Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (764)

Search Parameters:
Keywords = plant milk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 12087 KB  
Article
Effects of Winter Green Manure Incorporation on Grain Yield, Nitrogen Uptake, and Nitrogen Use Efficiency in Different Ratoon Rice Varieties
by Qiwen Hou, Pufan Shao, Sheng Chen, Zhangzhen Yang, Zhixiong Yuan, Liusheng Zhong, Ziyuan Zhao, Yu Wang, Cuo Ga, Jiarui Tang, Yaoyun Xu, Yanfu Zeng, Cong Yu, Cheng Huang and Ying Xu
Agriculture 2025, 15(17), 1801; https://doi.org/10.3390/agriculture15171801 - 22 Aug 2025
Viewed by 217
Abstract
This study evaluated the effects of winter green manure incorporation on grain yield, nitrogen uptake, and use efficiency in ratoon rice production. A two-year field experiment (2019–2021) was conducted using a split-plot design, with main plots comprising three cropping systems: fallow–ratoon rice (FA), [...] Read more.
This study evaluated the effects of winter green manure incorporation on grain yield, nitrogen uptake, and use efficiency in ratoon rice production. A two-year field experiment (2019–2021) was conducted using a split-plot design, with main plots comprising three cropping systems: fallow–ratoon rice (FA), rapeseed–ratoon rice (RA), and milk vetch–ratoon rice (MV). In the RA and MV systems, green manures were incorporated in situ, while subplots featured two ratoon rice varieties (Yliangyou 911, YLY911; Liangyou 6326, LY6326). Compared to FA treatment, RA and MV treatments significantly increased main crop yields by 16.37% and 9.31%, respectively, with corresponding annual total yield improvements of 11.34% and 7.78%. Under RA treatment, LY6326 achieved significantly higher yields than YLY911. Biomass accumulation analysis revealed that RA and MV treatments enhanced plant dry matter by 24.40% and 5.63% at heading stage, and 9.83% and 7.47% at maturity, respectively, relative to FA treatment. Green manure incorporation improved plant nitrogen content at maturity (9.42% and 10.29% for RA and MV, respectively) and panicle nitrogen accumulation (11.73% and 38.26%, respectively) compared to fallow treatment. Nitrogen use efficiency metrics demonstrated that RA and MV treatments enhanced nitrogen harvest index by 1.54% and 5.65%, respectively, while nitrogen partial factor productivity increased by 11.34% and 7.78%. Varietal comparison confirmed that LY6326 exhibited superior nitrogen accumulation and utilization compared to YLY911. These findings demonstrate that winter green manure incorporation significantly enhances grain yield and nitrogen use efficiency in ratoon rice systems, providing a scientific foundation for developing sustainable and productive rice cropping practices. Full article
(This article belongs to the Special Issue Innovative Conservation Cropping Systems and Practices—2nd Edition)
Show Figures

Figure 1

17 pages, 1853 KB  
Review
Exploring the Protective Effects of Taxifolin in Cardiovascular Health: A Comprehensive Review
by Hwan-Hee Sim, Ju-Young Ko, Dal-Seong Gong, Dong-Wook Kim, Jung Jin Kim, Han-Kyu Lim, Hyun Jung Kim and Min-Ho Oak
Int. J. Mol. Sci. 2025, 26(16), 8051; https://doi.org/10.3390/ijms26168051 - 20 Aug 2025
Viewed by 390
Abstract
Taxifolin is a natural flavonoid found in a variety of plants, including Siberian larch (Larix sibirica) and milk thistle (Silybum marianum), that has attracted attention for its multifaceted pharmacological properties, including cardioprotective effects. Through its antioxidant and anti-inflammatory activities, [...] Read more.
Taxifolin is a natural flavonoid found in a variety of plants, including Siberian larch (Larix sibirica) and milk thistle (Silybum marianum), that has attracted attention for its multifaceted pharmacological properties, including cardioprotective effects. Through its antioxidant and anti-inflammatory activities, taxifolin has shown significant therapeutic potential in cardiovascular diseases such as atherosclerosis, myocardial ischemia, and diabetic cardiomyopathy. This review highlights the cardioprotective effects of taxifolin in preclinical models of atherosclerosis, ischemia/reperfusion injury, and diabetic cardiomyopathy. Taxifolin contributes to its cardioprotective effects through key mechanisms such as modulation of pathways such as PI3K/AKT and JAK2/STAT3, inhibition of NADPH oxidase, and modulation of nitric oxide production. Recent studies have shown that taxifolin can affect glucose metabolism by modulating sodium–glucose transporter (SGLT) expression, potentially enhancing the cardioprotective effects of SGLT2 inhibitors. Given the emerging role of SGLT2 inhibitors in the management of cardiovascular disease, further investigation of the interaction of this pathway with taxifolin may provide new therapeutic insights. Although taxifolin has multifaceted potential in the prevention and treatment of cardiovascular disease, further studies are needed to better understand its mechanisms and validate its efficacy in different disease stages. This review aims to provide a rationale for the clinical application of taxifolin-based cardiovascular therapies and suggest directions for future research. Full article
(This article belongs to the Special Issue Bioactive Compounds in the Prevention of Chronic Diseases)
Show Figures

