Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,181)

Search Parameters:
Keywords = piping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7347 KB  
Article
Experimental Study of Fluidization and Defluidization Processes in Sand Bed Induced by a Leaking Pipe
by Huaqing Wang, Zhaolin Zheng, Tingchao Yu, Yiyi Ma and Yiping Zhang
Appl. Sci. 2025, 15(17), 9618; https://doi.org/10.3390/app15179618 (registering DOI) - 1 Sep 2025
Abstract
Underground pressurized pipe leakage can induce sand fluidization, leading to ground collapses in urban areas. Additionally, the defluidization process is one of the main causes of sinkholes. In this study, a physical model test was conducted to examine sand bed fluidization and defluidization [...] Read more.
Underground pressurized pipe leakage can induce sand fluidization, leading to ground collapses in urban areas. Additionally, the defluidization process is one of the main causes of sinkholes. In this study, a physical model test was conducted to examine sand bed fluidization and defluidization through a slot, which allowed precise control of the water flow rate in increments of 10 mL/s. The sand layer movement during the experiments was recorded, and the pressure field was accurately measured. The fluidization and defluidization processes were classified into five stages: fluidization static bed, internal fluidization, surface fluidization, internal defluidization, and defluidization static bed. Subsequently, the static bed stage included slow fluidization and fast fluidization, with the former driven by seepage and the latter involving densification and upward movement of sand particles above the orifice. Fluidization initiated at 240 mL/s when the sand particles near the orifice were compressed to approximately minimum porosity 0.37. The head losses comprised orifice head loss, seepage head loss, and vortex head loss, each exhibiting different variation patterns with the water flow rate. Hysteresis was observed in the cavity height curve, attributed to the arching effect. The findings of this study contribute to a more comprehensive understanding of effective strategies for preventing ground collapse. Full article
(This article belongs to the Special Issue Sediment Transport and Infrastructure Scour)
Show Figures

Figure 1

19 pages, 538 KB  
Article
Natural Gas and Biogas Mixtures in Smart Cities: A Mathematical Model of its Proposal for Use with Biogas Produced by Biomass Plants and Mixture Density Control According to the Biogas Composition
by Jorge Luis Mírez Tarrillo and J. C. Hernandez
Energies 2025, 18(17), 4617; https://doi.org/10.3390/en18174617 (registering DOI) - 30 Aug 2025
Viewed by 48
Abstract
This article presents a proposal for blending natural gas and biogas with a control system with feedback to ensure a constant mixture density. To achieve this, we propose the following: a mathematical model to determine the gas density based on its composition; a [...] Read more.
This article presents a proposal for blending natural gas and biogas with a control system with feedback to ensure a constant mixture density. To achieve this, we propose the following: a mathematical model to determine the gas density based on its composition; a control system whose main components are a gas mixer, valves, and a natural gas storage tank to regulate the biogas density, where its inputs are gases from biomass plants and the natural gas grid; mathematical models to calculate the volume of natural gas required in the storage tank. It is assumed that the composition at the outlet of the biogas plants is measured and that there are no losses of any kind; a case study simulation is then performed. All models consider random variation in gas composition over time. The main results are as follows: (a) reduced natural gas consumption, the promotion of biogas production and use and of mixtures of lower methane compared to natural gas, and the facilitation of the pumping of the gas mixtures; (b) all the biogas produced is used; (c) different piping, sources, storage tanks, consumers, and mixer schemes, considering the concepts of cities, microgrids, smart grids, and smart cities. Full article
(This article belongs to the Special Issue Sustainable Energy, Environment and Low-Carbon Development)
Show Figures

