Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,814)

Search Parameters:
Keywords = plant therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5860 KB  
Article
Anti-Inflammatory and Antioxidant Effects of Topical Formulations Containing Plant Extracts, Methylsulfonylmethane, and Peptiskin® in In Vitro Models of Arthritis
by Thi Xoan Hoang, Nhat Minh Dang, Kang Gyu Bae and Jae Young Kim
Pharmaceuticals 2025, 18(9), 1270; https://doi.org/10.3390/ph18091270 - 26 Aug 2025
Abstract
Background: This study aimed to evaluate the anti-inflammatory and antioxidant effects of AS632 and AS633, two topical formulations composed of natural plant-derived ingredients, for potential use in arthritis therapy. Methods: AS632 and AS633 were formulated with natural plant extracts—including Punica granatum [...] Read more.
Background: This study aimed to evaluate the anti-inflammatory and antioxidant effects of AS632 and AS633, two topical formulations composed of natural plant-derived ingredients, for potential use in arthritis therapy. Methods: AS632 and AS633 were formulated with natural plant extracts—including Punica granatum seed oil, Gaultheria procumbens essential oil, Centella asiatica extract, and Camellia sinensis extract—and methylsulfonylmethane (MSM). AS632 additionally contained a peptide-based component, Peptiskin®. Both formulations were tested in THP-1-derived macrophages, HaCaT keratinocytes, and C28/I2 chondrocytes stimulated with lipopolysaccharide (LPS) or pro-inflammatory cytokines. Results: Both formulations significantly reduced TNF-α, IL-1β, matrix metalloproteinase (MMP-2, MMP-9, MMP-13) expression, and ROS level, with AS632 showing greater suppression of TNF-α in macrophages compared to AS633. In addition, both formulations demonstrated cytoprotective effects against cytokine-induced damage in chondrocytes. Conclusions: AS632 and AS633 are promising topical candidates for managing arthritis and chronic inflammatory skin or joint disorders. Full article
(This article belongs to the Special Issue Antioxidant and Anti-Inflammatory Effects of Natural Product Extracts)
Show Figures

Figure 1

25 pages, 1375 KB  
Review
Momordica charantia L.: Functional Health Benefits and Uses in the Food Industry
by Lucian Vasile Bara, Ruben Budau, Alexandru Ioan Apahidean, Camelia Mihaela Bara, Carmen Violeta Iancu, Eugen Traian Jude, Gabriel Remus Cheregi, Adrian Vasile Timar, Mariana Florica Bei, Ionel Marius Osvat and Daniela Domocos
Plants 2025, 14(17), 2642; https://doi.org/10.3390/plants14172642 - 25 Aug 2025
Abstract
Natural bioactive compounds found in Momordica charantia including polysaccharides, saponins, polyphenols, alkaloids, and notably polypeptide-p (often referred to as “plant insulin”)—have shown promising potential in shaping nutritional and therapeutic strategies for managing diabetes, metabolic disorders, and other nutrition-related diseases. Both retrospective and prospective [...] Read more.
Natural bioactive compounds found in Momordica charantia including polysaccharides, saponins, polyphenols, alkaloids, and notably polypeptide-p (often referred to as “plant insulin”)—have shown promising potential in shaping nutritional and therapeutic strategies for managing diabetes, metabolic disorders, and other nutrition-related diseases. Both retrospective and prospective analyses of bitter gourd’s functional properties such as its antioxidant, antitumor, immunomodulatory, and antibacterial effects highlight its innovative use as a food ingredient in developing targeted nutritional therapies. Assessing its applicability in the food industry, particularly through the fortification of products with bitter gourd powders, pulp, juice, or extracts, could enhance consumer acceptance and elevate the perceived quality of nutritionally superior foods. The nutrifunctional attributes revealed by its nutritional profile support the strategic integration of bitter gourd into various food formulations, contributing to a broader and more diverse range of dietary options. This diversification is especially valuable in addressing the dietary monotony often associated with diabetic nutrition plans, which continue to present significant challenges. The foundation laid by this review drawing on both theoretical insights and practical applications serves as a springboard for future research into the fortifying potential of bitter gourd-based preparations. Ultimately, such products may be recommended not only as nutritional supplements but also as part of clinical and hygienic-dietetic practices. Full article
(This article belongs to the Special Issue Research on Nutritional and Bioactive Compounds from Edible Fruits)
Show Figures

