Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = piston theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
0 pages, 4885 KB  
Article
Nonlinear Aero-Thermo-Elastic Analysis of Laminated Composite Beams with Surface-Bonded FGMs Layers Subjected to a Concentrated Harmonic Load
by Mehdi Alimoradzadeh, Francesco Tornabene and Rossana Dimitri
J. Compos. Sci. 2025, 9(10), 539; https://doi.org/10.3390/jcs9100539 - 2 Oct 2025
Abstract
In this study, the nonlinear forced vibration response of fiber-reinforced laminated composite beams coated with functionally graded materials (FGMs) is investigated under the combined action of aero-thermoelastic loads and a concentrated harmonic excitation. The mathematical formulation is established using the Euler–Bernoulli beam theory, [...] Read more.
In this study, the nonlinear forced vibration response of fiber-reinforced laminated composite beams coated with functionally graded materials (FGMs) is investigated under the combined action of aero-thermoelastic loads and a concentrated harmonic excitation. The mathematical formulation is established using the Euler–Bernoulli beam theory, where von Kármán geometric nonlinearities are taken into account, along with the modified third-order piston theory to represent aerodynamic effects. By neglecting axial inertia, the resulting set of nonlinear governing equations is simplified into a single equation. This equation is discretized through the Galerkin procedure, yielding a nonlinear ordinary differential equation. An analytical solution is, then, obtained by applying the method of multiple time scales (MTS). Furthermore, a comprehensive parametric analysis is carried out to evaluate how factors such as the power-law index, stacking sequence, temperature field, load amplitude and position, free-stream velocity, and Mach number influence both the lateral dynamic deflection and the frequency response characteristics (FRCs) of the beams, offering useful guidelines for structural design optimization. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

27 pages, 10626 KB  
Article
Meshless Time–Frequency Stochastic Dynamic Analysis for Sandwich Trapezoidal Plate–Shell Coupled Systems in Supersonic Airflow
by Ningze Sun, Guohua Gao, Dong Shao and Weige Liang
Aerospace 2025, 12(10), 880; https://doi.org/10.3390/aerospace12100880 - 29 Sep 2025
Abstract
In this paper, a full-domain stochastic response analysis is performed based on the meshless method to reveal the time–frequency dynamic characteristics, including the power spectral density (PSD) responses in the frequency domain and the evolving PSD distribution in the time domain for a [...] Read more.
In this paper, a full-domain stochastic response analysis is performed based on the meshless method to reveal the time–frequency dynamic characteristics, including the power spectral density (PSD) responses in the frequency domain and the evolving PSD distribution in the time domain for a sandwich trapezoidal plate–shell coupled system. The general governing equations are derived based on the first-order shear deformation theory (FSDT), linear piston theory and Hamilton’s principle, and the stochastic excitation is integrated into the meshless framework based on the pseudo-excitation method (PEM). By constructing the meshless shape function covering the entire structural domain from Chebyshev polynomials and discretizing the continuous domain into a series of nodes within a square definition domain, the points are assembled according to the sequence number and the equilibrium relationship on the coupling edge to obtain the overall vibration equations. The validity is demonstrated by matching the mode shapes, PSD responses, time history displacement and critical flutter boundaries with FEM simulation and reported data. Finally, the time–frequency characteristics of each substructure under global and single stochastic excitation, and the effect of aerodynamic pressure on full-domain stochastic vibration, are revealed. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