Figure 1

14 pages, 3687 KB  
Article
Revisiting Spectrophotometric Methods in the FoodOmics Era: The Influence of Phytochemicals in the Quantification of Soluble Sugars in Plant-Based Beverages, Drinks, and Extracts
by Ana Reis, Cláudia P. Passos, Elsa Brandão, Natércia Teixeira, Tiago Alves, Nuno Mateus and Victor de Freitas
Foods 2025, 14(16), 2889; https://doi.org/10.3390/foods14162889 - 20 Aug 2025
Viewed by 220
Abstract
The rising prevalence of diet-related diseases is driving consumers to adopt healthier, plant-based diets. Aware of this consumer trend, the Food Industry is investing in innovative, tasty, plant-based foods with added nutraceutical value. However, health-promoting phytochemicals are often found in foods with a [...] Read more.
The rising prevalence of diet-related diseases is driving consumers to adopt healthier, plant-based diets. Aware of this consumer trend, the Food Industry is investing in innovative, tasty, plant-based foods with added nutraceutical value. However, health-promoting phytochemicals are often found in foods with a high content of natural sugars that are readily absorbed, undermining their health benefits. To ensure proper labelling and support consumers in their choices for healthier foods, the Food Industry relies on cost-effective methods to measure soluble sugars. Herein, we assess three established spectrophotometric assays—phenol, orcinol, and anthrone—for quantifying soluble sugars in 12 plant-based beverages, drinks, and extracts. The standard glucose solutions revealed that the phenol and orcinol reagents displayed the highest sensitivity. Applied to phytochemical-rich beverages, drinks, and extracts, the anthrone protocol leads to precipitation phenomena; the phenol is prone to interference from chlorophylls, carotenoids, melanoidins, (ellagi)tannins, and anthocyanins, whereas orcinol is susceptible only to anthocyanins. Though spectrophotometric assays overestimate sugar levels in both high- and low-sugar-content samples, the orcinol-sulfuric acid method offers an environmentally safe and cost-effective approach to quantifying soluble sugars in phytochemical-rich samples, fostering food innovation and helping to build consumer trust within resilient and sustainable food systems. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