Figure 1

6 pages, 941 KB  
Case Report
Suspected Japanese Pieris (Pieris japonica) Poisoning in an Alpaca (Vicugna pacos)
by Saki Tanaka, Haruka Takimoto, Yuki Matsubara, Tsunenori Tsujimoto and Jun Sasaki
Vet. Sci. 2025, 12(9), 806; https://doi.org/10.3390/vetsci12090806 - 25 Aug 2025
Abstract
A zoo-housed alpaca was found recumbent with profuse frothy salivation and an inability to stand. Supportive treatment, including intravenous fluid therapy via the jugular vein and oral administration of activated charcoal, was initiated. Despite these interventions, the animal’s condition progressively worsened, with clinical [...] Read more.
A zoo-housed alpaca was found recumbent with profuse frothy salivation and an inability to stand. Supportive treatment, including intravenous fluid therapy via the jugular vein and oral administration of activated charcoal, was initiated. Despite these interventions, the animal’s condition progressively worsened, with clinical signs including vomiting and neurological manifestations such as paddling movements and opisthotonus. The alpaca died approximately 4 h after discovery by first observation of clinical signs. Necropsy revealed a large volume of white, foamy fluid present in the tracheal and bronchial lumens. The lungs were dark red and markedly congested and edematous throughout all lobes. Multiple ecchymotic hemorrhages were observed on the mucosal surface of the pyloric region of the third compartment of the stomach and on the serosal surface of the duodenum. Histopathological examination revealed severe pulmonary congestion and edema, along with marked congestion of the liver, spleen, and kidneys. The gastric contents were green and contained plant material, including ten leaves morphologically identified as Japanese pieris (Pieris japonica). Postmortem inspection of the enclosure revealed the presence of Japanese pieris shrubs with evidence of browsing. Based on these findings, acute poisoning from ingestion of Japanese pieris was diagnosed. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
Show Figures

Figure 1

34 pages, 411 KB  
Review
Emerging Approaches to Anthelmintic Therapy Using Medicinal Plants and Phytochemicals: A Review of Natural Products Against Strongyloidiasis
by Julio López-Abán, Belén Vicente-Santiago, Guadalupe Gutiérrez-Soto, Nancy Edith Rodríguez-Garza, Miroslava Kačániová, Iosvany López-Sandin, Cesar Iván Romo-Sáenz, Juan Manuel Ballesteros-Torres, Lucio Galaviz-Silva, Uziel Castillo-Velázquez, Stefania Garzoli and Joel Horacio Elizondo-Luévano
Pathogens 2025, 14(9), 842; https://doi.org/10.3390/pathogens14090842 - 23 Aug 2025
Viewed by 133
Abstract
Strongyloidosis is a parasitic disease caused by Strongyloides stercoralis, a nematode with a complex life cycle that facilitates long-term persistence within the host. The infection affects millions of people in tropical and subtropical regions and poses a particular challenge in immunocompromised individuals. [...] Read more.
Strongyloidosis is a parasitic disease caused by Strongyloides stercoralis, a nematode with a complex life cycle that facilitates long-term persistence within the host. The infection affects millions of people in tropical and subtropical regions and poses a particular challenge in immunocompromised individuals. Although conventional treatments, such as ivermectin and albendazole, are generally effective, emerging concerns regarding drug resistance and adverse effects have prompted the search for alternative therapeutic options. In this context, natural products—including plant extracts, bioactive phytochemicals, and nanoparticle-based formulations derived from natural sources—are emerging as promising anti-Strongyloides potential. This review summarizes recent studies on natural products with anthelmintic activity against strongyloidiasis, with emphasis on their mechanisms of action, efficacy, and future perspectives. A systematic search of the literature was conducted using terms related to Strongyloides, plant species, extracts, and bioactive compounds with nematocidal activity. Eligible studies included those reporting the activity of plants, plant extracts, and their purified metabolites against Strongyloides spp. Data were compiled into a comprehensive table including year of publication, author, plant species, active principle, application conditions, and target nematode species. The pharmacological treatment of this parasite varies according to its life cycle stage. Various biomolecules, phytoactive compounds, and novel plant-based formulations have demonstrated promising activity and may be considered both for treatment and for inclusion in control programs for strongyloidiasis. This review highlights medicinal plants and phytochemicals with ethnopharmacological background and experimentally validated activity against Strongyloides spp., integrating evidence from in vitro, in vivo, and experimental models, as well as clinical trials. Full article
(This article belongs to the Special Issue Parasitic Helminths and Control Strategies)
Show Figures

