GPR Diffraction Separation by Incorporating Multilevel Wavelet Transform and Multiple Singular Spectrum Analysis
Abstract
:1. Introduction
2. Related Works
3. Methodology
3.1. Principle of Multi-Level Wavelet Transform
3.2. Multiple Singular Spectrum Analysis Method Based on k-Means Clustering
- Determine the number of clusters k and randomly select k singular values from the singular spectrum as the initial cluster centers.
- Compute the Manhattan distance between each singular value in the singular spectrum and the cluster centers, as described by [28].
- Calculate the mean value of all singular values in each cluster and update the cluster center to this mean value.
- Repeat second and third steps until the cluster centers stabilize or a predefined number of iterations is reached.
4. Numerical Experiment
4.1. Effectiveness Verification of MWT-MSSA Method
4.2. Impact of Wavelet Basis Functions on Separation Performance
4.3. Impact of Clustering Parameter Selection on Separation Performance in the k-Means Algorithm
4.4. Anti-Noise Performance Testing
5. Field Data Test
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alani, A.M.; Tosti, F.; Ciampoli, L.B.; Gagliardi, V.; Benedetto, A. An integrated investigative approach in health monitoring of masonry arch bridges using GPR and InSAR technologies. NDT E Int. 2020, 115, 102288. [Google Scholar] [CrossRef]
- Joshaghani, A.; Shokrabadi, M. Ground penetrating radar (GPR) applications in concrete pavements. Int. J. Pavement Eng. 2022, 23, 4504–4531. [Google Scholar] [CrossRef]
- Bornik, A.; Neubauer, W. 3D Visualization Techniques for Analysis and Archaeological Interpretation of GPR Data. Remote Sens. 2022, 14, 1709. [Google Scholar] [CrossRef]
- Kang, M.-S.; Kim, N.; Im, S.B.; Lee, J.-J.; An, Y.-K. 3D GPR image-based UcNet for enhancing underground cavity detectability. Remote Sens. 2019, 11, 2545. [Google Scholar] [CrossRef]
- Liu, Z.; Yeoh, J.K.W.; Gu, X.; Dong, Q.; Chen, Y.; Wu, W.; Wang, L.; Wang, D. Automatic pixel-level detection of vertical cracks in asphalt pavement based on GPR investigation and improved mask R-CNN. Autom. Constr. 2023, 146, 104689. [Google Scholar] [CrossRef]
- Schwarz, B.; Krawczyk, C.M. Coherent diffraction imaging for enhanced fault and fracture network characterization. Solid Earth. 2020, 11, 1891–1907. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.; Jeon, K. Improvement of gpr-based rebar diameter estimation using yolo-v3. Remote Sens. 2021, 13, 2011. [Google Scholar] [CrossRef]
- Zhang, B.; He, R.; Zhang, H. Diffraction separation by a coherence analysis framework for ground penetrating radar applications. IEEE Trans. Geosci. Remote Sensing. 2023, 61, 2003115. [Google Scholar] [CrossRef]
- Xue, Z.; Zhang, H.; Zhao, Y. Pattern-guided dip estimation with plane-wave destruction filters. Geophys. Prospect. 2019, 67, 1798–1810. [Google Scholar] [CrossRef]
- Shen, H.-Y.; Li, Q.; Yan, Y.-Y.; Li, X.-X.; Zhao, J. Separation of diffracted waves via SVD filter. Pet. Sci. 2020, 17, 1259–1271. [Google Scholar] [CrossRef]