28 pages, 4311 KB  
Article
Development of Alginate–Pullulan Capsules for Targeted Delivery of Herbal Dietary Supplements in Functional Fermented Milk Products
by Alibek Muratbayev, Berik Idyryshev, Aitbek Kakimov, Aigerim Bepeyeva, Madina Jumazhanova, Marzhan Tashybayeva, Gulmira Zhumadilova, Nazerke Muratzhankyzy, Zhadyra Imangaliyeva and Aray Bazanova
Foods 2025, 14(16), 2878; https://doi.org/10.3390/foods14162878 - 19 Aug 2025
Viewed by 375
Abstract
The present study develops and optimizes a jet-cutting encapsulation method using a laboratory-scale encapsulator to incorporate herbal dietary supplements into fermented milk products. Sodium alginate and pullulan were selected as core and coating polymers, respectively, after rheological screening demonstrated that 1% alginate (η [...] Read more.
The present study develops and optimizes a jet-cutting encapsulation method using a laboratory-scale encapsulator to incorporate herbal dietary supplements into fermented milk products. Sodium alginate and pullulan were selected as core and coating polymers, respectively, after rheological screening demonstrated that 1% alginate (η ≈ 350–450 Pa·s at 22–25 °C) and 2% pullulan (η ≈ 400 Pa·s at 25–30 °C) provide a balance between atomization, shell integrity, and fluidity. Under optimized conditions, capsules of 1.00 ± 0.05 mm diameter and high sphericity (aspect ratio 1.08 ± 0.03) were produced. In vitro gastrointestinal simulation confirmed capsule stability in simulated gastric fluid (pH 2.0) and complete disintegration within 120 min in simulated intestinal fluid (pH 7.2). Inclusion of 8% (w/w) capsules in a fermented milk beverage preserved appearance, texture, flavor, and color while increasing viscosity from 2.0 to 4.0 Pa·s. Titratable acidity rose from 87 °T at 24 h to 119 °T at 120 h, with sensory quality remaining acceptable; substantial gas formation and excessive sourness occurred only after 168 h, defining a 5-day refrigerated shelf life. These findings demonstrate that the 1% alginate–pullulan capsule system successfully protects plant extracts during gastric transit and enables targeted intestinal release, while maintaining the sensory and rheological properties of the fortified fermented milk product. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

15 pages, 1143 KB  
Article
Development and Characterization of Pistachio Yogurt Analog: A Healthy, Sustainable, and Innovative Plant-Based Alternative
by Inés M. Ramos, Samuel Rodríguez García and Justa M. Poveda
Fermentation 2025, 11(8), 467; https://doi.org/10.3390/fermentation11080467 - 15 Aug 2025
Viewed by 497
Abstract
Plant-based yogurts are increasingly recognized as sustainable and health-conscious alternatives to dairy-based products, driven by environmental, ethical, and nutritional motivations. Pistachio milk, derived from an efficient and resilient crop, emerges as a promising raw material for yogurt production, offering unique sensory qualities and [...] Read more.
Plant-based yogurts are increasingly recognized as sustainable and health-conscious alternatives to dairy-based products, driven by environmental, ethical, and nutritional motivations. Pistachio milk, derived from an efficient and resilient crop, emerges as a promising raw material for yogurt production, offering unique sensory qualities and a dense nutritional profile. Rich in unsaturated fatty acids, bioactive compounds, and essential nutrients, pistachios are ideal for fermentation with lactic acid bacteria (LAB). In this study, a novel pistachio-based yogurt analog (PBYA) was developed using lactic acid fermentation, with a yogurt commercial starter, of pistachio milk. The production process was optimized to create an additive-free, clean-label formulation without the use of stabilizers or thickeners. The physicochemical, microbiological, and sensory properties of the PBYA were evaluated over refrigerated storage. The final product exhibited high levels of protein (5.6%), fat (5.4–6.8%), and total solids (20.5–21.4%), along with desirable texture and flavor characteristics. Notably, PBYA presented significantly higher concentrations of total free amino acids (754 mg/L) compared to commercial soy (557 mg/L) and cow’s milk yogurts (390 mg/L), particularly in essential amino acids such as lysine, methionine, and tryptophan. This enhanced free amino acid profile contributes to the product’s functional and nutritional value. Sensory analysis revealed good acceptance of the product, with improvements in viscosity and firmness over time, likely due to microbial exopolysaccharide production. Overall, the findings highlight the feasibility and commercial potential of PBYA as a clean-label, plant-based fermented product that meets current consumer demands for sustainability, nutrition, and sensory quality. Full article
Show Figures