Figure 1

22 pages, 1295 KB  
Article
Impact of Natural and Synthetic Antioxidants on the Stability of High-Density Polyethylene
by Abdullah F. Alrashoudi, Hafizh Insan Akmaluddin, Maher M. Alrashed and Othman Y. Alothman
Polymers 2025, 17(17), 2364; https://doi.org/10.3390/polym17172364 - 30 Aug 2025
Viewed by 42
Abstract
High-Density Polyethylene (HDPE) plays a crucial role in the life of every human being due to its properties such as chemical resistance, light weight, and ease of forming, among others. Its usage ranges from bottles for beverages and other liquids, to pipes, wire [...] Read more.
High-Density Polyethylene (HDPE) plays a crucial role in the life of every human being due to its properties such as chemical resistance, light weight, and ease of forming, among others. Its usage ranges from bottles for beverages and other liquids, to pipes, wire and cable insulation, and prosthetics. As it undergoes several thermal cycles during its life cycle, it is essential to maintain its qualities, even after undergoing thermal and thermo-oxidative degradation. Here, various dosages of synthetic (Irganox 1010) and natural (vitamin E) antioxidants are added to HDPE formulations to study their impacts on HDPE stability. The antioxidants are mixed physically with HDPE before the mixtures are melt-mixed three times to represent their life cycles. Samples are taken after each time and used to analyze the molecular weight distribution, rheological behavior, mechanical properties, and thermal stability. The results show that vitamin E is superior to Irganox 1010 in these tests, as vitamin E performance exceeds that of Irganox 1010, even at lower doses. The only drawback of using vitamin E is the yellow color it causes, which may necessitate the addition of another additive to enhance the color stability of HDPE in color-sensitive applications. Full article
(This article belongs to the Special Issue Biobased Polymers and Its Composites)
Show Figures

Graphical abstract

18 pages, 5492 KB  
Article
Break-Out Resistance of Offshore Pipelines Buried in Inclined Sandy Seabed
by Jingshan Zhu, Siyang Su and Fuquan Chen
J. Mar. Sci. Eng. 2025, 13(9), 1669; https://doi.org/10.3390/jmse13091669 - 30 Aug 2025
Viewed by 44
Abstract
Submarine pipelines are highly susceptible to lateral buckling failure under service conditions of high temperature and pressure. While existing bearing capacity evaluation methods mainly focus on flat seabeds, research on the ultimate bearing capacity of pipelines buried in sloping seabeds is limited. This [...] Read more.
Submarine pipelines are highly susceptible to lateral buckling failure under service conditions of high temperature and pressure. While existing bearing capacity evaluation methods mainly focus on flat seabeds, research on the ultimate bearing capacity of pipelines buried in sloping seabeds is limited. This study applies the FELA method to analyze the ultimate bearing capacity of pipelines buried in inclined sandy seabeds under various loading directions. The results reveal that in sloping seabeds, the minimum ultimate bearing capacity (Pu,b) does not occur in the vertical direction, but rather deviates toward the outward normal direction of the seabed surface, moving toward the foot of the slope. The Pu,b is only 57% of the uplift bearing capacity in the extreme case. A predictive model was proposed to accurately determine the direction of Pu,b. The results also indicated that increasing the seabed slope angle leads to a significant reduction of bearing capacity, while increases in the internal friction angle of the seabed and the pipeline–soil interface friction angle enhance the bearing capacity. Moreover, the design code of DNV (2017) was identified as unsafe due to its omission of seabed inclination effects, and the Pu,b is only 75% of the best estimate of DNV (2017) in the extreme case. A reduction factor model was developed to mitigate this gap, offering a more reliable framework for evaluating the bearing capacity of pipelines. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

25 pages, 14041 KB  
Article
Field Monitoring and Numerical Study of an Artificial Ground Freezing Reinforcement Project for Cross Passage
by Zenan Gong, Guihe Wang and Xiaolang Dai
Appl. Sci. 2025, 15(17), 9547; https://doi.org/10.3390/app15179547 (registering DOI) - 30 Aug 2025
Viewed by 63
Abstract
Artificial ground freezing (AGF), recognized for its environmental sustainability and safety, is commonly used in underground construction projects within water-saturated soils. This study presents the design scheme and monitoring results of an AGF reinforcement project for a cross passage located in strata with [...] Read more.
Artificial ground freezing (AGF), recognized for its environmental sustainability and safety, is commonly used in underground construction projects within water-saturated soils. This study presents the design scheme and monitoring results of an AGF reinforcement project for a cross passage located in strata with low seepage velocity on Hohhot Metro Line 2. A transient heat transfer model, based on the assumption of no seepage, was developed, incorporating phase transitions and nonlinear changes in thermal parameters. In the model, soil thermal parameters are treated as variables dependent on unfrozen water content, which is represented by the soil freezing characteristic curve (SFCC). To derive the SFCC expressions, a semi-empirical approach was employed. This approach avoids the complexity of obtaining SFCCs experimentally and mitigates the arbitrariness inherent in the commonly used traditional apparent heat capacity method. The model was subsequently validated using experimental data from the literature and field monitoring results. The development and key indicators, including the thickness and average temperature of the frozen curtain in a single stratum without seepage, were investigated. The results show that the central and slightly right areas of the cross-passage axis exhibit a thinner frozen curtain and higher average temperature, especially in the pump room area, where the effective thickness of the curtain is at its minimum. Therefore, it is recommended to closely monitor the development of the frozen curtain in these areas and optimize the layout of freezing pipes. This study may serve as a reference for similar projects. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