- Lin, P.; Peng, S.; Li, C. Separation and imaging of seismic diffractions using geometric mode decomposition. Geophysics 2023, 88, WA239–WA251. [Google Scholar] [CrossRef]
- Fomel, S.; Landa, E.; Taner, M.T. Post-stack velocity analysis by separation and imaging of seismic diffractions. Geophysics 2007, 72, U89–U94. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, X.; Zhang, Z. Dip filter and random noise suppression for GPR B-scan data based on a hybrid method in f-x domain. Remote Sens. 2019, 11, 2180. [Google Scholar] [CrossRef]
- Kanasewich, E.R.; Phadke, S.M. Imaging discontinuities on seismic sections. Geophysics 1988, 53, 334–345. [Google Scholar] [CrossRef]
- Khaidukov, V.; Landa, E.; Moser, T.J. Diffraction imaging by focusing-defocusing: An outlook on seismic superresolution. Geophysics 2004, 69, 1478–1490. [Google Scholar] [CrossRef]
- Moser, T.J.; Howard, C.B. Diffraction imaging in depth. Geophys. Prospect. 2008, 56, 627–641. [Google Scholar] [CrossRef]
- De Ribet, B.; Yelin, G.; Serfaty, Y. High resolution diffraction imaging for reliable interpretation of fracture systems. First Break. 2017, 35, 2. [Google Scholar] [CrossRef]
- Nowak, E.J.; Imhof, M.G. Diffractor Localization via Weighted Radon Transforms. In Proceedings of the SEG International Exposition and Annual Meeting, Denver, CO, USA, 10–15 October 2004; pp. 2108–2111. [Google Scholar]
- Akalin, M.F.; Khan, F.A.; Saleh, A.S.B. An effective methodology for high resolution diffraction imaging. In Proceedings of the SEG International Exposition and Annual Meeting, Houston, TX, USA, 22–27 September 2013; pp. 4060–4065. [Google Scholar]
- Karimpouli, S.; Malehmir, A.; Hassani, H.; Khoshdel, H.; Nabi-Bidhendi, M. Automated diffraction delineation using an apex-shifted Radon transform. J. Geophys. Eng. 2015, 12, 199–209. [Google Scholar] [CrossRef]
- St. Clair, J.; Holbrook, W.S. Measuring snow water equivalent from common-offset GPR records through migration velocity analysis. Cryosphere 2017, 11, 2997–3009. [Google Scholar] [CrossRef]
- Liu, Y.; Irving, J.; Holliger, K. High-resolution velocity estimation from surface-based common-offset GPR reflection data. Geophys. J. Int. 2022, 230, 131–144. [Google Scholar] [CrossRef]
- Kong, X.; Wang, D.-Y.; Li, Z.-C.; Zhang, R.-X.; Hu, Q.-Y. Diffraction separation by plane-wave prediction filtering. Appl. Geophys. 2017, 14, 399–405. [Google Scholar] [CrossRef]
- Lowney, B.; Lokmer, I.; O’Brien, G.S.; Amy, L.; Bean, C.J.; Igoe, M. Enhancing interpretability with diffraction imaging using plane-wave destruction aided by frequency-wavenumber f-k filtering. Interpretation 2020, 8, T541–T554. [Google Scholar] [CrossRef]
- Oropeza, V.; Sacchi, M. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics 2011, 76, V25–V32. [Google Scholar] [CrossRef]
- Yu, Z.; Hattori, K.; Zhu, K.; Chi, C.; Fan, M.; He, X. Detecting earthquake-related anomalies of a borehole strain network based on multi-channel singular spectrum analysis. Entropy 2020, 22, 1086. [Google Scholar] [CrossRef]
- Lin, P.; Zhao, J.; Peng, S. Low-rank diffraction separation using an improved MSSA algorithm. Acta Geophys. 2021, 69, 1651–1665. [Google Scholar] [CrossRef]
