Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (209)

Search Parameters:
Keywords = plane wave imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4160 KB  
Review
Additive Manufacturing Techniques for Acoustic Hologram Lens Microfabrication
by Jinwook Kim, Hoseok Kang, Seok Choi and Doyoon Kim
Micromachines 2025, 16(10), 1119; https://doi.org/10.3390/mi16101119 - 29 Sep 2025
Abstract
Acoustic hologram lenses enable the precise shaping of sound fields using plane wave inputs, with applications in biomedical imaging, targeted therapy, and acoustic manipulation. Recent advances in additive microfabrication technologies have greatly improved the design and fabrication of these lenses supporting materialization of [...] Read more.
Acoustic hologram lenses enable the precise shaping of sound fields using plane wave inputs, with applications in biomedical imaging, targeted therapy, and acoustic manipulation. Recent advances in additive microfabrication technologies have greatly improved the design and fabrication of these lenses supporting materialization of complex phase profiles, miniaturization, and rapid prototyping. This review summarizes key progress in fabrication methods including stereolithography, material jetting, and fused deposition modeling that have expanded the versatility and performance of acoustic hologram lenses. We examine the fabrication techniques, operating frequencies, printing resolutions, and acoustic properties reported in the literature. This review provides an organized overview of the current state of acoustic hologram lens fabrication and highlights critical challenges and future opportunities for advancing research and practical applications. Full article
(This article belongs to the Section D3: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

13 pages, 2559 KB  
Article
Generation of an Electromagnetic Jet Using a PTFE-Loaded WR90 Waveguide: Design and Characterization
by Antoine Deubaibe, M. Podda Abouna, Mathis Granger, Bernard Bayard and Bruno Sauviac
Photonics 2025, 12(9), 895; https://doi.org/10.3390/photonics12090895 - 5 Sep 2025
Viewed by 347
Abstract
We present a compact dielectric lens integrated at the aperture of a WR90 rectangular waveguide, achieved using polytetrafluoroethylene (PTFE). This innovative configuration enables, for the first time in the X- and Ku-bands, the direct generation of a subwavelength electromagnetic jet from a guided [...] Read more.
We present a compact dielectric lens integrated at the aperture of a WR90 rectangular waveguide, achieved using polytetrafluoroethylene (PTFE). This innovative configuration enables, for the first time in the X- and Ku-bands, the direct generation of a subwavelength electromagnetic jet from a guided structure. The beam exhibits the hallmark features of an electromagnetic jet: strong near-field focusing, a subwavelength beam width surpassing the diffraction limit, and a quasi-planar wavefront sustained over a propagation distance of about 2λ. The lens design was systematically optimized, and its performance was assessed through full-wave finite element simulations and experimentally validated on a fabricated prototype. Excellent agreement between the simulation and measurement confirms the robustness of the approach. Beyond its simplicity and low cost, this solution achieves state-of-the-art focusing performance compared to free-space and guided-wave alternatives. It offers strong potential for applications in high-resolution imaging, precision sensing, and material characterization, particularly in opaque or highly lossy environments. Full article
Show Figures

Figure 1

12 pages, 1891 KB  
Article
Full-Space Three-Dimensional Holograms Enabled by a Reflection–Transmission Integrated Reconfigurable Metasurface
by Rui Feng, Yaokai Yu, Dongyang Wu, Qiulin Tan and Shah Nawaz Burokur
Nanomaterials 2025, 15(14), 1120; https://doi.org/10.3390/nano15141120 - 18 Jul 2025
Viewed by 490
Abstract
A metasurface capable of flexibly manipulating electromagnetic waves to realize holograms presents significant potential in millimeter-wave imaging systems and data storage domains. In this study, full-space three-dimensional holograms are realized from a reflection–transmission integrated reconfigurable metasurface, which can achieve nearly 360° phase coverage [...] Read more.
A metasurface capable of flexibly manipulating electromagnetic waves to realize holograms presents significant potential in millimeter-wave imaging systems and data storage domains. In this study, full-space three-dimensional holograms are realized from a reflection–transmission integrated reconfigurable metasurface, which can achieve nearly 360° phase coverage in reflection space and 180° phase coverage in transmission space. By adjusting the voltage applied to the constituting electronically tunable meta-atoms of the metasurface, an octahedron hologram constituted by three hologram images in different focal planes is generated in the reflection space at 6.25 GHz. Moreover, a diamond hologram, also composed of three hologram images in different focal planes, is achieved in the transmission space at 6.75 GHz. Both the numerical simulation and experimental measurement are performed to validate the full-space holograms implemented by the modified weighted Gerchberg–Saxton (WGS) algorithm with specific phase distribution in different imaging planes. The obtained results pave the way for a wide range of new applications, such as next-generation three-dimensional displays for immersive viewing experiences, high-capacity optical communication systems with enhanced data encoding capabilities, and ultra-secure anti-counterfeiting solutions that are extremely difficult to replicate. Full article
Show Figures

