Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = planetary stirring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1545 KB  
Proceeding Paper
The Influence of Mechanochemical Synthesis Method on Photodegradability Characteristics of Hydroxyapatite/Zinc Oxide Composite
by Cristina Rodica Dumitrescu, Florina-Diana Gheorghe, Monica Matei, Larisa-Mădălina Ștefan and Elena Holban
Environ. Earth Sci. Proc. 2025, 33(1), 3; https://doi.org/10.3390/eesp2025033003 - 18 Feb 2025
Viewed by 632
Abstract
The ZnO/hydroxyapatite nanocomposite was prepared by attrition in a planetary mill from hydroxyapatite (HA) and ZnO nanopowders. The photocatalytic degradation of synthetic dye, methyl orange (MO), was evaluated under stirring and UV irradiations by measuring the spectroscopically UV-VIS absorbance of the solution in [...] Read more.
The ZnO/hydroxyapatite nanocomposite was prepared by attrition in a planetary mill from hydroxyapatite (HA) and ZnO nanopowders. The photocatalytic degradation of synthetic dye, methyl orange (MO), was evaluated under stirring and UV irradiations by measuring the spectroscopically UV-VIS absorbance of the solution in order to determine the remanent dye concentration. The samples CZH3 (75% ZnO) and CZH4 (25% ZnO) highlighted the best MO retention from aqueous solution by adsorption and photodegradation effects. The high absorbance of the proposed nanocomposites showed their potential to be used as photocatalysts for wastewater treatment to enable the retention of organic pollutants. Full article
Show Figures

Figure 1

31 pages, 21065 KB  
Article
Effect of Zirconium Silicate Reinforcement on Aluminum 7075; Mechanical Properties, Thermomechanical Analysis and Vibrational Behavior
by Balbheem Kamanna, S. B. Kivade and M. Nagamadhu
Eng 2025, 6(2), 23; https://doi.org/10.3390/eng6020023 - 22 Jan 2025
Viewed by 1302
Abstract
Aluminum 7075 alloys are widely utilized in aerospace, transportation, and marine industries due to their high strength and low density. However, further research is needed to understand their mechanical, thermomechanical, and vibrational behaviors when reinforced. This study focuses on the development of Al [...] Read more.
Aluminum 7075 alloys are widely utilized in aerospace, transportation, and marine industries due to their high strength and low density. However, further research is needed to understand their mechanical, thermomechanical, and vibrational behaviors when reinforced. This study focuses on the development of Al 7075 composites reinforced with zirconium silicate (ZrSiO4), processed via sand stir casting. The mechanical properties, including tensile, compression, and impact strength, as well as thermomechanical and vibrational behaviors, were thoroughly investigated. A planetary ball mill was used to mix ZrSiO4 with a wettability agent, and the results indicated that the addition of ZrSiO4 with the wettability agent significantly enhanced the mechanical properties. Fourier Transform Infrared Spectroscopy (FTIR) was employed to identify the compounds formed after adding the reinforcement and wettability agent. Scanning Electron Microscope (SEM) images and Energy-dispersive X-ray (EDX) analysis revealed a uniform distribution of the particles within the matrix. The tensile, compression, and impact strengths increased by 20%, 21%, and 19%, respectively, with the addition of 8 wt% ZrSiO4; however, strain decreased. Additionally, heat treatment further enhanced the mechanical properties of the composites. The thermomechanical properties showed improvement even at elevated temperatures, and the damping factor was enhanced with the addition of ZrSiO4. The elemental composition of the reinforced composites was analyzed using EDX, confirming the presence of the reinforcement. This research highlights the potential of Al 7075-ZrSiO4 composites for improved performance in various applications. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