27 pages, 6795 KB  
Article
Dynamic Analysis of Variable-Stiffness Laminated Composite Plates with an Arbitrary Damaged Area in Supersonic Airflow
by Pingan Zou, Dong Shao, Ningze Sun and Weige Liang
Aerospace 2025, 12(9), 802; https://doi.org/10.3390/aerospace12090802 - 5 Sep 2025
Viewed by 308
Abstract
In response to the urgent need for performance predictions of damaged aerospace structures, this study undertakes a comprehensive investigation into the flutter characteristics of damaged variable-stiffness composite laminate (VSCL) plates. The governing boundary value problem for the dynamics of damaged VSCL plates is [...] Read more.
In response to the urgent need for performance predictions of damaged aerospace structures, this study undertakes a comprehensive investigation into the flutter characteristics of damaged variable-stiffness composite laminate (VSCL) plates. The governing boundary value problem for the dynamics of damaged VSCL plates is formulated using first-order shear deformation theory (FSDT). Additionally, the first-order piston theory is utilized to model the aerodynamic pressure in supersonic airflow. A novel coupling methodology is developed through the integration of penalty function methods and irregular mapping techniques, which effectively establishes the interaction between damaged and undamaged plate elements. The vibration characteristics and aeroelastic responses are systematically analyzed using the Chebyshev differential quadrature method (CDQM). The validity of the proposed model is thoroughly demonstrated through comparative analyses with the existing literature and finite element simulations, confirming its computational accuracy and broad applicability. A notable characteristic of this research is its ability to accommodate arbitrary geometric configurations within damaged regions. The numerical results unequivocally demonstrate that accurately predicting the flutter characteristics of damaged VSCL plates constitutes an effective strategy for mitigating structural stability degradation. This approach provides valuable insights for aerospace structural design and maintenance. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

34 pages, 6658 KB  
Article
Computational Method for Dynamic Analysis of Multibody Systems with Deformable Elements
by Sorin Dumitru, Nicolae Dumitru, Cristian Copilusi and Adrian Sorin Rosca
Mathematics 2025, 13(17), 2797; https://doi.org/10.3390/math13172797 - 31 Aug 2025
Viewed by 417
Abstract
The dynamics of mechanical systems with fast motions and dynamic loads are strongly influenced by the deformability of kinematic elements. The finite element method and the superposition of rigid body motion with deformable body motion allow us to determine a new structure for [...] Read more.
The dynamics of mechanical systems with fast motions and dynamic loads are strongly influenced by the deformability of kinematic elements. The finite element method and the superposition of rigid body motion with deformable body motion allow us to determine a new structure for the matrices that define the mechanical system equations of motion. Meshing the kinematic elements into finite elements causes the unknowns of the problem to no longer be displacement functions but rather nodal displacements. These displacements are considered as a linear combination of modal shapes and modal coordinates. This method is applied to a drive mechanism of an internal combustion engine with three pistons mounted in line. The system is driven by the pressure exerted by the gas on the piston head, which was experimentally determined. The longitudinal and transversal deformations of the connecting rod are determined, including the nodal displacements. These results were verified through virtual prototyping on the 3D model, using multibody system theory and the finite element method. The recorded differences are mainly explained by the type, size, and shape of the used finite elements. Experimental analysis allows us to determine the connecting rod kinematic and dynamic parameters as functions of time and frequency variation. The developed method is flexible and can be easily adapted to systems with fast motions in which, during operation, impact forces appear in joints for various reasons. Full article
Show Figures