Figure 1

21 pages, 961 KB  
Article
A Mixed-Method Assessment of Drivers and Barriers for Substituting Dairy with Plant-Based Alternatives by Danish Adults
by Beatriz Philippi Rosane, Lise Tjørring, Annika Ley, Derek Victor Byrne, Barbara Vad Andersen, Susanne Gjedsted Bügel and Sophie Wennerscheid
Foods 2025, 14(15), 2755; https://doi.org/10.3390/foods14152755 - 7 Aug 2025
Viewed by 339
Abstract
The market for plant-based alternatives to animal foods has increased rapidly in the past decade, mainly due to consumer demand. Little evidence is available regarding nutritional impacts, drivers, and barriers to using these products as substitutes for animal foods in real-life conditions. This [...] Read more.
The market for plant-based alternatives to animal foods has increased rapidly in the past decade, mainly due to consumer demand. Little evidence is available regarding nutritional impacts, drivers, and barriers to using these products as substitutes for animal foods in real-life conditions. This pilot study followed 16 Danish adults (30 ± 11 years old; 11 females) for 4 weeks with substituting milk, cheese, and yogurt with plant-based analogues to dairy (PBADs) and assessed their drivers and barriers to applying the intervention with a mixed-method approach. PBADs are constantly compared to their animal counterparts, both regarding product characteristics, such as price and sensory properties, as well as cultural roles and subjective memories. The mixed methods showed dairy attachment, price, and taste were the main barriers to consuming PBAD, while changes in life and social circles were drivers (qualitative data). As for the liking of PBADs, plant-based yoghurt was the preferred intervention product (73.5/100, p < 0.05), followed by plant-based drinks (65.9/100), while plant-based cheese was the lowest rated (47.9/100, p < 0.05). As for dietary changes, a lower average intake of sugars, saturated fatty acids, cholesterol, calcium, phosphorus, and zinc was observed after the intervention. Additionally, this study describes the attachment of the study population to milk and dairy products. It shows that choosing dairy is beyond nourishment but is connected to tradition, culture, pleasure, memories, and a sense of belonging. In contrast, there is no history or attachment to PBADs. Full article
Show Figures

Figure 1

15 pages, 3724 KB  
Article
Exploring the Association Between Multidimensional Dietary Patterns and Non-Scarring Hair Loss Using Mendelian Randomization
by Lingfeng Pan, Philipp Moog, Caihong Li, Leonard Steinbacher, Samuel Knoedler, Haydar Kükrek, Ulf Dornseifer, Hans-Günther Machens and Jun Jiang
Nutrients 2025, 17(15), 2569; https://doi.org/10.3390/nu17152569 - 7 Aug 2025
Viewed by 736
Abstract
Background: Androgenetic alopecia (AGA) and alopecia areata (AA) impose significant psychosocial burdens. While pharmacological and surgical treatments exist, the role of dietary factors remains underexplored due to methodological limitations in observational studies. This Mendelian randomization (MR) study investigates causal relationships between 187 dietary [...] Read more.
Background: Androgenetic alopecia (AGA) and alopecia areata (AA) impose significant psychosocial burdens. While pharmacological and surgical treatments exist, the role of dietary factors remains underexplored due to methodological limitations in observational studies. This Mendelian randomization (MR) study investigates causal relationships between 187 dietary exposures and hair loss, leveraging genetic variants to address confounding biases. Methods: Genome-wide association study (GWAS) data from 161,625 UK Biobank participants were analyzed, focusing on food preferences and intake patterns. Genetic instruments for each of the 187 dietary exposures were selected at a genome-wide significance threshold (p < 5 × 10−8), with rigorous sensitivity analyses (MR-Egger, MR-PRESSO) to validate causality. Outcomes included AA and AGA datasets from the FinnGen consortium. Results: MR analysis identified 18 specific dietary exposures significantly associated with non-scarring hair loss (FDR < 0.05). Protective effects emerged for antioxidant-rich dietary exposures, represented by higher preferences for melon, onions, and tea. Elevated risks were observed for certain exposures, including croissants, goat cheese, and whole milk. Alcohol consumption exhibited the strongest risk associations. Our extensive analysis of alcohol intake, combining data from multiple studies, consistently identified it as a significant risk factor for both alopecia areata and androgenetic alopecia. Conclusions: These findings imply modifiable dietary patterns in hair loss pathophysiology. A dual strategy is proposed: prioritizing polyphenol-rich plant foods while minimizing pro-inflammatory triggers like processed carbohydrates and alcohol. Clinically, tailored dietary adjustments—reducing ultra-processed foods and alcohol—may complement existing therapies for hair loss management. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