12 pages, 5346 KB  
Article
Property Evaluation of AA2014 Reinforced with Synthesized Novel Mixture Processed through Squeeze Casting Technique
by Venkatraman Manokaran and Anthony Xavior Michael
J. Manuf. Mater. Process. 2024, 8(4), 153; https://doi.org/10.3390/jmmp8040153 - 18 Jul 2024
Cited by 1 | Viewed by 1813
Abstract
Aluminum alloy–graphene metal matrix composite is largely used for structural applications in the aerospace and space exploration sector. In this work, the preprocessed powder particles (AA 2014 and graphene) were used as a reinforcement material in a squeeze casting process. The powder mixture [...] Read more.
Aluminum alloy–graphene metal matrix composite is largely used for structural applications in the aerospace and space exploration sector. In this work, the preprocessed powder particles (AA 2014 and graphene) were used as a reinforcement material in a squeeze casting process. The powder mixture contained aluminum alloy powder 2014 with an average particle size of 25 μm and 0.5 wt% graphene nano powder (Grnp) with 10 nm (average) particle size. The powder mixture was mixed using the high-energy planetary ball milling (HEPBM) technique. The experimental results indicated that the novel mixture (AA 2014 and graphene powder) acted as a transporting agent of graphene particles, allowing them to disperse homogeneously in the stir pool in the final cast, resulting in the production of an isotropic composite material that could be considered for launch vehicle structural applications. Homogeneous dispersion of the graphene nanoparticles enhanced the interfacial bonding of 2014 matrix material, which resulted in particulate strengthening and the formation of a fine-grained microstructure in the casted composite plate. The mechanical properties of 0.5 wt% graphene-reinforced, hot-rolled composite plate was strengthened by the T6 condition. When compared to the values of unreinforced parent alloy, the ultimate tensile strength and the hardness value of the composite plate were found to be 420 MPa and 123 HRB, respectively. Full article
Show Figures

Figure 1

13 pages, 2252 KB  
Article
Debromination of Waste Circuit Boards by Reaction in Solid and Liquid Phases: Phenomenological Behavior and Kinetics
by Juan A. Conesa, Gerard Gandon-Ros, María F. Gómez-Rico and Ignacio Aracil
Polymers 2023, 15(6), 1388; https://doi.org/10.3390/polym15061388 - 10 Mar 2023
Cited by 1 | Viewed by 1995
Abstract
The debromination of waste circuit boards (WCBs) used in computer motherboards and components has been studied with two different pieces of equipment. Firstly, the reaction of small particles (around one millimeter in diameter) and larger pieces obtained from WCBs was carried out with [...] Read more.
The debromination of waste circuit boards (WCBs) used in computer motherboards and components has been studied with two different pieces of equipment. Firstly, the reaction of small particles (around one millimeter in diameter) and larger pieces obtained from WCBs was carried out with several solutions of K2CO3 in small non-stirred batch reactors at 200–225 °C. The kinetics of this heterogeneous reaction has been studied considering both the mass transfer and chemical reaction steps, concluding that the chemical step is much slower than diffusion. Additionally, similar WCBs were debrominated using a planetary ball mill and solid reactants, namely calcined CaO, marble sludge, and calcined marble sludge. A kinetic model has been applied to this reaction, finding that an exponential model is able to explain the results quite satisfactorily. The activity of the marble sludge is about 13% of that of pure CaO and is increased to 29% when slightly calcinating its calcite at only 800 °C for 2 h. Full article
(This article belongs to the Special Issue Modelling and Simulation of Polymers/Biopolymers)
Show Figures

Figure 1

14 pages, 9912 KB  
Article
Kinematic Properties of a Twisted Double Planetary Chaotic Mixer: A Three-Dimensional Numerical Investigation
by Telha Mostefa, Aissaoui Djamel Eddine, Naas Toufik Tayeb, Shakhawat Hossain, Arifur Rahman, Bachiri Mohamed and Kwang-Yong Kim
Micromachines 2022, 13(9), 1545; https://doi.org/10.3390/mi13091545 - 17 Sep 2022
Cited by 2 | Viewed by 2915
Abstract
In this study, a numerical investigation based on the CFD method is carried out to study the unsteady laminar flow of Newtonian fluid with a high viscosity in a three-dimensional simulation of a twisted double planetary mixer, which is composed of two agitating [...] Read more.
In this study, a numerical investigation based on the CFD method is carried out to study the unsteady laminar flow of Newtonian fluid with a high viscosity in a three-dimensional simulation of a twisted double planetary mixer, which is composed of two agitating rods inside a moving tank. The considered stirring protocol is a “Continuous sine squared motion” by using the dynamic mesh model and user-defined functions (UDFs)to define the velocity profiles. The chaotic advection is obtained in our active mixers by the temporal modulation of rotational velocities of the moving walls in order to enhance the mixing of the fluid for a low Reynolds number and a high Peclet number. For this goal, we applied the Poincaré section and Lyapunov exponent as reliable mathematic tools for checking mixing quality by tracking a number of massless particles inside the fluid domain. Additionally, we investigated the development of fluid kinematics proprieties, such as vorticity, helicity, strain rate and elongation rate, at various time periods in order to view the impact of temporal modulation on the flow properties. The results of the mentioned simulation showed that it is possible to obtain a chaotic advection after a relatively short time, which can deeply enhance mixing fluid efficiency. Full article
(This article belongs to the Collection Micromixers: Analysis, Design and Fabrication)
Show Figures