Figure 1

20 pages, 1818 KB  
Article
Aeroelastic Oscillations of Cantilever Beams Reinforced by Carbon Nanotubes Based on a Modified Third-Order Piston Theory
by Mehdi Alimoradzadeh, Francesco Tornabene and Rossana Dimitri
Appl. Sci. 2025, 15(15), 8700; https://doi.org/10.3390/app15158700 - 6 Aug 2025
Cited by 1 | Viewed by 312
Abstract
This work analyzes the aero-elastic oscillations of cantilever beams reinforced by carbon nanotubes (CNTs). Four different distributions of single-walled CNTs are assumed as the reinforcing phase, in the thickness direction of the polymeric matrix. A modified third-order piston theory is used as an [...] Read more.
This work analyzes the aero-elastic oscillations of cantilever beams reinforced by carbon nanotubes (CNTs). Four different distributions of single-walled CNTs are assumed as the reinforcing phase, in the thickness direction of the polymeric matrix. A modified third-order piston theory is used as an accurate tool to model the supersonic air flow, rather than a first-order piston theory. The nonlinear dynamic equation governing the problem accounts for Von Kármán-type nonlinearities, and it is derived from Hamilton’s principle. Then, the Galerkin decomposition technique is adopted to discretize the nonlinear partial differential equation into a nonlinear ordinary differential equation. This is solved analytically according to a multiple time scale method. A comprehensive parametric analysis was conducted to assess the influence of CNT volume fraction, beam slenderness, Mach number, and thickness ratio on the fundamental frequency and lateral dynamic deflection. Results indicate that FG-X reinforcement yields the highest frequency response and lateral deflection, followed by UD and FG-A patterns, whereas FG-O consistently exhibits the lowest performance metrics. An increase in CNT volume fraction and a reduction in slenderness ratio enhance the system’s stiffness and frequency response up to a critical threshold, beyond which a damped beating phenomenon emerges. Moreover, higher Mach numbers and greater thickness ratios significantly amplify both frequency response and lateral deflections, although damping rates tend to decrease. These findings provide valuable insights into the optimization of CNTR composite structures for advanced aeroelastic applications under supersonic conditions, as useful for many engineering applications. Full article
Show Figures

Figure 1

21 pages, 5908 KB  
Article
The Role of Polyisobutylene-Bis-Succinimide (PIBSI) Dispersants in Lubricant Oils on the Deposit Control Mechanism
by Erhan Özdemir, Esra Kan, Binbin Guo, Eugene Pashkovski, Anil Agiral and Erol Yildirim
Polymers 2025, 17(8), 1041; https://doi.org/10.3390/polym17081041 - 11 Apr 2025
Cited by 1 | Viewed by 1503
Abstract
Molecular modeling calculations for the design and improvement of next-generation additives for motor oils have reached a level that can support and improve experimental results. The regulation of insoluble sludge nanoparticle aggregations within oil and on engine pistons is a critical performance metric [...] Read more.
Molecular modeling calculations for the design and improvement of next-generation additives for motor oils have reached a level that can support and improve experimental results. The regulation of insoluble sludge nanoparticle aggregations within oil and on engine pistons is a critical performance metric for lubricant oil additives. There is a general agreement regarding the mechanism of deposit formation which is attributed to the self-aggregation of nano-sized carbon rich insoluble structures. Dispersants are a primary category of additives employed to inhibit aggregation in lubricant formulations. Along with the base oil, they are crucial in dispersing and stabilizing insoluble particles to manage the formation of deposits. In this study, multiscale modeling methods were used to elucidate molecular mechanism of deposit control via polyisobutylene-bis-succinimide (PIBSI) dispersants by using density functional theory (DFT), molecular dynamics (MD) simulations of cells constructed by statistical sampling of molecular configurations, and coarse-grained (CG) simulations. The aim of this study was to understand the role of different groups such as succinimide, amine center, and two polyisobutylene (PIB) tails in PIBSI dispersants. It was demonstrated that the mechanism of deposit control by the polymer-based PIBSI dispersant can be elucidated through the interactions among various constituents, including hydrogen bonding and hydrophilic–hydrophobic interactions. We showed that sludge type nanoparticle aggregation is mitigated by intercalation of polar amine central groups of dispersant between the nanoparticles followed by the extension of two hydrophobic PIB chains into the oil phase that decreases coalesce further by forming a hydrophobic repulsive layer. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 2976 KB  
Article
Analysis of Flutter Characteristics for Composite Laminates in Hypersonic Yawed Flow
by Shuang Cao, Tongqing Guo, Jiangpeng Wu, Di Zhou and Ennan Shen
Aerospace 2025, 12(3), 174; https://doi.org/10.3390/aerospace12030174 - 21 Feb 2025
Viewed by 802
Abstract
This paper investigates the flutter characteristics of composite laminates in hypersonic yawed flow using numerical simulations. The governing equations are derived based on Hamilton’s principle and were discretized using the assumed mode method. The unsteady aerodynamic force is calculated by using the piston [...] Read more.
This paper investigates the flutter characteristics of composite laminates in hypersonic yawed flow using numerical simulations. The governing equations are derived based on Hamilton’s principle and were discretized using the assumed mode method. The unsteady aerodynamic force is calculated by using the piston theory, including the influence of the yaw angle. Several laminate models are designed to study the effects of the stacking sequence, thickness ratio, and fiber orientation on the critical dynamic pressure and the amplitude of the limit cycle oscillation. Numerical results show that positioning the material with higher stiffness on the upper layer can lead to a higher critical dynamic pressure and a smaller amplitude of the limit cycle oscillation. In the case of large yaw angles, increasing the thickness of the material with larger stiffness can clearly suppress the amplitude of the limit cycle oscillation. Fiber orientation symmetry to the x-axis can improve the flight stability with the change in the yaw angle. Full article
(This article belongs to the Special Issue Advanced Aircraft Structural Design and Applications)
Show Figures

