstone of DCS as a temporizing measure to achieve hemostasis and stabilization in critically unstable patients. This narrative review synthesizes current evidence on DCS with a focus on APP—a technique historically developed in trauma and orthopedic surgery for exsanguinating pelvic bleeding but adaptable to gynecologic and obstetric emergencies. We outline the historical evolution, physiological basis, and stepwise protocol of DCS, adapted to specialty-specific conditions such as postpartum hemorrhage, placenta accreta spectrum, uterine rupture, and hepatic rupture in HELLP syndrome, as well as oncologic surgeries (debulking, exenteration, lymphadenectomy) and benign procedures (trocar-entry injuries in laparoscopy, presacral bleeding in sacrocolpopexy, and retroperitoneal hemorrhage in deep-infiltrating endometriosis). Modern adjuncts—including early tranexamic acid, topical hemostatic agents, and multidisciplinary coordination—have transformed packing from a last-resort maneuver into an integrated component of staged hemorrhage control. In OB/GYN, APP allows for successful hemostasis in 75–90% of cases, with significantly lower mortality rates than trauma surgery. In conclusion, APP as a potentially life-saving maneuver within DCS requires integration into standardized, institution-wide hemorrhage protocols in OB/GYN. Training, simulation, and guideline adoption are critical, particularly in resource-limited settings where advanced interventions for catastrophic bleeding are inaccessible. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

22 pages, 2520 KB  
Review
Marine Bioactive Peptides in the Regulation of Inflammatory Responses: Current Trends and Future Directions
by D. M. N. M. Gunasekara, H. D. T. U. Wijerathne, Lei Wang, Hyun-Soo Kim and K. K. A. Sanjeewa
Proteomes 2025, 13(4), 53; https://doi.org/10.3390/proteomes13040053 (registering DOI) - 13 Oct 2025
Abstract
Marine-derived bioactive peptides (MBPs) are emerging as promising natural agents for regulating inflammatory responses. MBPs, typically obtained through enzymatic hydrolysis of proteins from various marine organisms such as fish, mollusks, and algae, exhibit diverse biological activities, including antioxidant, immunomodulatory, and anti-inflammatory effects. The [...] Read more.
Marine-derived bioactive peptides (MBPs) are emerging as promising natural agents for regulating inflammatory responses. MBPs, typically obtained through enzymatic hydrolysis of proteins from various marine organisms such as fish, mollusks, and algae, exhibit diverse biological activities, including antioxidant, immunomodulatory, and anti-inflammatory effects. The ability of MBPs to modulate key inflammatory mediators such as TNF-α, IL-6, and COX-2, primarily through pathways like NF-κB and MAPK, highlights the therapeutic potential of MBPs in managing chronic inflammatory diseases. However, most existing studies are confined to in vitro assays or animal models, with limited translation to human clinical applications. This review explores the stability, bioavailability, and metabolic rate of MBPs under physiological conditions, which remain poorly understood. In addition, a lack of standardized protocols for peptide extraction, purification, and efficacy evaluation hinders comparative analysis across studies and also different proteomics approaches for separation, purification, identification, and quantification of marine-derived peptides with therapeutic properties. The structure–function relationship of MBPs is also underexplored, limiting rational design and targeted applications in functional foods or therapeutic products. These limitations are largely due to a lack of consolidated information and integrated research efforts. To address these challenges, this review summarizes recent progress in identifying MBPs with anti-inflammatory potentials, outlines key mechanisms, and highlights current limitations. Additionally, this review also emphasizes the need to enhance mechanistic understanding, optimize delivery strategies, and advance clinical validation to fully realize the therapeutic potential of MBPs. Full article
Show Figures