15 pages, 4233 KB  
Article
Experimental Study on Anti-Crystallization Performance of Tunnel Drainage Pipes Based on Magnetic Powder Effect
by Donghui Xiao, Benhua Liu, Shiyang Liu, Cheng Wang, Kun Huang, Xingjie Yu and Wenzhen Wu
Coatings 2025, 15(9), 1005; https://doi.org/10.3390/coatings15091005 - 30 Aug 2025
Viewed by 172
Abstract
Tunnel drainage pipes are prone to blockage due to mineral crystallization and deposition from water, which seriously affects the long-term stable operation of the drainage system and compromises the safety of tunnel structures. To address this issue, it is imperative to develop efficient [...] Read more.
Tunnel drainage pipes are prone to blockage due to mineral crystallization and deposition from water, which seriously affects the long-term stable operation of the drainage system and compromises the safety of tunnel structures. To address this issue, it is imperative to develop efficient anti-crystallization technologies to extend the service life of drainage systems. In this study, a series of anti-crystallization performance experiments on tunnel drainage pipes were designed and conducted based on magnetic treatment technology. The inhibitory effects of magnetic fields on crystal formation and deposition were systematically investigated under various conditions, including different magnetic field intensities, magnetic field coverage angles, magnetic field orientations, and water flow velocities. The results indicate that under magnetic influence, the crystal morphology inside the pipes changed from regular cubic structures to irregular forms with rough surfaces and loose structures, showing a transformation trend from calcite to aragonite and vaterite. Compared with conventional PVC pipes, the anti-crystallization effect was most pronounced under the following conditions: magnetic field intensity of 40 Gs, coverage angle of 90°, vertical magnetic field orientation, and higher water flow velocity. The findings of this study provide a novel approach to mitigating crystallization-induced blockages in tunnel drainage systems and contribute to reducing tunnel-related pathologies such as lining cracks, water seepage, and structural deterioration caused by poor drainage. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

16 pages, 4225 KB  
Article
Numerical Simulations of Large-Amplitude Acoustic Oscillations in Cryogenic Hydrogen at Pipe Exit
by Kian Conroy and Konstantin I. Matveev
Hydrogen 2025, 6(3), 63; https://doi.org/10.3390/hydrogen6030063 (registering DOI) - 29 Aug 2025
Viewed by 93
Abstract
Pipe exits into cryogenic systems, such as an exit of a venting or sensor tube inside a cryogenic storage tank, can affect spontaneously occurring acoustic oscillations, known as Taconis oscillations. The amplitude which such oscillations will reach is dependent on losses at the [...] Read more.
Pipe exits into cryogenic systems, such as an exit of a venting or sensor tube inside a cryogenic storage tank, can affect spontaneously occurring acoustic oscillations, known as Taconis oscillations. The amplitude which such oscillations will reach is dependent on losses at the pipe exit that prevent resonant oscillations from growing without bound. Consequently, being able to accurately determine minor losses at a pipe exit is important in predicting the behavior of these oscillations. Current thermoacoustic modeling of such transitions typically relies on steady-flow minor loss coefficients, which are usually assumed to be constant for a pipe entrance or exit. In this study, numerical simulations are performed for acoustic flow at a pipe exit, with and without a wall adjacent to the exit. The operating fluid is cryogenic hydrogen gas, while the pipe radius (2 and 4 mm), temperature (40 and 80 K), and acoustic velocity amplitudes (varying in the range of 10 m/s to 70 m/s) are variable parameters. The simulation results are compared with one-dimensional acoustic models to determine the behavior of minor losses. Results are also analyzed to find harmonics behavior and a build-up of mean pressure differences. Minor losses decrease to an asymptotic value with increasing Reynolds number, while higher temperatures also reduce minor losses (10% reduction at 80 K versus 40 K). A baffle sharply increases minor losses as the distance to pipe exit decreases. These findings can be used to improve the accuracy of oscillation predictions by reduced-order thermoacoustic models. Full article
Show Figures