Figure 1

13 pages, 9839 KB  
Article
Nonlinear Aero-Thermo-Elastic Stability Analysis of a Curve Panel in Supersonic Flow Based on Approximate Inertial Manifolds
by Wei Kang, Kang Liang, Bingzhou Chen and Shilin Hu
Aerospace 2024, 11(12), 992; https://doi.org/10.3390/aerospace11120992 - 30 Nov 2024
Viewed by 947
Abstract
The stability of a nonlinear aero-thermo-elastic panel in supersonic flow is analyzed numerically. In light of Hamilton’s principle, the governing equation of motion for a two-dimensional aero-thermo-elastic panel is established taking geometric nonlinearity and curvature effect into account. Coupling with the panel vibration, [...] Read more.
The stability of a nonlinear aero-thermo-elastic panel in supersonic flow is analyzed numerically. In light of Hamilton’s principle, the governing equation of motion for a two-dimensional aero-thermo-elastic panel is established taking geometric nonlinearity and curvature effect into account. Coupling with the panel vibration, aerodynamic pressure is evaluated by first order supersonic piston theory and aerothermal load is approximated by the quasi-steady theory of thermal stress. A Galerkin method based on approximate inertial manifolds is deduced for low-dimensional dynamic modeling. The efficiency of the method is discussed. Finally, the complex stability regions of the system are presented within the parametric space. The Hopf bifurcation is found during the onset of flutter as the dynamic pressure increases. The temperature rise imposes a significant effect on the stability region of the panel. Since the material parameters of the panel (elastic modulus and thermal expansion coefficient in this case) are the function of temperature, the panel tends to lose its stability as the temperature gets higher. Full article
(This article belongs to the Special Issue Advances in Thermal Fluid, Dynamics and Control)
Show Figures

Figure 1

33 pages, 11780 KB  
Article
Accurate Closed-Form Solutions for the Free Vibration and Supersonic Flutter of Laminated Circular Cylindrical Shells
by Dezhuang Pan and Yufeng Xing
J. Compos. Sci. 2024, 8(12), 493; https://doi.org/10.3390/jcs8120493 - 25 Nov 2024
Viewed by 1029
Abstract
According to the Donnell–Mushtari shell theory, this work presents a closed-form solution procedure for free vibration of open laminated circular cylindrical shells with arbitrary homogeneous boundary conditions (BCs). The governing differential equations of free vibration are derived from the Rayleigh quotient and solved [...] Read more.
According to the Donnell–Mushtari shell theory, this work presents a closed-form solution procedure for free vibration of open laminated circular cylindrical shells with arbitrary homogeneous boundary conditions (BCs). The governing differential equations of free vibration are derived from the Rayleigh quotient and solved by the iterative separation-of-variable (iSOV) method. In addition, considering axial aerodynamic pressure, simulated by the linear piston theory, the exact eigensolutions for the flutter of open laminated cylindrical shells with simply supported circumferential edges and closed laminated cylindrical shells are also achieved. The governing differential equations of cylindrical shell flutter are derived from the Hamilton variational principle and solved by the separation-of-variable (SOV) method. The influence of circumferential dimension on flutter speed is investigated for open cylindrical shells, which reveals that the number of circumferential waves in critical flutter mode increases with circumferential length, and there exists an infimum for flutter speed that is an invariant independent of circumferential length. The present results agree well with those obtained by the Galerkin method, the finite element method, and other analytical methods. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