17 pages, 2019 KB  
Article
Sport Participation and Gender Differences in Dietary Preferences: A Cross-Sectional Study in Italian Adults
by Francesca Campoli, Elvira Padua, Michele Panzarino, Lucio Caprioli, Giuseppe Annino and Mauro Lombardo
Sports 2025, 13(8), 258; https://doi.org/10.3390/sports13080258 - 6 Aug 2025
Viewed by 321
Abstract
Background: The relationship between sports participation and food preferences in adults, as well as the influence of gender, is still unclear. Objective: The objective of this study was to investigate the association between sports participation and individual food preferences and to explore potential [...] Read more.
Background: The relationship between sports participation and food preferences in adults, as well as the influence of gender, is still unclear. Objective: The objective of this study was to investigate the association between sports participation and individual food preferences and to explore potential gender differences among sports participants in a large group of Italian adults. Methods: This cross-sectional study involved 2665 adults (aged ≥ 18 years) who lead normal lives and underwent a routine lifestyle and dietary assessment at a clinical centre specialising in nutrition, metabolic health, and lifestyle counselling in Rome. Participants completed an online questionnaire on food preferences (19 foods) and sports practice. Multivariate logistic regression models, adjusted for age, sex, and smoking, were used to assess associations. Results: Sports participation was defined as engaging in structured physical activity at least once per week and was reported by 53.5% of subjects (men: 60.1%; women: 49.0%; p < 0.0001). After adjustment, active individuals were significantly more likely to prefer plant-based drinks, low-fat yoghurt, fish, cooked and raw vegetables, fruit, whole grains, tofu, and dark chocolate (all p < 0.05) and less likely to prefer cow’s milk (p = 0.018). Among sport participants, males were more likely to prefer meat (general, white, red, processed) and eggs, while females preferred plant-based drinks. No significant gender differences were observed for dairy products, legumes, or fish. Differences in food preferences were also observed according to the type of sport, with bodybuilders showing higher preference for tofu and dark chocolate. The strongest associations were found in the 25–44 age group. Conclusions: Sports participation is independently associated with specific food preferences, characterised by greater preference for plant-based and fibre-rich foods, and gender differences in food choices persist even among active adults. These findings highlight the need to consider both sports participation and gender when designing nutritional interventions. Full article
(This article belongs to the Special Issue Enhancing Performance and Promoting Health Through Nutrition)
Show Figures

Figure 1

19 pages, 1134 KB  
Article
Application of Animal- and Plant-Derived Coagulant in Artisanal Italian Caciotta Cheesemaking: Comparison of Sensory, Biochemical, and Rheological Parameters
by Giovanna Lomolino, Stefania Zannoni, Mara Vegro and Alberto De Iseppi
Dairy 2025, 6(4), 43; https://doi.org/10.3390/dairy6040043 - 1 Aug 2025
Viewed by 246
Abstract
Consumer interest in vegetarian, ethical, and clean-label foods is reviving the use of plant-derived milk coagulants. Cardosins from Cynara cardunculus (“thistle”) are aspartic proteases with strong clotting activity, yet their technological impact in cheese remains under-explored. This study compared a commercial thistle extract [...] Read more.
Consumer interest in vegetarian, ethical, and clean-label foods is reviving the use of plant-derived milk coagulants. Cardosins from Cynara cardunculus (“thistle”) are aspartic proteases with strong clotting activity, yet their technological impact in cheese remains under-explored. This study compared a commercial thistle extract (PC) with traditional bovine rennet rich in chymosin (AC) during manufacture and 60-day ripening of Caciotta cheese. Classical compositional assays (ripening index, texture profile, color, solubility) were integrated with scanning electron microscopy, three-dimensional surface reconstruction, and descriptive sensory analysis. AC cheeses displayed slower but sustained proteolysis, yielding a higher and more linear ripening index, softer body, greater solubility, and brighter, more yellow appearance. Imaging revealed a continuous protein matrix with uniformly distributed, larger pores, consistent with a dairy-like sensory profile dominated by milky and umami notes. Conversely, PC cheeses underwent rapid early proteolysis that plateaued, producing firmer, chewier curds with lower solubility and darker color. Micrographs showed a fragmented matrix with smaller, heterogeneous pores; sensory evaluation highlighted vegetal, bitter, and astringent attributes. The data demonstrate that thistle coagulant can successfully replace animal rennet but generates cheeses with distinct structural and sensory fingerprints. The optimization of process parameters is therefore required when targeting specific product styles. Full article
(This article belongs to the Section Milk Processing)
Show Figures