Figure 1

21 pages, 4557 KB  
Article
Experimental and Numerical Bearing Capacity Analysis of Locally Corroded K-Shaped Circular Joints
by Ying-Qiang Su, Shu-Jing Tong, Hai-Lou Jiang, Xiao-Dong Feng, Jian-Hua Li and Jian-Kun Xu
Buildings 2025, 15(17), 3111; https://doi.org/10.3390/buildings15173111 - 29 Aug 2025
Viewed by 77
Abstract
This study systematically investigates the influence of varying corrosion severity on the bearing capacity of K-shaped circular-section joints, with explicit consideration of weld line positioning. Four full-scale circular-section joint specimens with clearance gaps were designed to simulate localized corrosion through artificially introduced perforations, [...] Read more.
This study systematically investigates the influence of varying corrosion severity on the bearing capacity of K-shaped circular-section joints, with explicit consideration of weld line positioning. Four full-scale circular-section joint specimens with clearance gaps were designed to simulate localized corrosion through artificially introduced perforations, and axial static loading tests were performed to assess the degradation of structural performance. Experimental results indicate that the predominant failure mode of corroded K-joints manifests as brittle fracture in the weld-affected zone, attributable to the combined effects of material weakening and stress concentration. The enlargement of corrosion pit dimensions induces progressive deterioration in joint stiffness and ultimate bearing capacity, accompanied by increased displacement at failure. A refined finite element model was established using ABAQUS. The obtained load–displacement curve from the simulation was compared with the experimental data to verify the validity of the model. Subsequently, a parametric analysis was conducted to investigate the influence of multiple variables on the residual bearing capacity of the nodes. Numerical investigations indicate that the severity of corrosion exhibits a positive correlation with the reduction in bearing capacity, whereas web-chord members with smaller inclination angles demonstrate enhanced corrosion resistance, when θ is equal to 30 degrees, Ks decreases from approximately 0.983 to around 0.894. Thin-walled joints exhibit accelerated performance deterioration compared to thick-walled configurations under equivalent corrosion conditions. Furthermore, increased pipe diameter ratios exacerbate corrosion-induced reductions in structural efficiency, when the corrosion rate is 0.10, β = 0.4 corresponds to Ks = 0.98, and when β = 0.7, it is approximately 0.965. and distributed micro-pitting results in less severe capacity degradation than concentrated macro-pitting over the same corrosion areas. Full article
Show Figures

Figure 1

22 pages, 3608 KB  
Review
A State-of-the-Art Review of the Hydrodynamics of Offshore Pipelines Under Submarine Gravity Flows and Their Interactions
by Cheng Zhang, Tao Tang, Fan Zhang, Chengjiao Ren, Hongcao Zhang and Guochao Wu
J. Mar. Sci. Eng. 2025, 13(9), 1654; https://doi.org/10.3390/jmse13091654 - 29 Aug 2025
Viewed by 205
Abstract
Submarine gravity flows, e.g., debris flows and turbidity currents, pose a significant threat to offshore pipeline integrity. This risk primarily manifests through the imposition of substantial dynamic loads on pipelines or their large displacement when impacted by such flows. To enhance our understanding [...] Read more.
Submarine gravity flows, e.g., debris flows and turbidity currents, pose a significant threat to offshore pipeline integrity. This risk primarily manifests through the imposition of substantial dynamic loads on pipelines or their large displacement when impacted by such flows. To enhance our understanding of these threats and facilitate the development of more robust pipeline design and protection strategies, this work reviewed the interactions between submarine gravity flows and offshore pipelines. For an individual pipeline, critical focus lies in characterizing the influence of key parameters—including Reynolds number, span height, impact angle, pipe geometry, ambient temperature, and surface roughness—on both the resultant impact forces and the fluid-structure interaction dynamics. Then, investigations into the interactions between gravity flows and multiple pipes are summarized, where the in-line spacing distance between two pipes is a key factor in reducing the impact force. Further, flow-induced vibration responses of a single pipeline and two tandem pipelines under gravity flows are presented. Building upon a thorough review, we conducted overall evaluations. There are few experimental studies and most investigations ideally treat the seabed to be horizontal, which does not always occur in practical engineering. Choosing empirical formulas to evaluate hydrodynamic loads should carefully consider the specific working conditions. An appropriate non-Newtonian fluid model is significantly important to avoid uncertainties. Some practical risk reduction measures such as streamlined structures and reduction in roughness are recommended. Finally, suggestions for future study and practice are proposed, including the requirement for three-dimensional numerical investigations, assessment of fatigue damage by flow-induced vibrations, consideration of flexible pipeline, and more attention to multiple pipelines. Full article
Show Figures