32 pages, 13420 KB  
Article
A Mixed-Elastohydrodynamic Lubrication Model of a Capped-T-Ring Seal with a Sectioned Multi-Material Film Thickness in Landing Gear Shock Absorber Applications
by Aaron Feria Alanis, Ahmed A. Sheikh Al-Shabab, Antonis F. Antoniadis, Panagiotis Tsoutsanis and Martin Skote
Fluids 2024, 9(12), 271; https://doi.org/10.3390/fluids9120271 - 21 Nov 2024
Viewed by 1323
Abstract
Numerical investigations of capped T-ring (CTR) seals performance in reciprocating motion for landing gear shock absorber applications are presented. A lubrication model using the Elastohydrodynamic lubrication theory and deformation mechanics is developed in a multi-material contact zone, and a procedure for coupling fluid [...] Read more.
Numerical investigations of capped T-ring (CTR) seals performance in reciprocating motion for landing gear shock absorber applications are presented. A lubrication model using the Elastohydrodynamic lubrication theory and deformation mechanics is developed in a multi-material contact zone, and a procedure for coupling fluid and deformation mechanics is introduced. By conducting Finite Element Method (FEM) simulations, the static contact pressure is obtained, which subsequently is used within the model developed herein consisting of a modified Reynolds equation and an asperity contact model, to calculate the fluid film pressure, and the deformation of the fluid channel is determined using an elastic deformation model applied to a multi-component multi-mechanical property channel. These computational results are used for estimations of the seal leakage and friction under various conditions. In addition, the influence of asperity orientation is compared with other parameters, such as sealing pressure and piston velocity. A correlation between asperity orientation and leakage was found, and a general trend of reduced leakage with longitudinally oriented asperities was established. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

16 pages, 10725 KB  
Article
The Influence of Iron Content on the Porosity of AlSi9 Alloy Intended for Alfining Piston Ring Inserts
by Jarosław Piątkowski, Stanisław Roskosz, Wiktoria Sapota and Sebastian Stach
Materials 2024, 17(21), 5181; https://doi.org/10.3390/ma17215181 - 24 Oct 2024
Cited by 3 | Viewed by 1684
Abstract
Due to its tendency to increase the power of engines, improving their reliability and operational efficiency, the compression ring in combustion engine pistons is embedded in a cast iron insert, which is subjected to the process of “alfining”. This involves covering the insert [...] Read more.
Due to its tendency to increase the power of engines, improving their reliability and operational efficiency, the compression ring in combustion engine pistons is embedded in a cast iron insert, which is subjected to the process of “alfining”. This involves covering the insert with an Al–Si alloy, which increases the iron content. Research has shown that the β-Al5FeSi phases crystallizing in the area of the insert–piston connection are the main cause of an unstable connection between the silumin casting of the piston and the ring insert. Their unfavourable lamellar morphology and large dimensions are the main causes of weakening in the connection between the insert and the piston, resulting in an unacceptable number of defective products. It has also been found that up to approx. 0.59 wt.% Fe, the pore volume fraction is very small (up to 3%), and there is no correlation. However, after exceeding this value, both the volume fraction of the β-Al5FeSi phase and the number of pores increase monotonically to values of approximately 18% and 14%, respectively, and the correlation between the examined features is statistically significant. These results were compared with known theories of the influence of iron on the porosity of Al–Si alloys, showing that the precipitates of the β-Al5FeSi phase are more important in the porosity fraction than the two-layer oxide films called “bifilms”. This research was carried out and verified under industrial conditions in one of the largest piston foundries (Federal-Mogul Gorzyce sp. z o.o., F-MG) on a separate line intended for alfining ring inserts intended for combustion pistons. Full article
(This article belongs to the Special Issue Research on Performance Improvement of Advanced Alloys)
Show Figures