Graphical abstract

22 pages, 5135 KB  
Article
Fast and Accurate Plane Wave and Color Doppler Imaging with the FOCUS Software Package
by Jacob S. Honer and Robert J. McGough
Sensors 2025, 25(14), 4276; https://doi.org/10.3390/s25144276 - 9 Jul 2025
Viewed by 789
Abstract
A comprehensive framework for ultrasound imaging simulations is presented. Solutions to an inhomogeneous wave equation are provided, yielding a linear model for characterizing ultrasound propagation and scattering in soft tissue. This simulation approach, which is based upon the fast nearfield method, is implemented [...] Read more.
A comprehensive framework for ultrasound imaging simulations is presented. Solutions to an inhomogeneous wave equation are provided, yielding a linear model for characterizing ultrasound propagation and scattering in soft tissue. This simulation approach, which is based upon the fast nearfield method, is implemented in the Fast Object-oriented C++ Ultrasound Simulator (FOCUS) and is extended to a range of imaging modalities, including synthetic aperture, B-mode, plane wave, and color Doppler imaging. The generation of radiofrequency (RF) data and the receive beamforming techniques employed for each imaging modality, along with background on color Doppler imaging, are described. Simulation results demonstrate rapid convergence and lower error rates compared to conventional spatial impulse response methods and Field II, resulting in substantial reductions in computation time. Notably, the framework effectively simulates hundreds of thousands of scatterers without the need for a full three-dimensional (3D) grid, and the inherent randomness in the scatterer distributions produces realistic speckle patterns. A plane wave imaging example, for instance, achieves high fidelity using 100,000 scatterers with five steering angles, and the simulation is completed on a personal computer in a few minutes. Furthermore, by modeling scatterers as moving particles, the simulation framework captures dynamic flow conditions in vascular phantoms for color Doppler imaging. These advances establish FOCUS as a robust, versatile tool for the rapid prototyping, validation, and optimization of both established and novel ultrasound imaging techniques. Full article
(This article belongs to the Special Issue Ultrasonic Imaging and Sensors II)
Show Figures

Figure 1

15 pages, 15203 KB  
Article
A Compact Grating-Type Labyrinthine Acoustic Metasurface for Broadband Multifunctional Wavefront Control
by Zelong Wang, Yiming Gu, Yong Cheng and Huichuan Zhao
Crystals 2025, 15(6), 548; https://doi.org/10.3390/cryst15060548 - 7 Jun 2025
Viewed by 925
Abstract
This study presents the design and numerical validation of a grating-type labyrinthine acoustic metasurface capable of full 0–2π phase modulation with high transmission efficiency. By tuning the tooth length of the subwavelength unit cells, precise control of the transmission phase is achieved while [...] Read more.
This study presents the design and numerical validation of a grating-type labyrinthine acoustic metasurface capable of full 0–2π phase modulation with high transmission efficiency. By tuning the tooth length of the subwavelength unit cells, precise control of the transmission phase is achieved while maintaining a high transmission coefficient across the operational bandwidth. The proposed metasurface structure is evaluated through comprehensive finite element simulations using COMSOL Multiphysics 6.0 at a center frequency of 4000 Hz. The following five core wavefront manipulation functionalities are demonstrated: complete phase modulation, anomalous refraction, planar wave focusing, cylindrical-to-plane wave conversion, and cylindrical wave focusing. Each functionality is validated across a 400 Hz frequency range to confirm robust broadband performance. The metasurface exhibits minimal phase degradation and maintains high spatial coherence across varying frequencies, highlighting its potential for applications in acoustic beam steering, imaging, and wavefront engineering. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