Figure 1

10 pages, 517 KB  
Article
Impact of Pregnancy Rhinitis on Olfactory Sensitivity: A Controlled Comparative Study
by Krystyna Sobczyk, Alicja Grajczyk, Karolina Dżaman, Justyna Zarzecka and Ewa Barcz
Diagnostics 2025, 15(20), 2572; https://doi.org/10.3390/diagnostics15202572 (registering DOI) - 13 Oct 2025
Abstract
Background/Objectives: During pregnancy, the body undergoes numerous physiological changes, many of which are driven by significant hormonal shifts. Pregnancy rhinitis is a condition characterized by nasal congestion that occurs during pregnancy without any other signs of respiratory infection or known allergic causes. [...] Read more.
Background/Objectives: During pregnancy, the body undergoes numerous physiological changes, many of which are driven by significant hormonal shifts. Pregnancy rhinitis is a condition characterized by nasal congestion that occurs during pregnancy without any other signs of respiratory infection or known allergic causes. The aim of the study was to examine the impact of pregnancy rhinitis on the sense of smell. Specifically, it focused on determining how the nasal congestion associated with pregnancy rhinitis may alter olfactory perception in pregnant people. Methods: The study group comprised fifty women, aged 18 to 41, all in their third trimester of pregnancy. The control group was made up of 25 non-pregnant women between the ages of 25 and 31. Olfactory function was assessed using Sniffin’ Sticks, and each participant completed the SNOT-22 questionnaire. Additionally, ENT examination, nasofiberoscopy, rhinomanometry were performed. Results: The comparison between the control and study groups in terms of detection, discrimination, and identification test scores revealed statistically significant differences. The study group demonstrated lower odor average test scores, indicating worse olfactory acuity and poorer identification abilities, with these effects being strong. In addition, the study group showed a lower discrimination test score compared to the study group, though this effect was weak. On the other hand, the control group showed a higher level of discrimination test score compared to the study group, though this effect was weak. However, the pregnant women did not perceive any subjective impairment in their sense of smell even though they had smell disturbances confirmed in the Sniffin Stick test. The SNOT-22 questionnaire results indicated that the study group reported subjectively worse nasal patency compared to the control group. Conclusions: This controlled study demonstrated that olfactory disturbances, confirmed by the Sniffin’ Sticks test, affected half of the pregnant participants, with reduced smell sensitivity observed in advanced pregnancy compared to non-pregnant controls. Notably, more than half of the women with objectively confirmed olfactory deficits did not report subjective complaints, highlighting the need for greater clinical awareness of sensory changes during pregnancy. Pregnancy-related swelling of the nasal mucosa leads to impaired upper airway airflow, contributing to a reduction in olfactory sensitivity. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