- Abdeyazdan, M. Data clustering based on hybrid K-har-monic means and modifier imperialist competitive algorithm. J. Supercomput. 2014, 68, 574–598. [Google Scholar] [CrossRef]
- Kumar, B.S.; Sahoo, A.K.; Maiti, S. Integrated Feature Investigation and Classification Methods for Discrimination of Subsurface Objects in GPR Imagery. IEEE Sens. J. 2024, 24, 11003–11013. [Google Scholar] [CrossRef]
- Zhang, L.; Ling, T.; Yu, B.; Huang, F.; Zhang, S. Intensive interferences processing for GPR signal based on the wavelet transform and FK filtering. J. Appl. Geophys. 2021, 186, 104273. [Google Scholar] [CrossRef]
- Oliveira, R.J.; Caldeira, B.; Teixidó, T.; Borges, J.F.; Bezzeghoud, M. Geophysical data fusion of ground-penetrating radar and magnetic datasets using 2D wavelet transform and singular value decomposition. Front. Earth Sci. 2022, 10, 1011999. [Google Scholar] [CrossRef]
- Al Bassam, N.; Ramachandran, V.; Parameswaran, S.E. Wavelet theory and application in communication and signal processing. In Wavelet Theory; BoD—Books on Demand: Hamburg, Germany, 2021; Volume 45. [Google Scholar]
- Ge, J.; Sun, H.; Shao, W.; Liu, D.; Liu, H.; Zhao, F.; Tian, B.; Liu, S. Wavelet-GAN: A GPR Noise and Clutter Removal Method Based on Small Real Datasets. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5918214. [Google Scholar] [CrossRef]
- Nuzzo, L.; Quarta, T. Improvement in GPR coherent noise attenuation using t-p and wavelet transforms. Geophysics 2004, 69, 789–802. [Google Scholar] [CrossRef]
- Lu, G.; Zhao, W.; Forte, E.; Tian, G.; Li, Y.; Pipan, M. Multi-frequency and multi-attribute GPR data fusion based on 2-D wavelet transform. Measurement 2020, 166, 108243. [Google Scholar] [CrossRef]
- Bazine, R.; Wu, H.; Boukhechba, K. Spectral DWT multilevel decomposition with spatial filtering enhancement preprocessing-based approaches for hyperspectral imagery classification. Remote Sens. 2019, 11, 2906. [Google Scholar] [CrossRef]
- Yin, Z.; Shi, W.-Z.; Wu, Z.; Zhang, J. Multilevel wavelet-based hierarchical networks for image compressed sensing. Pattern Recognit. 2022, 129, 108758. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, T.; Lim, E.; Lopez-Benitez, M.; Ma, F.; Yu, L. A review of wavelet analysis and its applications: Challenges and opportunities. IEEE Access 2022, 10, 58869–58903. [Google Scholar] [CrossRef]
- Werthmüller, D.; Key, K.; Slob, E.C. A tool for designing digital filters for the Hankel and Fourier transforms in potential, diffusive, and wavefield modeling. Geophysics 2019, 84, F47–F56. [Google Scholar] [CrossRef]
- Lin, P.; Peng, S.; Zhao, J.; Cui, X. Diffraction separation and imaging using multichannel singular-spectrum analysis. Geophysics 2020, 85, V11–V24. [Google Scholar] [CrossRef]
- Li, H.; Lin, J.; Liu, N.; Li, F.; Gao, J. Seismic reservoir delineation via Hankel transform based enhanced empirical wavelet transform. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1411–1414. [Google Scholar] [CrossRef]
- Ramnivas, K.; Ravi, N.; Singh, S.K. Selection of suitable mother wavelet along with vanishing moment for the effective detection of crack in a beam. Mech. Syst. Signal Process. 2022, 163, 108136. [Google Scholar]