Figure 1

12 pages, 3986 KB  
Article
Microstructure, Properties, and Numerical Simulation of Semi-Solid Aluminum Alloy under Planetary Stirring Process
by Bing Zhou, Zhiyan Qiu, Keping Chen, Chun Xu and Zhanyong Wang
Materials 2022, 15(9), 3009; https://doi.org/10.3390/ma15093009 - 21 Apr 2022
Cited by 9 | Viewed by 2806
Abstract
In order to solve the problem of insufficient convective heat transfer of uniaxial stirred melt, the temperature field and shear rate of melt under planetary stirring were studied based on CFD simulation. The microstructure and properties of this technology were also experimentally studied. [...] Read more.
In order to solve the problem of insufficient convective heat transfer of uniaxial stirred melt, the temperature field and shear rate of melt under planetary stirring were studied based on CFD simulation. The microstructure and properties of this technology were also experimentally studied. The results show that compared with the uniaxial stirring semi-solid technology, the convective heat transfer ability of aluminum alloy, semi-solid slurry in planetary stirring mode is stronger. In addition, its temperature field can be reduced to the semi-solid range faster and more evenly, which is conducive to a large number of nucleation and improves the nucleation rate. The temperature difference of the whole melt is small, so the preferred direction growth and uniform growth of dendrites are avoided, and the morphology is improved. Properly increasing the revolution and rotation speed of the stirring shaft can refine the grains of semi-solid aluminum alloy parts, improve the grain morphology, and improve the tensile strength. The planetary stirring semi-solid process is very suitable for rheological high-pressure casting. Full article
Show Figures

Figure 1

13 pages, 1224 KB  
Article
Upper-Bound General Circulation of the Ocean: A Theoretical Exposition
by Hsien-Wang Ou
J. Mar. Sci. Eng. 2021, 9(10), 1090; https://doi.org/10.3390/jmse9101090 - 7 Oct 2021
Cited by 1 | Viewed by 2072
Abstract
This paper considers the general ocean circulation (GOC) within the thermodynamical closure of our climate theory, which aims to deduce the generic climate state from first principles. The preceding papers of this theory have reduced planetary fluids to warm/cold masses and determined their [...] Read more.
This paper considers the general ocean circulation (GOC) within the thermodynamical closure of our climate theory, which aims to deduce the generic climate state from first principles. The preceding papers of this theory have reduced planetary fluids to warm/cold masses and determined their bulk properties, which provide prior constraints for the derivation of the upper-bound circulation when the potential vorticity (PV) is homogenized in moving masses. In a companion paper on the general atmosphere circulation (GAC), this upper bound is seen to reproduce the observed prevailing wind, therefore forsaking discordant explanations of the easterly trade winds and the polar jet stream. In this paper on the ocean, we again show that this upper bound may replicate broad features of the observed circulation, including a western-intensified subtropical gyre and a counter-rotating tropical gyre feeding the equatorial undercurrent. Since PV homogenization has short-circuited the wind curl, the Sverdrup dynamics does not need to be the sole progenitor of the western intensification, as commonly perceived. Together with GAC, we posit that PV homogenization provides a unifying dynamical principle of the large-scale planetary circulation, which may be interpreted as the maximum macroscopic motion extractable by microscopic stirring, within the confines of thermal differentiation. Full article
(This article belongs to the Special Issue Dynamics of Ocean General Circulation and Its Variability)
Show Figures