Graphical abstract

19 pages, 1636 KB  
Article
Assessment of Purple Loosestrife (Lythrum salicaria L.) Extracts from Wild Flora of Transylvania: Phenolic Profile, Antioxidant Activity, In Vivo Toxicity, and Gene Expression Variegation Studies
by Lidia-Ioana Virchea, Cecilia Georgescu, Endre Máthé, Adina Frum, Monica Mironescu, Bence Pecsenye, Robert Nagy, Oana Danci, Maria-Lucia Mureșan, Maria Totan and Felicia-Gabriela Gligor
Pharmaceutics 2025, 17(9), 1097; https://doi.org/10.3390/pharmaceutics17091097 - 22 Aug 2025
Viewed by 276
Abstract
Background: Purple loosestrife (Lythrum salicaria L.) is a medicinal plant native to the spontaneous Romanian flora. The aim of this study was to investigate the phenolic profile, total phenolic content (TPC), and antioxidant capacity (AC) of two L. salicaria L. extracts, a [...] Read more.
Background: Purple loosestrife (Lythrum salicaria L.) is a medicinal plant native to the spontaneous Romanian flora. The aim of this study was to investigate the phenolic profile, total phenolic content (TPC), and antioxidant capacity (AC) of two L. salicaria L. extracts, a hydro-methanolic extract (LSmet-1) and a hydro-ethanolic extract (LSeth-2), and their putative toxicity, as well as the effect on eye pigment content in the case of Drosophila melanogaster of an extract derived from LSmet-1 (LSmet-3). To the best of our knowledge, this is the first study to evaluate the influence of L. salicaria L. extracts on cytotoxicity and the expression of genes as determined by eye pigment levels, using a D. melanogaster-based model system. Methods: High-performance liquid chromatography was carried out to investigate the chemical composition of the extracts. Spectrophotometric methods were used to estimate their TPC and AC. Cytotoxicity was evaluated using an in vivo D. melanogaster diet-dependent viability assay and eye pigments of wm4h males, suitable for position-effect variegation studies, which were quantified by a spectrophotometric method. Results: The results indicated that the main phenolic compounds were gallic acid, resveratrol, and rutin in LSmet-1, whereas in LSeth-2, gallic acid and quercetin were the most relevant. LSmet-1 had a higher TPC compared to LSeth-2. Both extracts exhibited notable efficacy in the applied in vitro antioxidant tests. The viability of flies on normal media increased in a concentration-dependent manner at lower concentrations, with the extract being toxic at higher concentrations. On a high-sugar diet, even lower concentrations were toxic. All tested concentrations influenced the eye pigment content. Conclusions: Our study brings new findings on L. salicaria L. extracts, suggesting the need for further investigation before introducing them in therapy. Full article
(This article belongs to the Special Issue Natural Compounds in Drug Delivery Systems)
Show Figures