14 pages, 251 KB  
Article
From Intracoronary Physiology to Endotype-Based Treatment: Quality of Life Improvement for INOCA Patients
by Barbara Vitola, Laima Caunite, Karlis Trusinskis, Iveta Mintale and Andrejs Erglis
J. Clin. Med. 2025, 14(20), 7192; https://doi.org/10.3390/jcm14207192 (registering DOI) - 12 Oct 2025
Abstract
Background/Objectives: Ischemia with non-obstructive coronary arteries (INOCA) remains an underdiagnosed and undertreated condition due to the extensive diagnostic testing required and heterogeneous pathophysiology of different endotypes, each of which require tailored treatment. This study aimed to explore the effect of intracoronary physiology [...] Read more.
Background/Objectives: Ischemia with non-obstructive coronary arteries (INOCA) remains an underdiagnosed and undertreated condition due to the extensive diagnostic testing required and heterogeneous pathophysiology of different endotypes, each of which require tailored treatment. This study aimed to explore the effect of intracoronary physiology testing-based endotype-specific medical therapy on quality of life in patients with INOCA. Methods: Intracoronary physiology testing was performed in patients presenting with cardiac symptoms, evidence of significant ischemia on non-invasive testing, and non-obstructive epicardial coronary arteries. Microvascular angina (MVA) was defined as coronary flow reserve ≤ 2.5 and an index of microvascular resistance ≥ 25. Vasospastic angina (VSA) was defined as a >90% vasoconstriction of an epicardial artery during acetylcholine provocation test in the presence of ischemic electrocardiogram changes and chest pain. Quality of life was evaluated using the Seattle Angina Questionnaire 7 (SAQ-7) before the start of new treatment and at the three months follow-up. Results: The total study population consisted of 35 patients (80% women), of whom MVA was observed in 19 (54.3%), VSA in 9 (25.7%), and the combination of MVA and VSA in 3 (8.6%) cases. Four patients (11.4%) had no pathology on intracoronary physiology testing detected. High rates of dyslipidemia (100%), arterial hypertension (85.7%), diabetes (17.1%), and depression and anxiety (34.3%) were documented. In the isolated MVA and VSA groups, adjustment of medical therapy resulted in an improvement in the SAQ-7 summary score at 3 months (p < 0.001 and p = 0.007, respectively). There was no change of SAQ-7 summary score in the mixed endotype group (p = 0.11). Conclusions: Adjustment of medical therapy according to intracoronary physiology testing-based phenotype resulted in improved quality of life as assessed by the SAQ-7. Our findings highlight the importance of invasive testing in patients with clinically suspected INOCA. Full article
(This article belongs to the Section Cardiovascular Medicine)
20 pages, 831 KB  
Article
Energy Processes During Rigor Mortis in the Adductor Muscle of the Lion’s Paw Scallop (Nodipecten subnodosus): Effects of Seasonality and Storage Temperature
by Edgar Iván Jiménez-Ruiz, Víctor Manuel Ocaño-Higuera, María Teresa Sumaya-Martínez, Enrique Márquez-Ríos, Saúl Ruíz-Cruz, Dalila Fernanda Canizales-Rodríguez, Orlando Tortoledo-Ortiz, Alba Mery Garzón-García, José Rogelio Ramos-Enríquez, Santiago Valdez-Hurtado, María Irene Silvas-García and Nathaly Montoya-Camacho
Animals 2025, 15(20), 2953; https://doi.org/10.3390/ani15202953 (registering DOI) - 12 Oct 2025
Abstract
The lion’s paw scallop (Nodipecten subnodosus) is a commercially valuable pectinid whose postharvest quality strongly depends on storage and handling conditions. This study investigated the combined effects of seasonality, postmortem time, and storage temperature on energy metabolism in the adductor muscle, [...] Read more.
The lion’s paw scallop (Nodipecten subnodosus) is a commercially valuable pectinid whose postharvest quality strongly depends on storage and handling conditions. This study investigated the combined effects of seasonality, postmortem time, and storage temperature on energy metabolism in the adductor muscle, focusing on metabolites associated with rigor mortis and freshness. Adult scallops (~10 cm shell height) were harvested in four seasons (spring, summer, autumn, winter), transported under commercial conditions for approximately 2 h, and stored at 0, 5, and 10 °C for 48 h. Muscle samples were collected every 8 h and analyzed for ATP, ADP, AMP, glycogen, arginine phosphate (Arg-P), and free arginine using HPLC and enzymatic assays. In addition, the adenylate energy charge (AEC) was determined in freshly harvested and post-transport specimens. Initial ATP concentrations ranged from 4.2 to 6.5 µmol/g, with higher levels in winter, while Arg-P varied from 3.1 to 4.8 µmol/g. Seasonality significantly influenced all metabolites except arginine, and transport markedly reduced ATP and AEC, particularly in spring and autumn. Storage at 0 °C resulted in rapid ATP depletion (<1.0 µmol/g within 12 h) and AMP accumulation (>3.0 µmol/g), indicating accelerated energy collapse. In contrast, scallops stored at 5 and 10 °C maintained ATP levels above 2.5 µmol/g for up to 24 h, delaying rigor mortis, reducing postmortem contraction, and preserving muscle texture and appearance. Overall, these findings demonstrate that moderate refrigeration represents a physiologically suitable and technologically advantageous strategy to optimize scallop postharvest handling, extend shelf life, and enhance product quality for the fresh seafood market. Full article
Show Figures