Figure 1

25 pages, 5479 KB  
Article
Role of Surface-Layer Coherent Eddies in Potential Vorticity Transport in Quasigeostrophic Turbulence Driven by Eastward Shear
by Wenda Zhang, Christopher L. P. Wolfe and Ryan Abernathey
Fluids 2020, 5(1), 2; https://doi.org/10.3390/fluids5010002 - 22 Dec 2019
Cited by 12 | Viewed by 4325
Abstract
The transport by materially coherent surface-layer eddies was studied in a two-layer quasigeostrophic model driven by eastward mean shear. The coherent eddies were identified by closed contours of the Lagrangian-averaged vorticity deviation obtained from Lagrangian particles advected by the flow. Attention was restricted [...] Read more.
The transport by materially coherent surface-layer eddies was studied in a two-layer quasigeostrophic model driven by eastward mean shear. The coherent eddies were identified by closed contours of the Lagrangian-averaged vorticity deviation obtained from Lagrangian particles advected by the flow. Attention was restricted to eastward mean flows, but a wide range of flow regimes with different bottom friction strengths, layer thickness ratios, and background potential vorticity (PV) gradients were otherwise considered. It was found that coherent eddies become more prevalent and longer-lasting as the strength of bottom drag increases and the stratification becomes more surface-intensified. The number of coherent eddies is minimal when the shear-induced PV gradient is 10–20 times the planetary PV gradient and increases for both larger and smaller values of the planetary PV gradient. These coherent eddies, with an average core radius close to the deformation radius, propagate meridionally with a preference for cyclones to propagate poleward and anticyclones to propagate equatorward. The meridional propagation preference of the coherent eddies gives rise to a systematic upgradient PV transport, which is in the opposite direction as the background PV transport and not captured by standard Lagrangian diffusivity estimates. The upgradient PV transport by coherent eddy cores is less than 15% of the total PV transport, but the PV transport by the periphery flow induced by the PV inside coherent eddies is significant and downgradient. These results clarify the distinct roles of the trapping and stirring effect of coherent eddies in PV transport in geophysical turbulence. Full article
(This article belongs to the Special Issue Lagrangian Transport in Geophysical Fluid Flows)
Show Figures

Figure 1

11 pages, 42409 KB  
Article
Microstructure and Mechanical Properties of Al–SiC Nanocomposites Synthesized by Surface-Modified Aluminium Powder
by Xiang Zeng, Wei Liu, Ben Xu, Guogang Shu and Qiulin Li
Metals 2018, 8(4), 253; https://doi.org/10.3390/met8040253 - 9 Apr 2018
Cited by 39 | Viewed by 9013
Abstract
Ceramic nanoparticle-reinforced aluminium metal matrix composites (AMMCs) have superior mechanical properties compared with matrix alloys, exhibiting great potential in structural applications in industries such as the aerospace and automotive sectors. This research proposes a new method for distributing SiC nanoparticles in an aluminium [...] Read more.
Ceramic nanoparticle-reinforced aluminium metal matrix composites (AMMCs) have superior mechanical properties compared with matrix alloys, exhibiting great potential in structural applications in industries such as the aerospace and automotive sectors. This research proposes a new method for distributing SiC nanoparticles in an aluminium matrix alloy by powder metallurgy. The mixing of aluminium powder and SiC nanoparticles was processed by a two-step procedure, which included ultrasound-assisted stirring and planetary agitation. After that, the mixing powder was subjected to compaction, sintering and extrusion. A blank sample and three composite sheets containing 1, 2 and 3 wt % SiC nanoparticles were prepared and the mechanical properties were investigated by micro-hardness and tensile tests. A scanning electron microscope (SEM) and electron back-scattered diffraction (EBSD) were used for microstructural analysis of the composite. Experimental results revealed that by adding 1, 2, 3 wt % SiC nanoparticles, hardness was increased by 26%, 34.5%, 40.0% and tensile strength was increased by 22.3%, 28.6% and 29.3%, respectively. The grain size of the aluminium matrix decreased with the addition of SiC nanoparticles. Moreover, a decrease of elongation was observed with the increasing weight fraction of SiC. Full article
Show Figures