Figure 1

16 pages, 1706 KB  
Article
Biochar-Immobilized Pseudomonas aeruginosa Enhances Copper Remediation and Growth of Chinese Milk Vetch (Astragalus sinicus)
by Yunkai Hu, Chuan Wang and Youbao Wang
Microorganisms 2025, 13(8), 1793; https://doi.org/10.3390/microorganisms13081793 - 31 Jul 2025
Viewed by 294
Abstract
Heavy metal-contaminated soil poses a severe threat to environmental quality and human health, calling for eco-friendly and efficient remediation strategies. This study explored the use of biochar-immobilized copper-resistant Pseudomonas aeruginosa to remediate copper-contaminated soil and promote growth of Chinese milk vetch (Astragalus [...] Read more.
Heavy metal-contaminated soil poses a severe threat to environmental quality and human health, calling for eco-friendly and efficient remediation strategies. This study explored the use of biochar-immobilized copper-resistant Pseudomonas aeruginosa to remediate copper-contaminated soil and promote growth of Chinese milk vetch (Astragalus sinicus L.). Indoor pot experiments compared four groups: copper-contaminated soil (control), soil with biochar, soil with free bacteria, and soil with biochar-immobilized bacteria (IM). Results showed IM had the most significant effects on soil properties: it raised pH to 7.04, reduced bioavailable copper by 34.37%, and increased catalase (3.48%) and urease (78.95%) activities. IM also altered soil bacterial communities, decreasing their richness and evenness (alpha diversity) while shifting community composition. For Chinese milk vetch, IM reduced leaf malondialdehyde (a marker of oxidative stress) by 15%, increased total dry weight by 90%, and lowered copper accumulation in roots (18.62%) and shoots (60.33%). As a nitrogen-fixing plant, the vetch’s nitrogen fixation in roots and shoots rose by 82.70% and 57.08%, respectively, under IM. These findings demonstrate that biochar-immobilized Pseudomonas aeruginosa is a promising in situ amendment for remediating copper-contaminated soil and boosting plant growth. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