26 pages, 6013 KB  
Article
Dynamic Responseof Complex Defect near Anisotropic Bi-Material Interface by Incident Out-Plane Wave
by Huanan Xu, Caizhu Yang, Yonghui Wang, Guoguan Lan and Faqiang Qiu
Symmetry 2025, 17(5), 778; https://doi.org/10.3390/sym17050778 - 17 May 2025
Viewed by 402
Abstract
The Dynamic response of two cavities, an elliptical inclusion and a linear crack near anisotropic bi-material interface, was explored analytically by incident out-plane waves in the current work. Firstly, the media is divided into two half spaces (an elastic anisotropic half space with [...] Read more.
The Dynamic response of two cavities, an elliptical inclusion and a linear crack near anisotropic bi-material interface, was explored analytically by incident out-plane waves in the current work. Firstly, the media is divided into two half spaces (an elastic anisotropic half space with a circular cavity and a linear crack, and an elastic isotropic half space containing an elliptical cavity and an elliptical inclusion). With the help of the image principle, the complex function method is then used to derive the wave fields in each half space. Combined with Green’s functions approach, the relevant Green’s functions developed in the “crack creation” and “conjunction of two half spaces” procedures are derived sequentially. Subsequently, based on the “conjunction” technique, undetermined anti-plane forces are applied to the horizontal surfaces of two half spaces to maintain the continuity criteria of the interface. A series of Fredholm integral equations isobtained and then solved by utilizing the direct discrete technique. Dynamic stress concentration of two elliptical cavities and an elliptical inclusion is mainly considered graphically to discuss the interaction between two half spaces. Finally, a parametric study on the dynamic stress concentration factor (DSCF) was given to show the influence of different parameters on the interaction. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

20 pages, 6782 KB  
Article
Accelerating Millimeter-Wave Imaging: Automating Glow Discharge Detector Focal Plane Arrays with Chirped FMCW Radar for Rapid Measurement and Instrumentation Applications
by Arun Ramachandra Kurup, Daniel Rozban, Amir Abramovich, Yitzhak Yitzhaky and Natan Kopeika
Electronics 2025, 14(9), 1819; https://doi.org/10.3390/electronics14091819 - 29 Apr 2025
Viewed by 560
Abstract
This article presents an innovative integration of Glow Discharge Detector Focal Plane Arrays (GDD FPA) with Chirped Frequency Modulated Continuous Wave (FMCW) Radar, enhancing millimeter-wave (MMW) imaging. The cost-effective FPA design using GDDs as pixel elements forms the foundation of the system. We [...] Read more.
This article presents an innovative integration of Glow Discharge Detector Focal Plane Arrays (GDD FPA) with Chirped Frequency Modulated Continuous Wave (FMCW) Radar, enhancing millimeter-wave (MMW) imaging. The cost-effective FPA design using GDDs as pixel elements forms the foundation of the system. We investigate MMW effects on GDD discharge currents via basic data acquisition (DAQ) and implement a scanning mechanism with a step motor for sub-pixel imaging. The setup integrates an MMW source, optical components, a timer/counter, and an 8 × 8 FPA with 64 GDD, operating in electrical detection modes and processing signals using Fast Fourier Transform (FFT) algorithms. Recent advancements in millimeter-wave imaging have focused on improving image resolution and acquisition speed through various techniques, including lock-in amplifiers and electrical detection methods. However, these methods introduce complexity, cost, and extended acquisition times. Our approach mitigates these challenges by implementing a simplified FPA design that eliminates the need for external signal conditioning elements, providing faster and more efficient image acquisition. The primary contributions include significant improvements in the speed and automation of image acquisition achieved through a coordinated control mechanism for efficient row scanning. Compared to previous generations of GDD FPAs, this system achieves a notable reduction in image acquisition time by up to 75%, while maintaining high fidelity. These enhancements make the system particularly suitable for time-sensitive applications. Additionally, future research directions include the incorporation of 3D imaging using FMCW radar. Results from the FMCW measurements using the single GDD circuit demonstrate the system’s ability to accurately capture and process MMW radiation, even at low intensities. The combined strengths of GDD FPA and chirped FMCW radar underscore the system’s effectiveness in MMW detection, laying the groundwork for advanced MMW imaging capabilities across diverse applications. Full article
Show Figures