Figure 1

19 pages, 4458 KB  
Article
Analysis of Vibration Characteristics of Viscoelastic Slurry Pipe Considering Fluid–Structure Interaction Effects
by Wenjing Hu, Jianyong Hu, Handan Zhang, Xiujun Hu, Rui Kong, Kai Peng, Delei Yu and Jinke Mao
Water 2025, 17(17), 2554; https://doi.org/10.3390/w17172554 - 28 Aug 2025
Viewed by 225
Abstract
To study the vibration characteristics of viscoelastic slurry pipe structures under fluid–structure interaction (FSI), we constructed a three-dimensional FSI pipe model based on the finite element method to systematically investigate the effects of fluid effects, pipe length, and wall thickness on the vibrational [...] Read more.
To study the vibration characteristics of viscoelastic slurry pipe structures under fluid–structure interaction (FSI), we constructed a three-dimensional FSI pipe model based on the finite element method to systematically investigate the effects of fluid effects, pipe length, and wall thickness on the vibrational characteristics of viscoelastic slurry pipes. A modal analysis demonstrated that fluid effects not only significantly reduced the natural frequency of the pipe but also disrupted the symmetry of the vibration modes and eliminated the phenomenon of frequency degeneracy. The frequency reduction caused by FSI reached 54%, which was dominant compared with the water-attached effects, and its impact intensified with the increasing vibration order. The water-attached effect exhibited differences between odd and even orders, attributed to the influence of vibration modes on the distribution of fluid inertial forces, with a contribution of 45.07% to 55.24% in the odd orders and of only 37.69% to 38.93% in the even orders. When the FSI and water-attached effects acted together, the frequency reduction was further aggravated, but the reduction ratio did not follow a simple linear superposition. The parametric analysis of the pipe showed that when the pipe length increased from 1 m to 3 m, the growth rate of its natural frequency was only 26.52% that of the shorter pipe, indicating that the longer the pipes, the slower the growth rate of frequency. When the wall thickness increased from 5 mm to 11 mm, the growth rate of the first-order natural frequency decreased from 15.43% to 7.44%, suggesting that the frequency improvement effect caused by the stiffness augmentation diminished with the increase in wall thickness. The research results hold significant guiding significance for the structural design of slurry pipe systems in practical engineering and the safe operation of pipe systems. Full article
(This article belongs to the Special Issue Risk Assessment and Mitigation for Water Conservancy Projects)
Show Figures

Figure 1

19 pages, 1338 KB  
Article
From Raw Water to Pipeline Water: Correlation Analysis of Dynamic Changes in Water Quality Parameters and Microbial Community Succession
by Xiaolong Jiang, Weiying Li, Xin Song and Yu Zhou
Water 2025, 17(17), 2555; https://doi.org/10.3390/w17172555 - 28 Aug 2025
Viewed by 162
Abstract
Understanding the spatiotemporal dynamics of water quality parameters and microbial communities in drinking water distribution systems (DWDS) and their interrelationships is critical for ensuring the safety of tap water supply. This study investigated the diurnal, monthly, and annual variation patterns of water quality [...] Read more.
Understanding the spatiotemporal dynamics of water quality parameters and microbial communities in drinking water distribution systems (DWDS) and their interrelationships is critical for ensuring the safety of tap water supply. This study investigated the diurnal, monthly, and annual variation patterns of water quality and the stage-specific succession behaviors of microbial communities in a DWDS located in southeastern China. Results indicated that hydraulic shear stress during peak usage periods drove biofilm detachment and particle resuspension. This process led to significant diurnal fluctuations in total cell counts (TCC) and metal ions, with coefficients of variation ranging from 0.44 to 1.89. Monthly analyses revealed the synergistic risks of disinfection by-products (e.g., 24.5 μg/L of trichloromethane) under conditions of low chlorine residual (<0.2 mg/L) and high organic loading. Annual trends suggested seasonal coupling: winter pH reductions correlated with organic acid accumulation, while summer microbial blooms associated with chlorine decay and temperature increase. Nonlinear interactions indicated weakened metal–organic complexation but enhanced turbidity–sulfate adsorption, suggesting altered contaminant mobility in pipe scales. Microbial analysis demonstrated persistent dominance of oligotrophic Phreatobacter and prevalence of Pseudomonas in biofilms, highlighting hydrodynamic conditions, nutrient availability, and disinfection pressure as key drivers of community succession. These findings reveal DWDS complexity and inform targeted operational and microbial risk control strategies. Full article
Show Figures