Figure 1

13 pages, 3466 KB  
Article
Highly Efficient Near Infrared Photothermal Conversion Properties of Reduced Tungsten Oxide/Polyurethane Nanocomposites
by Tolesa Fita Chala, Chang-Mou Wu, Min-Hui Chou, Molla Bahiru Gebeyehu and Kuo-Bing Cheng
Nanomaterials 2017, 7(7), 191; https://doi.org/10.3390/nano7070191 - 22 Jul 2017
Cited by 59 | Viewed by 11316
Abstract
In this work, novel WO3-x/polyurethane (PU) nanocomposites were prepared by ball milling followed by stirring using a planetary mixer/de-aerator. The effects of phase transformation (WO3 → WO2.8 → WO2.72) and different weight fractions of tungsten oxide [...] Read more.
In this work, novel WO3-x/polyurethane (PU) nanocomposites were prepared by ball milling followed by stirring using a planetary mixer/de-aerator. The effects of phase transformation (WO3 → WO2.8 → WO2.72) and different weight fractions of tungsten oxide on the optical performance, photothermal conversion, and thermal properties of the prepared nanocomposites were examined. It was found that the nanocomposites exhibited strong photoabsorption in the entire near-infrared (NIR) region of 780–2500 nm and excellent photothermal conversion properties. This is because the particle size of WO3-x was greatly reduced by ball milling and they were well-dispersed in the polyurethane matrix. The higher concentration of oxygen vacancies in WO3-x contribute to the efficient absorption of NIR light and its conversion into thermal energy. In particular, WO2.72/PU nanocomposites showed strong NIR light absorption of ca. 92%, high photothermal conversion, and better thermal conductivity and absorptivity than other WO3/PU nanocomposites. Furthermore, when the nanocomposite with 7 wt % concentration of WO2.72 nanoparticles was irradiated with infrared light, the temperature of the nanocomposite increased rapidly and stabilized at 120 °C after 5 min. This temperature is 52 °C higher than that achieved by pure PU. These nanocomposites are suitable functional materials for solar collectors, smart coatings, and energy-saving applications. Full article
(This article belongs to the Special Issue Polymer Nanocomposites)
Show Figures

Graphical abstract

47 pages, 13108 KB  
Article
Canonical Models of Geophysical and Astrophysical Flows: Turbulent Convection Experiments in Liquid Metals
by Adolfo Ribeiro, Guillaume Fabre, Jean-Luc Guermond and Jonathan M. Aurnou
Metals 2015, 5(1), 289-335; https://doi.org/10.3390/met5010289 - 9 Mar 2015
Cited by 15 | Viewed by 6481
Abstract
Planets and stars are often capable of generating their own magnetic fields. This occurs through dynamo processes occurring via turbulent convective stirring of their respective molten metal-rich cores and plasma-based convection zones. Present-day numerical models of planetary and stellar dynamo action are not [...] Read more.
Planets and stars are often capable of generating their own magnetic fields. This occurs through dynamo processes occurring via turbulent convective stirring of their respective molten metal-rich cores and plasma-based convection zones. Present-day numerical models of planetary and stellar dynamo action are not carried out using fluids properties that mimic the essential properties of liquid metals and plasmas (e.g., using fluids with thermal Prandtl numbers Pr < 1 and magnetic Prandtl numbers Pm ≪ 1). Metal dynamo simulations should become possible, though, within the next decade. In order then to understand the turbulent convection phenomena occurring in geophysical or astrophysical fluids and next-generation numerical models thereof, we present here canonical, end-member examples of thermally-driven convection in liquid gallium, first with no magnetic field or rotation present, then with the inclusion of a background magnetic field and then in a rotating system (without an imposed magnetic field). In doing so, we demonstrate the essential behaviors of convecting liquid metals that are necessary for building, as well as benchmarking, accurate, robust models of magnetohydrodynamic processes in Pm ≪ Pr < 1 geophysical and astrophysical systems. Our study results also show strong agreement between laboratory and numerical experiments, demonstrating that high resolution numerical simulations can be made capable of modeling the liquid metal convective turbulence needed in accurate next-generation dynamo models. Full article
(This article belongs to the Special Issue Liquid Metals)
Show Figures

Back to TopTop