Figure 1

16 pages, 6994 KB  
Article
Physiological Responses of Grapevine Leaves to High Temperature at Different Senescence Periods
by Shiwei Guo, Riziwangguli Abudureheman, Zekai Zhang, Haixia Zhong, Fuchun Zhang, Xiping Wang, Mansur Nasir and Jiuyun Wu
Plants 2025, 14(20), 3142; https://doi.org/10.3390/plants14203142 (registering DOI) - 12 Oct 2025
Abstract
Leaf senescence is a precisely regulated developmental process that is critical for grapevine growth and yield, which is easily influenced by environmental factors. High temperature is a major factor that accelerates senescence rapidly, adversely affects photosynthetic performance, severely hindering fruit nutrient metabolism and [...] Read more.
Leaf senescence is a precisely regulated developmental process that is critical for grapevine growth and yield, which is easily influenced by environmental factors. High temperature is a major factor that accelerates senescence rapidly, adversely affects photosynthetic performance, severely hindering fruit nutrient metabolism and growth. This study investigated chlorophyll fluorescence and physiological traits in grape (Vitis vinifera L.) leaves at different senescence stages under natural high-temperature conditions in Turpan. Measurements included chlorophyll content, MDA levels, antioxidant enzyme activities, and chlorophyll fluorescence parameters. The results showed that (1) young leaves exhibited higher and more sustained chlorophyll content but were prone to wilting, whereas older leaves showed accelerated chlorosis and functional decline; (2) high temperature severely impaired PSII function, inhibiting electron transport and photochemical efficiency, reflected in increased ABS/RC, TRo/RCC, and DIo/RC, and decreased Fv/Fm, Fv/Fo, and PIabs; (3) POD, SOD, CAT and MDA levels initially increased then decreased, correlating with photosynthetic changes and leaf age; and (4) young leaves maintained stronger photosynthetic capability and physiological resilience than older ones. Although partial recovery occurred after temperature reduction, photosynthetic and antioxidant activities did not fully revert. This suggests persistent heat-induced functional decline and accelerated senescence, providing insights for understanding heat-induced leaf senescence and developing strategies for cultivating grapevines. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

21 pages, 796 KB  
Article
Feeding with a NaCl-Supplemented Alfalfa-Based TMR Improves Nutrient Utilization, Rumen Fermentation, and Antioxidant Enzyme Activity in AOHU Sheep: A Nutritional Simulation of Saline–Alkaline Conditions
by Hunegnaw Abebe, Ruochen Yang, Guicong Wei, Xiaoran Feng and Yan Tu
Fermentation 2025, 11(10), 587; https://doi.org/10.3390/fermentation11100587 (registering DOI) - 12 Oct 2025
Abstract
Saline–alkaline soils are becoming prevalent across the globe, decreasing the availability of forage for animals and threatening sustainable animal production. This study evaluated the effects of a NaCl-supplemented alfalfa-based total mixed ration, simulating saline–alkaline soil conditions, on intake, the utilization of nutrients, antioxidant [...] Read more.
Saline–alkaline soils are becoming prevalent across the globe, decreasing the availability of forage for animals and threatening sustainable animal production. This study evaluated the effects of a NaCl-supplemented alfalfa-based total mixed ration, simulating saline–alkaline soil conditions, on intake, the utilization of nutrients, antioxidant levels, and rumen fermentation. A 60-day feeding trial with 24 AOHU lambs (Australian White × Hu) compared a control diet (0.43% NaCl) with the NaCl-supplemented group (1.71% NaCl). Digestibility trials were conducted in metabolic cages for the collection of total feces and urine. Blood samples were taken at 0, 30, and 60 days for serum analysis, and slaughter samples (liver, kidney, rumen tissue, and rumen fluid) were taken for physiological, biochemical, and histological evaluation. The NaCl alfalfa-based TMR markedly increased liver and kidney weights. The rumen muscle layer thickened in the NaCl group. The ruminal ammonia nitrogen (NH3-N), ruminal microbial crude protein (MCP) synthesis, and glucogenic/branched-chain VFAs increased, indicating enhanced proteolysis, microbial protein synthesis, and energetically efficient fermentation. Serum total protein and albumin also rose over time in the NaCl group, reflecting increased nitrogen retention, while superoxide dismutase and glutathione peroxidase activity rose considerably by day 60, reflecting increased antioxidant defense. Furthermore, nitrogen intake, digestibility, and retention were improved in the NaCl group along with augmented digestible and metabolizable energy (28.47 vs. 13.93 MJ/d and 24.68 vs. 11.58 MJ/d, respectively) and gross energy digestibility (78.13% vs. 67.10%). Although NaCl-based alfalfa TMR cannot fully emulate naturally salt-stressed forages, these results indicate that the NaCl alfalfa-based diets improved rumen fermentation, energy yields, and antioxidant enzyme activity without impairing electrolyte balance. These findings suggest that NaCl-supplemented alfalfa-based TMRs, with a salt content comparable to that of alfalfa hay grown under saline–alkaline conditions, could support environmentally sustainable meat production in salt-stressed regions. Full article
Show Figures

Figure 1

Back to TopTop