Calculated Time (min) | Synthetic Data | Synthetic Data with Noise | In-Site Field Data |
---|---|---|---|
MWT-MSSA | 8 | 12 | 16 |
PWD | 38 | 39 | 45 |
Properties | Haar Wavelet | Daubechies Wavelet (dbN) | Reverse Biorthogonal Wavelet (rbioNd.Nr) | Biorthogonal Wavelet (biorNr.Nd) |
---|---|---|---|---|
Orthogonality | Yes | Yes | No | No |
Biorthogonality | Yes | Yes | Yes | Yes |
Support Width | 1 | 2N − 1 | 2Nd + 1 (Reconstruction) 2Nr + 1 (Decomposition) | 2Nr + 1 (Reconstruction) 2Nd + 1 (Decomposition) |
Regularity | Discontinuous | Approximately 0.2N | Nd − 1, Nd − 2 | Nr − 1, Nr − 2 |
Symmetry | Yes | No | Yes | Yes |
Vanishing Moments | 1 | N | Nd | Nr |
Cases | Total Clusters | Zeroed Clusters | Reconstructed Clusters | Zeroed Singular Values | Reconstructed Singular Values |
---|---|---|---|---|---|
Case 1 | 9 | 1–3 | 4–9 | 1–5 | 6–78 |
Case 2 | 1–4 | 5–9 | 1–6 | 7–78 | |
Case 3 | 1–5 | 6–9 | 1–9 | 10–78 | |
Case 4 | 1–6 | 7–9 | 1–12 | 13–78 | |
Case 5 | 11 | 1–3 | 4–11 | 1–5 | 6–78 |
Case 6 | 1–4 | 5–11 | 1–6 | 7–78 | |
Case 7 | 1–5 | 6–11 | 1–7 | 8–78 | |
Case 8 | 1–6 | 7–11 | 1–9 | 10–78 | |
Case 9 | 1–7 | 8–11 | 1–12 | 13–78 | |
Case 10 | 1–8 | 9–11 | 1–17 | 18–78 | |
Case 11 | 13 | 1–4 | 5–13 | 1–5 | 6–78 |
Case12 | 1–5 | 6–13 | 1–6 | 7–78 | |
Case 13 | 1–6 | 7–13 | 1–7 | 8–78 | |
Case 14 | 1–7 | 8–13 | 1–9 | 10–78 | |
Case 15 | 1–8 | 9–13 | 1–12 | 13–78 | |
Case 16 | 1–9 | 10–13 | 1–17 | 18–78 | |
Case 17 | 15 | 1–5 | 6–15 | 1–5 | 6–78 |
Case 18 | 1–6 | 7–15 | 1–6 | 7–78 | |
Case 19 | 1–7 | 8–15 | 1–7 | 8–78 | |
Case 20 | 1–8 | 9–15 | 1–9 | 10–78 | |
Case 21 | 1–9 | 10–15 | 1–12 | 13–78 | |
Case 22 | 1–10 | 11–15 | 1–14 | 15–78 | |
Case 23 | 1–11 | 12–15 | 1–17 | 18–88 |
Reconstructed Profiles | Total Clusters | Reconstructed Clusters | Reconstructed Singular Values |
---|---|---|---|
Figure 19e | 13 | 8–9 | 10–19 |
Figure 19c | 13 | 1–4 | 1–15 |
Figure 19g | 13 | 1–5 | 1–15 |
Reconstructed Profiles | Total Clusters | Total Singular Values | Reconstructed Clusters | Reconstructed Singular Values |
---|---|---|---|---|
Figure 23m | 10 | 425 | 4–8 | 7–58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wang, H.; Hou, Z.; Zhou, F. GPR Diffraction Separation by Incorporating Multilevel Wavelet Transform and Multiple Singular Spectrum Analysis. Appl. Sci. 2025, 15, 3204. https://doi.org/10.3390/app15063204
Wang H, Wang H, Hou Z, Zhou F. GPR Diffraction Separation by Incorporating Multilevel Wavelet Transform and Multiple Singular Spectrum Analysis. Applied Sciences. 2025; 15(6):3204. https://doi.org/10.3390/app15063204
Chicago/Turabian StyleWang, Haolin, Honghua Wang, Zhiyang Hou, and Fei Zhou. 2025. "GPR Diffraction Separation by Incorporating Multilevel Wavelet Transform and Multiple Singular Spectrum Analysis" Applied Sciences 15, no. 6: 3204. https://doi.org/10.3390/app15063204
APA StyleWang, H., Wang, H., Hou, Z., & Zhou, F. (2025). GPR Diffraction Separation by Incorporating Multilevel Wavelet Transform and Multiple Singular Spectrum Analysis. Applied Sciences, 15(6), 3204. https://doi.org/10.3390/app15063204