Figure 1

18 pages, 4800 KB  
Article
Train-Induced Unsteady Airflow in a Metro Tunnel with a Ventilation Shaft
by Fei Wang, Xingsen He, Lin Xu, Shengzhong Zhao and Miaocheng Weng
Appl. Sci. 2024, 14(20), 9177; https://doi.org/10.3390/app14209177 - 10 Oct 2024
Cited by 2 | Viewed by 1917
Abstract
To ensure only one train operates in each ventilation section within an extra-long tunnel, a ventilation shaft was typically installed to divide the entire tunnel into multiple sections. Given the crucial role of piston wind in the metro tunnel environment and ventilation, a [...] Read more.
To ensure only one train operates in each ventilation section within an extra-long tunnel, a ventilation shaft was typically installed to divide the entire tunnel into multiple sections. Given the crucial role of piston wind in the metro tunnel environment and ventilation, a deeper understanding of train-induced unsteady airflow in a metro tunnel with a ventilation shaft is desirable. This study uses the unsteady flow theory of the Bernoulli equation to mathematically model piston wind in metro tunnels both with and without ventilation shafts. The influence of various shaft parameters on piston wind development is systematically analyzed. The results indicate that the shaft significantly impacts the piston wind. The maximum piston wind speed and ventilation rate in tunnels with ventilation shafts surpass those in tunnels without them. Moreover, shaft location and the cross-sectional area notably affect the maximum piston wind speed, ventilation rate, and airflow in the shaft, whereas shaft height has no significant effect. It is found that a ventilation shaft with a larger cross-sectional area positioned in the middle of the tunnel enhances the performance of piston ventilation. Full article
(This article belongs to the Special Issue Advances in Tunnel and Underground Engineering)
Show Figures

Figure 1

22 pages, 8726 KB  
Article
Multi-Physical Field, Coupled, Mixed Lubrication Analysis of Hydraulic Reciprocating Vacuum Lip Seal
by Yan Zhao, Zhihui Cai, Ziming Feng, Wenzheng Chen and Heng Yuan
Machines 2024, 12(10), 686; https://doi.org/10.3390/machines12100686 - 30 Sep 2024
Cited by 1 | Viewed by 1196
Abstract
Engineering practice has demonstrated that seal failure can result in severe leakage and wear, reducing the efficiency of hydraulic systems and even leading to major safety risks. Currently, analyses of the thermal aspect of seal interfaces are relatively limited, with most studies focusing [...] Read more.
Engineering practice has demonstrated that seal failure can result in severe leakage and wear, reducing the efficiency of hydraulic systems and even leading to major safety risks. Currently, analyses of the thermal aspect of seal interfaces are relatively limited, with most studies focusing on mechanical analysis. However, in actual applications, temperature has a significant impact on sealing performance. In this paper, nonlinear elastomechanics, viscous fluid mechanics, micro-contact mechanics, micro-deformation theory, and thermodynamics are coupled to establish a mixed lubrication model considering the thermal effect. The reliability of the mixed lubrication model is verified through experiments, and the temperature distribution of the oil film in the sealing area and the temperature distribution of the seal ring are simulated. Finally, the effects of the reciprocating speed, root mean square roughness, fluid medium pressure, and seal pre-compression on seal friction force and leakage are investigated. The results show that the heat generated in the sealing area accumulates at the bottom of the V-ring. Under the same conditions, compared with the instroke, the temperature-rise area of the outstroke is biased to the left and the increase in temperature is greater. In addition, the piston rod speed and the preliminary compression of the seal ring have a greater impact on the overall seal friction force and leakage. Under a lower seal pre-compression, the RMS roughness has a great influence on the leakage and friction in the outstroke, while the impact of the internal stroke is limited. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