Figure 1

23 pages, 3905 KB  
Article
High-Resolution Imaging of Targets Using Broadband Acoustic Orbital Angular Momentum Waves and Modal-Domain Focusing Beamforming
by Yanqing Jia and Qing Hu
Electronics 2025, 14(8), 1615; https://doi.org/10.3390/electronics14081615 - 16 Apr 2025
Viewed by 522
Abstract
Applying the acoustic orbital angular momentum (AOAM) wave for underwater imaging can yield richer differential target echo information, a consequence of its spiral wavefront phase and multiple mutually orthogonal modes. In broadband AOAM wave imaging, the resolution of conventional beamforming is very low. [...] Read more.
Applying the acoustic orbital angular momentum (AOAM) wave for underwater imaging can yield richer differential target echo information, a consequence of its spiral wavefront phase and multiple mutually orthogonal modes. In broadband AOAM wave imaging, the resolution of conventional beamforming is very low. Although sub-band processing can improve resolution, it cannot handle coherent signal sources. To further enhance the resolution of broadband AOAM wave underwater imaging and address the imaging issue of coherent signals in practice, this paper proposed a modal-domain focusing beamforming method. This paper initially established the echo signal model of broadband AOAM waves based on a uniform circular array. This was followed by the derivation of the beam output signal model. Finally, a new modal-domain focusing transformation matrix was constructed. Numerical results show that the proposed method reduces the background level of the beam pattern to −86dB in simple coherent target source imaging, compared with −40dB for sub-band methods and −70dB for plane wave focusing processing. Furthermore, under different noise conditions, the proposed method achieves high-resolution imaging of complex structures and good imaging of details. Full article
(This article belongs to the Special Issue Underwater Acoustic Communications: Latest Advances and Prospects)
Show Figures

Figure 1

21 pages, 13198 KB  
Article
Infrared Bionic Compound-Eye Camera: Long-Distance Measurement Simulation and Verification
by Xiaoyu Wang, Linhan Li, Jie Liu, Zhen Huang, Yuhan Li, Huicong Wang, Yimin Zhang, Yang Yu, Xiupeng Yuan, Liya Qiu and Sili Gao
Electronics 2025, 14(7), 1473; https://doi.org/10.3390/electronics14071473 - 6 Apr 2025
Cited by 1 | Viewed by 815
Abstract
To achieve rapid distance estimation and tracking of moving targets in a large field of view, this paper proposes an innovative simulation method. Using a low-cost approach, the imaging and distance measurement performance of the designed cooling-type mid-wave infrared compound-eye camera (CM-CECam) is [...] Read more.
To achieve rapid distance estimation and tracking of moving targets in a large field of view, this paper proposes an innovative simulation method. Using a low-cost approach, the imaging and distance measurement performance of the designed cooling-type mid-wave infrared compound-eye camera (CM-CECam) is experimentally evaluated. The compound-eye camera consists of a small-lens array with a spherical shell, a relay optical system, and a cooling-type mid-wave infrared detector. Based on the spatial arrangement of the small-lens array, a precise simulation imaging model for the compound-eye camera is developed, constructing a virtual imaging space. Distance estimation and error analysis for virtual targets are performed using the principle of stereo disparity. This universal simulation method provides a foundation for spatial design and image-plane adjustments for compound-eye cameras with specialized structures. Using the raw images captured by the compound-eye camera, a scene-specific piecewise linear mapping method is applied. This method significantly reduces the brightness contrast differences between sub-images during wide-field observations, enhancing image details. For the fast detection of moving targets, ommatidia clusters are defined as the minimal spatial constraint units. Local information at the centers of these constraint units is prioritized for processing. This approach replaces traditional global detection methods, improving the efficiency of subsequent processing. Finally, the simulated distance measurement results are validated using real-world scene data. Full article
Show Figures