41 pages, 580 KB  
Review
The Alarming Effects of Per- and Polyfluoroalkyl Substances (PFAS) on One Health and Interconnections with Food-Producing Animals in Circular and Sustainable Agri-Food Systems
by Gerald C. Shurson
Sustainability 2025, 17(15), 6957; https://doi.org/10.3390/su17156957 - 31 Jul 2025
Viewed by 541
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetically produced chemicals that are causing a major One Health crisis. These “forever chemicals” are widely distributed globally in air, water, and soil, and because they are highly mobile and extremely difficult to degrade in the environment. [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are synthetically produced chemicals that are causing a major One Health crisis. These “forever chemicals” are widely distributed globally in air, water, and soil, and because they are highly mobile and extremely difficult to degrade in the environment. They cause additional health concerns in a circular bioeconomy and food system that recycles and reuses by-products and numerous types of waste materials. Uptake of PFAS by plants and food-producing animals ultimately leads to the consumption of PFAS-contaminated food that is associated with numerous adverse health and developmental effects in humans. Contaminated meat, milk, and eggs are some of the main sources of human PFAS exposure. Although there is no safe level of PFAS exposure, maximum tolerable PFAS consumption guidelines have been established for some countries. However, there is no international PFAS monitoring system, and there are no standardized international guidelines and mechanisms to prevent the consumption of PFAS-contaminated foods. Urgent action is needed to stop PFAS production except for critical uses, implementing effective water-purification treatments, preventing spreading sewage sludge on land and pastures used to produce food, and requiring marketers and manufacturers to use packaging that is free of PFAS. Full article
14 pages, 935 KB  
Systematic Review
The Global Prevalence of Bacillus spp. in Milk and Dairy Products: A Systematic Review and Meta-Analysis
by Tianmei Sun, Ran Wang, Yanan Sun, Xiaoxu Zhang, Chongtao Ge and Yixuan Li
Foods 2025, 14(15), 2599; https://doi.org/10.3390/foods14152599 - 24 Jul 2025
Viewed by 452
Abstract
The spoilage of dairy products and foodborne diseases caused by Bacillus spp. are important public concerns. The objective of this study was to estimate the global prevalence of Bacillus spp. in a range of milk and dairy products by using a meta-analysis of [...] Read more.
The spoilage of dairy products and foodborne diseases caused by Bacillus spp. are important public concerns. The objective of this study was to estimate the global prevalence of Bacillus spp. in a range of milk and dairy products by using a meta-analysis of literature data published between 2001 and 2023. A total of 3624 publications were collected from Web of Science and PubMed databases. Following the principles of systematic review, 417 sets of prevalence data were extracted from 142 eligible publications. Estimated by the random-effects model, the overall prevalence of Bacillus spp. in milk and dairy products was 11.8% (95% CI: 10.1–13.7%), with highly severe heterogeneity (94.8%). Subgroup analyses revealed substantial heterogeneity in Bacillus spp. prevalence according to geographical continents, sources of sampling, types of dairy products, microbial species, and detection methods. The prevalence of Bacillus spp. was highest in Asia (15.4%, 95% CI: 12.3–19.1%), lowest in Oceania (3.5%, 95% CI: 3.3–3.7%) and generally higher in developing versus developed countries. The prevalence of Bacillus spp. isolated from retail markets (16.1%, 95% CI: 13.0–19.7%) was higher than from farms (10.3%, 95% CI: 6.9–15.0%) or dairy plants (9.2%, 95% CI: 7.1–12.0%). This finding is likely attributable to its inherent characteristic of the resistant endospores and ubiquitous presence in the environment—Bacillus spp. can potentially cyclically contaminate farms, dairy products and human markets. Regarding the species distribution, Bacillus cereus presented a cosmopolitan distribution across all continents. The epidemic patterns of different Bacillus species vary depending on the sample sources. In addition, the detection method utilized also affected the reported prevalence of Bacillus spp. It is recommended to use molecular-based rapid detection methods to obtain a more accurate prevalence of Bacillus contamination. Therefore, a better understanding of variations in Bacillus spp. prevalence across different factors will enable competent authorities, industries, and other relevant stakeholders to tailor their interventions for effectively controlling Bacillus spp. in milk and dairy products. Full article
Show Figures

Figure 1

24 pages, 3874 KB  
Article
Regenerative Farming Enhances Human Health Benefits of Milk and Yoghurt in New Zealand Dairy Systems
by Fabiellen Pereira, Sagara Kumara, Muhammad Ahsin, Lamis Ali, Ying Xi, Stephan van Vliet, Simon Kelly, Anita Fleming and Pablo Gregorini
Dairy 2025, 6(4), 39; https://doi.org/10.3390/dairy6040039 - 23 Jul 2025
Viewed by 444
Abstract
This on-farm study evaluated the effects of a regenerative (plant polyculture) as compared to conventional (monoculture) pasture-based New Zealand dairy production system on milk and yoghurt nutraceutical properties and environmental impact. Milk and yoghurt produced by two adjacent regenerative and conventional farms were [...] Read more.
This on-farm study evaluated the effects of a regenerative (plant polyculture) as compared to conventional (monoculture) pasture-based New Zealand dairy production system on milk and yoghurt nutraceutical properties and environmental impact. Milk and yoghurt produced by two adjacent regenerative and conventional farms were sampled throughout the year and analyzed for chemical composition, metabolomics, and microbiome. Milk samples were also collected over four consecutive days (one day after herbage sampling) on four occasions throughout lactation: early lactation (October), peak lactation (December/January), mid-lactation (March), and late lactation (May). Overall, the regenerative system had a lower environmental impact while maintaining a similar yield and the same milk composition compared to conventional systems. Furthermore, milk and yoghurt from the regenerative system had a more favourable profile of phytochemical antioxidants with potential positive benefits to human health (anti-inflammatory and antioxidant). Full article
(This article belongs to the Section Milk and Human Health)
Show Figures