Graphical abstract

24 pages, 3844 KB  
Article
Structural Failure and Mechanical Response of Buried Pipelines Under Offshore Fault Dislocation
by Chengzhu Qiu, Shuai Tian and Yujie Wang
Appl. Sci. 2025, 15(17), 9450; https://doi.org/10.3390/app15179450 - 28 Aug 2025
Viewed by 132
Abstract
Fault activity represents a significant geological hazard to buried pipeline infrastructure. The associated stratigraphic dislocation may lead to severe deformation, instability, or even rupture of the pipeline, thereby posing a serious threat to the safe operation of oil and gas transportation systems. This [...] Read more.
Fault activity represents a significant geological hazard to buried pipeline infrastructure. The associated stratigraphic dislocation may lead to severe deformation, instability, or even rupture of the pipeline, thereby posing a serious threat to the safe operation of oil and gas transportation systems. This study employs the 3D nonlinear finite element method to systematically investigate the mechanical behavior of buried steel pipes subjected to fault-induced dislocation, with particular emphasis on critical parameters including fault offset, internal pressure, and the diameter-to-thickness ratio. The study reveals that buried pipelines subjected to fault dislocation typically undergo a progressive failure process, transitioning from the elastic stage to yielding, followed by plastic deformation and eventual fracture. The diameter-to-thickness ratio is found to significantly affect the structural stiffness and deformation resistance of the pipeline. A lower diameter-to-thickness ratio improves deformation compatibility and enhances the overall structural stability of the pipeline. Internal pressure exhibits a dual effect: within a moderate range, it enhances pipeline stability and delays the onset of structural buckling; however, excessive internal pressure induces circumferential tensile stress concentration, thereby increasing the risk of local buckling and structural instability. The findings of this study provide a theoretical basis and practical guidance for the design of buried pipelines in fault-prone areas to withstand and accommodate ground misalignment. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

20 pages, 5494 KB  
Article
An Online Correction Method for System Errors in the Pipe Jacking Inertial Guidance System
by Yutong Zu, Lu Wang, Zheng Zhou, Da Gong, Yuanbiao Hu and Gansheng Yang
Mathematics 2025, 13(17), 2764; https://doi.org/10.3390/math13172764 - 28 Aug 2025
Viewed by 185
Abstract
The pipe-jacking inertial guidance method is a key technology to solve the guidance problems of complex pipe-jacking projects, such as long distances and curves. However, since its guidance information is obtained by gyroscope integration. System errors will accumulate over time and affect the [...] Read more.
The pipe-jacking inertial guidance method is a key technology to solve the guidance problems of complex pipe-jacking projects, such as long distances and curves. However, since its guidance information is obtained by gyroscope integration. System errors will accumulate over time and affect the guidance accuracy. To address the above issues, this study proposes an intelligent online system error correction scheme based on single-axis rotation and data backtracking. The method enhances system observability by actively exciting the sensor states and introducing data reuse technology. Then, a Bayesian optimization algorithm is incorporated to construct a multi-objective function. The algorithm autonomously searches for the optimal values of three key control parameters, thereby constructing an optimal correction strategy. The results show that the inclination accuracy improving by 99.36%. The tool face accuracy improving by 94.05%. The azimuth accuracy improving by 94.42% improvement. By comparing different correction schemes, the proposed method shows better performance in estimating gyro bias. In summary, the proposed method uses single-axis rotation and data backtracking, and can correct system errors in inertial navigation effectively. It has better value for engineering and provides a technical foundation for high-accuracy navigation in tunnel, pipe-jacking, and other complex tasks with low-cost inertial systems. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