20 pages, 3756 KB  
Article
Research on Critical Quality Feature Recognition and Quality Prediction Method of Machining Based on Information Entropy and XGBoost Hyperparameter Optimization
by Dongyue Qu, Chaoyun Gu, Hao Zhang, Wenchao Liang, Yuting Zhang and Yong Zhan
Appl. Sci. 2024, 14(18), 8317; https://doi.org/10.3390/app14188317 - 15 Sep 2024
Cited by 1 | Viewed by 1534
Abstract
To address the problem of predicting machining quality for critical features in the manufacturing process of mechanical products, a method that combines information entropy and XGBoost (version 2.1.1) hyperparameter optimization is proposed. Initially, machining data of mechanical products are analyzed based on information [...] Read more.
To address the problem of predicting machining quality for critical features in the manufacturing process of mechanical products, a method that combines information entropy and XGBoost (version 2.1.1) hyperparameter optimization is proposed. Initially, machining data of mechanical products are analyzed based on information entropy theory to identify critical quality characteristics. Subsequently, a quality prediction model for these critical features is established using the XGBoost machine learning framework. The model’s hyperparameters are then optimized through Bayesian optimization. This method is applied as a case study to a medium-speed marine diesel engine piston. After the critical quality characteristics in the machining process are identified, the machining quality of these vital characteristics is predicted, and the results are compared with those obtained from a machine learning model without hyperparameter optimization. The findings demonstrate that the proposed method effectively predicts the machining quality of mechanical products. Full article
(This article belongs to the Special Issue Advanced Manufacturing Processes: Technologies and Applications)
Show Figures

Figure 1

22 pages, 4048 KB  
Article
Measuring Domain Shift in Vibration Signals to Improve Cross-Domain Diagnosis of Piston Aero Engine Faults
by Pengfei Shen, Fengrong Bi, Xiaoyang Bi and Yunyi Lu
Processes 2024, 12(9), 1902; https://doi.org/10.3390/pr12091902 - 5 Sep 2024
Cited by 1 | Viewed by 1347
Abstract
Transfer learning is an effective approach to address the decline in generalizability of intelligent fault diagnosis methods. However, there has been a persistent lack of comprehensive and effective metrics for assessing the transferability of cross-domain data, making it challenging to answer the fundamental [...] Read more.
Transfer learning is an effective approach to address the decline in generalizability of intelligent fault diagnosis methods. However, there has been a persistent lack of comprehensive and effective metrics for assessing the transferability of cross-domain data, making it challenging to answer the fundamental question in transfer learning: “When to transfer”. This study proposes a novel hybrid transferability metric (HTM) based on weighted correlation-diversity shift. The metric introduces a correlation shift measurement based on sparse principal component analysis, effectively quantifying distribution differences in domain-invariant features based on the sparse representation theory. It also designs a diversity shift measurement based on label space differences, addressing the previously overlooked impact of label variation on transferability. The proposed transferability metric is validated on four types of cross-domain diagnosis tasks involving piston aero engines. The results show that in diagnostic scenarios involving both supervised transfer learning and extreme class imbalance problems, HTM accurately predicted the transferability of the target tasks, which aligned with the actual diagnostic accuracy trends. It provides a feasible method for predicting and evaluating the applicability of transfer learning methods in real-world scenarios. Full article
Show Figures

Figure 1

Back to TopTop