Figure 1

26 pages, 10427 KB  
Article
GPR Diffraction Separation by Incorporating Multilevel Wavelet Transform and Multiple Singular Spectrum Analysis
by Haolin Wang, Honghua Wang, Zhiyang Hou and Fei Zhou
Appl. Sci. 2025, 15(6), 3204; https://doi.org/10.3390/app15063204 - 14 Mar 2025
Viewed by 880
Abstract
By leveraging amplitude differences between reflected and diffracted signals in Ground Penetrating Radar (GPR) data, multiple singular spectrum analysis (MSSA) is considered an attractive approach to separate diffraction, which has identified great potential in their detectability of small-scale geological structures. However, conventional MSSA [...] Read more.
By leveraging amplitude differences between reflected and diffracted signals in Ground Penetrating Radar (GPR) data, multiple singular spectrum analysis (MSSA) is considered an attractive approach to separate diffraction, which has identified great potential in their detectability of small-scale geological structures. However, conventional MSSA encounters difficulties in pinpointing the singular value threshold that corresponds to reflection, diffraction, and noise within the singular spectrum, leading to a resolution loss of the extracted diffraction profile. To address this issue, this paper develops a new technique that incorporates multilevel wavelet transform (MWT) and MSSA to separate GPR diffraction. By first implementing the MWT on GPR data decompose, the strategy can obtain various approximate detailed coefficients of multiple transformation levels for the subsequent inverse MWT to construct the corresponding coefficient profile. The issue of coefficient profiles that depict reflections often contains residual diffractions is also addressed by performing multiple singular spectrum SVDs based on the Hankel matrix within the dominant frequency domain. Building upon this, the k-means clustering algorithm is introduced to perform MSSA for classifying singular values into k categories. The diffraction wavefield is rebuilt by combining these outcomes with the coefficient profiles that depict diffractions at various transformation levels. Numerical tests showcase that the biorthogonal wavelet basis function bior4.4 provides remarkably efficient GPR diffraction separation performance, and the number of clusters in the k-means clustering algorithm typically ranges from 9 to 15, accounting for the complexity of the wave components. Compared to plane wave deconstruction (PWD), the proposed MWT-MSSA approach reduces energy loss at the diffraction vertex, decreases residual diffraction energy within the reflection profile, and enhances computational efficiency by approximately 70–80% to facilitate the subsequent subtle imaging. Full article
(This article belongs to the Special Issue Ground Penetrating Radar (GPR): Theory, Methods and Applications)
Show Figures

Figure 1

21 pages, 4416 KB  
Systematic Review
Diagnostic Value of Comprehensive Echocardiographic Assessment Including Speckle-Tracking in Patients with Sarcoidosis Versus Healthy Controls: A Systematic Review and Meta-Analysis
by Hritvik Jain, Maryam Shahzad, Muneeba Ahsan, Rahul Patel, Jagjot Singh, Ramez M. Odat, Aman Goyal, Raveena Kelkar, Nishad Barve, Hina Farrukh and Raheel Ahmed
Diagnostics 2025, 15(6), 708; https://doi.org/10.3390/diagnostics15060708 - 12 Mar 2025
Viewed by 1077
Abstract
Background: Cardiac involvement in sarcoidosis is often subclinical, with late manifestations associated with poorer prognosis. Speckle-tracking echocardiography (STE) is gaining attention due to its ability to detect subclinical alterations in myocardial contraction patterns and quantification of abnormal parameters. Methods: Databases, including [...] Read more.
Background: Cardiac involvement in sarcoidosis is often subclinical, with late manifestations associated with poorer prognosis. Speckle-tracking echocardiography (STE) is gaining attention due to its ability to detect subclinical alterations in myocardial contraction patterns and quantification of abnormal parameters. Methods: Databases, including PubMed, Cochrane Central, Embase, Scopus, and Web of Science, were searched to identify studies comparing echocardiographic parameters in sarcoidosis patients with healthy controls. Mean difference (MD) with 95% confidence intervals (CI) were pooled using the inverse-variance random-effects model in Review Manager Version 5.4.1. Statistical significance was considered at p-value <0.05. Results: Thirteen studies with 1416 participants (854—sarcoidosis; 562—healthy controls) were included. In a pooled analysis, patients with sarcoidosis demonstrated a significantly lower left ventricular global longitudinal strain (LV GLS) (Mean Difference [MD]: −3.60; 95% Confidence Interval [CI]: −4.76, −2.43; p < 0.0001) and left ventricular global circumferential strain (LV GCS) (MD: −2.52; 95% CI: −4.61, −0.43; p = 0.02), along with a significantly higher pulmonary artery systolic pressure (PASP) (MD: 4.19; 95% CI: 0.08, 8.29; p = 0.05), left ventricular end-systolic diameter (LVESD) (MD: 0.90; 95% CI: 0.10, 1.71; p = 0.03), A-wave velocity (MD: 3.36; 95% CI: 0.33, 6.39; p = 0.03), and E/E’ ratio (MD: 1.33; 95% CI: 0.42, 2.23; p = 0.004) compared to healthy controls. No significant differences were noted in left ventricular ejection fraction (LVEF), left ventricular global radial strain (LV GRS), interventricular septal thickness (IVST), tricuspid annular plane systolic excursion (TAPSE), left ventricular end-diastolic diameter (LVEDD), E-wave velocity, and E/A ratio. Conclusions: STE serves as a promising imaging modality in detecting subclinical cardiac involvement in sarcoidosis patients with no overt cardiac manifestations. A widespread cardiovascular evaluation of sarcoidosis patients with STE is recommended to detect these altered myocardial contractile patterns. The early detection of cardiac sarcoidosis is essential to prevent adverse clinical outcomes and improve mortality. Full article
(This article belongs to the Special Issue Sarcoidosis: From Diagnosis to Management)
Show Figures