15 pages, 5326 KB  
Article
Study on the Construction of a Nonlinear Creep Constitutive Model of Salt-Gypsum Rock in the Bayan Deep and the Critical Value of Wellbore Shrinkage Liquid Column Pressure
by Penglin Liu, Aobo Yin, Tairan Liang, Wen Sun, Wei Lian, Bo Zhang, Shanpo Jia and Jinchuan Huang
Processes 2025, 13(9), 2747; https://doi.org/10.3390/pr13092747 - 28 Aug 2025
Viewed by 180
Abstract
Aiming at the problems of borehole shrinkage and pipe sticking caused by creep in salt-gypsum rock formations during deep well drilling, multi-field coupling creep experiments on deep salt-bearing gypsum mudstone were carried out. Furthermore, a nonlinear creep constitutive model was constructed based on [...] Read more.
Aiming at the problems of borehole shrinkage and pipe sticking caused by creep in salt-gypsum rock formations during deep well drilling, multi-field coupling creep experiments on deep salt-bearing gypsum mudstone were carried out. Furthermore, a nonlinear creep constitutive model was constructed based on the Drucker–Prager criterion, and the critical value of liquid column pressure for borehole shrinkage was determined through numerical simulation. Experiments show that at 140 °C, salt-gypsum rock is mainly subjected to brittle failure with single shear fracture, while at 180 °C, multiple sets of cross-cutting shear bands form, shifting to plastic flow-dominated composite failure. The coupling effect of confining pressure and deviatoric stress is temperature-dependent; the critical deviatoric stress is independent of confining pressure at 140 °C, but decreases significantly with increasing confining pressure at 180 °C, revealing that salt-gypsum rock is more prone to plastic flow under high temperatures and confining pressure. The creep constitutive equation was further determined, and fitting parameters show that the stress exponent m = 2–5 and the time exponent n decrease linearly with the increase in deviatoric stress, and the model can accurately describe the characteristics of three-stage creep. The numerical simulation found that there is a nonlinear relationship between the drilling fluid density and borehole shrinkage; the shrinkage rate exceeds 1.47% when the density is ≤2.0 g/cm3, and the expansion amount is >1.0 mm when ≥2.4 g/cm3. The critical safe density range is 2.1–2.3 g/cm3, which is consistent with the field data in the Bayan area. The research results provide an experimental basis and quantitative method for the dynamic regulation of drilling fluid density in deep gypsum rock formations, and have engineering guiding significance for preventing borehole wall instability. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 2263 KB  
Article
Analysis of the Accuracy of the Inverse Marching Method Used to Determine Thermal Stresses in Cylindrical Pressure Components with Holes
by Magdalena Jaremkiewicz
Energies 2025, 18(17), 4546; https://doi.org/10.3390/en18174546 - 27 Aug 2025
Viewed by 185
Abstract
In the paper, the inverse solution of the heat conduction problem is analysed, which is applied to calculate transient thermal stresses on the internal surface of a thick-walled pipe weakened by a hole. The analysis considered a one-dimensional heat transfer problem when heat [...] Read more.
In the paper, the inverse solution of the heat conduction problem is analysed, which is applied to calculate transient thermal stresses on the internal surface of a thick-walled pipe weakened by a hole. The analysis considered a one-dimensional heat transfer problem when heat is transferred in a radial direction. In the inverse marching method, the measurement of the wall temperature at one point of a thermally insulated pipeline is used. The technique was verified regarding the distance between the point where the wall temperature is measured and the internal surface, the number of finite volumes in the inverse region, and the time step size are selected. The influence of these parameters on the accuracy of the calculated temperature, thermal stresses, heat transfer coefficient on the internal surface of the pipeline and thermal stresses at the hole edge was assessed. The reference values used to verify the technique were those calculated using the analytical method and the direct solution of the heat conduction problem, and the generated ‘measurement data’ were disturbed by random errors. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

Back to TopTop