Figure 1

21 pages, 1406 KB  
Article
Is There a Potential Market for A2 Milk? Consumer Perception of Dairy Production and Consumption
by Carmen L. Manuelian, Xavier Such, Bibiana Juan and María J. Milán
Foods 2025, 14(15), 2567; https://doi.org/10.3390/foods14152567 - 22 Jul 2025
Viewed by 446
Abstract
This online survey aimed to gather consumer opinions on dairy products and production and to identify the potential market for A2 milk (milk containing exclusively β-casein A2, which reduces gastrointestinal discomfort after consumption). The questionnaire included seven sections covering the consumption of dairy [...] Read more.
This online survey aimed to gather consumer opinions on dairy products and production and to identify the potential market for A2 milk (milk containing exclusively β-casein A2, which reduces gastrointestinal discomfort after consumption). The questionnaire included seven sections covering the consumption of dairy products, sociodemographic aspects, awareness and purchase intention of A2 milk, questions about milk as a source of nutrients and health benefits, the environmental impact of milk production, and alternatives to cow milk. Responses from 672 Spanish consumers categorized into clusters (according to their milk consumption and their discomfort after drinking it), gender, age, educational level, and milk taste preference were analyzed using a linear multiple regression model. Dairy consumers not experiencing discomfort after drinking milk (62.6%) and those who preferred the taste of milk over plant-based alternatives (64.0%) demonstrated better knowledge of milk nutrients and its health benefits. Participants’ age, gender, and education level also influenced their perceptions, with older participants, women, and those with university education generally showing better results. In conclusion, clusters impact consumers’ milk perceptions as a nutritional source and its health benefits. The positive perception of milk’s nutritional benefits among dairy consumers experiencing discomfort after drinking milk (17.3%) positions them as a strong target market for A2 milk. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

13 pages, 497 KB  
Article
Extracts of Hechtia spp. as Novel Coagulants Reduce the Pollutant Load of Whey
by Leopoldo González-Cruz, Miguel Angel Mosqueda-Avalos, María de la Luz Xochilt Negrete-Rodríguez, Eloy Conde-Barajas, Norma Leticia Flores-Martínez and Aurea Bernardino-Nicanor
Sustainability 2025, 17(14), 6579; https://doi.org/10.3390/su17146579 - 18 Jul 2025
Viewed by 354
Abstract
Traditional coagulant calf rennet, which is used in cheese production, is currently facing the problem of an unsustainable source. In addition, the production of cheese with calf rennet produces whey with high biochemical (BOD) and chemical oxygen demand (COD) values. For these reasons, [...] Read more.
Traditional coagulant calf rennet, which is used in cheese production, is currently facing the problem of an unsustainable source. In addition, the production of cheese with calf rennet produces whey with high biochemical (BOD) and chemical oxygen demand (COD) values. For these reasons, plant extracts have been investigated as sustainable sources of coagulants for milk. However, there are few reports on the changes in the COD and BOD of whey when plant extracts are used. For this reason, this study investigated the potential of extracts from two Hechtia species native to Mexico (H. glomerata and H. podantha) as sustainable milk coagulants for cheese production, with the aim of simultaneously reducing the pollutant load of residual whey. The milk coagulation efficiency of the extracts of the two Hechtia species was investigated, and in addition, their effects on cheese texture and color, and the composition of the residual whey, including BOD and COD, were evaluated. Most extracts of H. podantha showed adequate milk coagulation and yielded fresh cheese with textural properties comparable to those of cheese produced with conventional calf rennet. A significant reduction in carbohydrate content was achieved when H. podantha extracts were used. As a result, a significant decrease in the BOD and COD values was achieved. In some cases, a reduction of up to 1.78 times compared with those of the control was achieved. The results of this study show that H. podantha is a promising source of natural coagulants for sustainable cheese production, offering a dual benefit by providing an alternative to conventional rennet and reducing the environmental impact of whey. Full article
Show Figures

Figure 1

Back to TopTop