Figure 1

20 pages, 7366 KB  
Article
Histogram of Polarization Gradient for Target Tracking in Infrared DoFP Polarization Thermal Imaging
by Jianguo Yang, Dian Sheng, Weiqi Jin and Li Li
Remote Sens. 2025, 17(5), 907; https://doi.org/10.3390/rs17050907 - 4 Mar 2025
Viewed by 843
Abstract
Division-of-focal-plane (DoFP) polarization imaging systems have demonstrated considerable promise in target detection and tracking in complex backgrounds. However, existing methods face challenges, including dependence on complex image preprocessing procedures and limited real-time performance. To address these issues, this study presents a novel histogram [...] Read more.
Division-of-focal-plane (DoFP) polarization imaging systems have demonstrated considerable promise in target detection and tracking in complex backgrounds. However, existing methods face challenges, including dependence on complex image preprocessing procedures and limited real-time performance. To address these issues, this study presents a novel histogram of polarization gradient (HPG) feature descriptor that enables efficient feature representation of polarization mosaic images. First, a polarization distance calculation model based on normalized cross-correlation (NCC) and local variance is constructed, which enhances the robustness of gradient feature extraction through dynamic weight adjustment. Second, a sparse Laplacian filter is introduced to achieve refined gradient feature representation. Subsequently, adaptive polarization channel correlation weights and the second-order gradient are utilized to reconstruct the degree of linear polarization (DoLP). Finally, the gradient and DoLP sign information are ingeniously integrated to enhance the capability of directional expression, thus providing a new theoretical perspective for polarization mosaic image structure analysis. The experimental results obtained using a self-developed long-wave infrared DoFP polarization thermal imaging system demonstrate that, within the same FBACF tracking framework, the proposed HPG feature descriptor significantly outperforms traditional grayscale {8.22%, 2.93%}, histogram of oriented gradient (HOG) {5.86%, 2.41%}, and mosaic gradient histogram (MGH) {27.19%, 18.11%} feature descriptors in terms of precision and success rate. The processing speed of approximately 20 fps meets the requirements for real-time tracking applications, providing a novel technical solution for polarization imaging applications. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Target Detection)
Show Figures

Figure 1

14 pages, 28035 KB  
Article
Improving Ultrasound B-Mode Image Quality with Coherent Plane-Wave Compounding Using Adaptive Beamformers Based on Minimum Variance
by Larissa C. Neves, Felipe M. Ribas, Joaquim M. Maia, Acacio J. Zimbico, Amauri A. Assef and Eduardo T. Costa
Sensors 2025, 25(5), 1306; https://doi.org/10.3390/s25051306 - 21 Feb 2025
Viewed by 1169
Abstract
Medical ultrasound imaging using coherent plane-wave compounding (CPWC) for higher frame-rate applications has generated considerable interest in the research community. The adaptive Eigenspace Beamformer technique combined with a Generalized Sidelobe Canceler (GSC) provides noise and interference reduction in images, improving resolution and contrast [...] Read more.
Medical ultrasound imaging using coherent plane-wave compounding (CPWC) for higher frame-rate applications has generated considerable interest in the research community. The adaptive Eigenspace Beamformer technique combined with a Generalized Sidelobe Canceler (GSC) provides noise and interference reduction in images, improving resolution and contrast compared to basic methods: Delay and Sum (DAS) and Minimum Variance (MV). Different filtering approaches are applied in ultrasound image processing to reduce speckle signals. This work introduces the combination of beamformer Eigenspace Based on Minimum Variance (ESBMV) associated with GSC (EGSC) and the Kuan (EGSCK), Lee (EGSCL), and Wiener (EGSCW) filters and their enhanced versions to obtain better quality of plane-wave ultrasound images. The EGSCK technique did not present significant improvements compared to other methods. However, the EGSC with enhanced Kuan (EGSCKe) showed a remarkable reduction in geometric distortion, i.e., 0.13 mm (35%) and 0.49 mm (67%) compared to the EGSC and DAS techniques, respectively. The EGSC with Enhanced Wiener (EGSCWe) showed the best improvements in contrast radio (CR) aspects, i.e., 74% compared to the DAS technique and 60% to the EGSC technique. Furthermore, our proposed method reduces geometric distortion, making it a good option for plane-wave ultrasound imaging. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

13 pages, 6504 KB  
Article
Germanium Metasurface for the Polarization-Sensitive Stokes Thermal Imaging at a MWIR 4-Micron Wavelength
by Hosna Sultana
Photonics 2025, 12(2), 137; https://doi.org/10.3390/photonics12020137 - 7 Feb 2025
Viewed by 1761
Abstract
The mid-wave infrared (MWIR) spectral range can provide a larger bandwidth for optical sensing and communication when the near-infrared band becomes congested. This range of thermal signatures can provide more information for digital imaging and object recognition, which can be unraveled from polarization-sensitive [...] Read more.
The mid-wave infrared (MWIR) spectral range can provide a larger bandwidth for optical sensing and communication when the near-infrared band becomes congested. This range of thermal signatures can provide more information for digital imaging and object recognition, which can be unraveled from polarization-sensitive detection by integrating the metasurface of the subwavelength-scale structured interface to control light–matter interactions. To enforce the metasurface-enabled simultaneous detection and parallel analysis of polarization states in a compact footprint for 4-micron wavelength, we designed a high-contrast germanium metasurface with an axially asymmetric triangular nanoantenna with a height 0.525 times the working wavelength. First, we optimized linear polarization separation of a 52-degree angle with about 50% transmission efficiency, holding the meta-element aspect ratio within the 3.5–1.67 range. The transmission modulation in terms of periodicity and lattice resonance for the phase-gradient high-contrast dielectric metasurface in correlation with the scattering cross-section for both 1D and 2D cases has been discussed for reducing the aspect ratio to overcome the nanofabrication challenge. Furthermore, by employing the geometric phase, we achieved 40% and 60% transmission contrasts for the linear and circular polarization states, respectively, and reconstructed the Stokes vectors and output polarization states. Without any spatial multiplexing, this single metasurface unit cell can perform well in the division of focal plane Stokes thermal imaging, with an almost 10-degree field of view, and it has an excellent refractive index and height tolerance for nanofabrication. Full article
Show Figures

Figure 1

26 pages, 8318 KB  
Article
Reflection Propagation Law of Electromagnetic Waves in U-Shaped Roadway
by Laigong Guo, Xiaolong Li, Xinkang Shi, Long Ma and Changna Guo
Appl. Sci. 2025, 15(3), 1460; https://doi.org/10.3390/app15031460 - 31 Jan 2025
Viewed by 811
Abstract
To address the complex and space-constrained characteristics of underground coal mine roadways, this study proposes an electromagnetic wave reflection model based on the mirror image method. A U-shaped roadway model was designed and a relay node was established at the center of the [...] Read more.
To address the complex and space-constrained characteristics of underground coal mine roadways, this study proposes an electromagnetic wave reflection model based on the mirror image method. A U-shaped roadway model was designed and a relay node was established at the center of the roadway to simplify calculations. The point normal vector method was used to calculate the equations and boundary ranges of eight reflection planes. The valid reflection paths were determined by calculating the mirror points, counting the number of reflection lines, and evaluating their validity. The sensitivity of the number of valid reflection lines to the positions of the transmitting and receiving points relative to the corners was determined, and the reflected field strength at the receiving point was calculated. Its sensitivity to variables such as the distance between the relay node and the receiving point, antenna transmitting frequency, relative dielectric constant of the roadway walls, and width of the U-shaped roadway was studied. The simulation results showed that the number of valid reflection lines decreased with increasing distance from the transmitting and receiving points to the corners. The horizontal position of the transmitting point has a higher effect on the number of effective reflection lines than the vertical position, while the transmitting and receiving points are favorable for electromagnetic wave propagation when they are located in the center of the roadway. As the distance between the relay node and the receiving point increases, the reflection field strength attenuation at the receiving point will decrease with a larger roadway width, a smaller relative permittivity of the roadway walls, and a lower transmitting frequency of the antenna. Full article
Show Figures

Figure 1

Back to TopTop