Figure 1

38 pages, 1248 KB  
Review
Targeting Inflammation with Natural Products: A Mechanistic Review of Iridoids from Bulgarian Medicinal Plants
by Rositsa Mihaylova, Viktoria Elincheva, Reneta Gevrenova, Dimitrina Zheleva-Dimitrova, Georgi Momekov and Rumyana Simeonova
Molecules 2025, 30(17), 3456; https://doi.org/10.3390/molecules30173456 - 22 Aug 2025
Viewed by 164
Abstract
Chronic, low-grade inflammation is a key contributor to the development of numerous non-communicable diseases (NCDs), including cardiovascular, metabolic, and neurodegenerative disorders. Conventional anti-inflammatory drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids, often present safety concerns with prolonged use, highlighting the need for [...] Read more.
Chronic, low-grade inflammation is a key contributor to the development of numerous non-communicable diseases (NCDs), including cardiovascular, metabolic, and neurodegenerative disorders. Conventional anti-inflammatory drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids, often present safety concerns with prolonged use, highlighting the need for safer, multi-targeted therapeutic options. Iridoids, a class of monoterpenoid compounds abundant in several medicinal plants, have emerged as promising bioactive agents with diverse pharmacological properties. They exert anti-inflammatory and metabolic regulatory effects by modulating key signaling pathways, including nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), Janus kinase/signal transducer and activator of transcription (JAK/STAT), adenosine monophosphate-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor (PPAR) pathways. This review provides a comprehensive summary of the major iridoid metabolites derived from ten Bulgarian medicinal plant species, along with mechanistic insights from in vitro and in vivo studies. Documented biological activities include anti-inflammatory, antioxidant, immunomodulatory, antifibrotic, organoprotective, antibacterial, antiviral, analgesic, and metabolic effects. By exploring their phytochemical profiles and pharmacodynamics, we underscore the therapeutic potential of iridoid-rich Bulgarian flora in managing inflammation-related and metabolic diseases. These findings support the relevance of iridoids as complementary or alternative agents to conventional therapies and highlight the need for further translational and clinical research. Full article
(This article belongs to the Special Issue Role of Natural Products in Inflammation)
Show Figures

Figure 1

17 pages, 1853 KB  
Review
Exploring the Protective Effects of Taxifolin in Cardiovascular Health: A Comprehensive Review
by Hwan-Hee Sim, Ju-Young Ko, Dal-Seong Gong, Dong-Wook Kim, Jung Jin Kim, Han-Kyu Lim, Hyun Jung Kim and Min-Ho Oak
Int. J. Mol. Sci. 2025, 26(16), 8051; https://doi.org/10.3390/ijms26168051 - 20 Aug 2025
Viewed by 390
Abstract
Taxifolin is a natural flavonoid found in a variety of plants, including Siberian larch (Larix sibirica) and milk thistle (Silybum marianum), that has attracted attention for its multifaceted pharmacological properties, including cardioprotective effects. Through its antioxidant and anti-inflammatory activities, [...] Read more.
Taxifolin is a natural flavonoid found in a variety of plants, including Siberian larch (Larix sibirica) and milk thistle (Silybum marianum), that has attracted attention for its multifaceted pharmacological properties, including cardioprotective effects. Through its antioxidant and anti-inflammatory activities, taxifolin has shown significant therapeutic potential in cardiovascular diseases such as atherosclerosis, myocardial ischemia, and diabetic cardiomyopathy. This review highlights the cardioprotective effects of taxifolin in preclinical models of atherosclerosis, ischemia/reperfusion injury, and diabetic cardiomyopathy. Taxifolin contributes to its cardioprotective effects through key mechanisms such as modulation of pathways such as PI3K/AKT and JAK2/STAT3, inhibition of NADPH oxidase, and modulation of nitric oxide production. Recent studies have shown that taxifolin can affect glucose metabolism by modulating sodium–glucose transporter (SGLT) expression, potentially enhancing the cardioprotective effects of SGLT2 inhibitors. Given the emerging role of SGLT2 inhibitors in the management of cardiovascular disease, further investigation of the interaction of this pathway with taxifolin may provide new therapeutic insights. Although taxifolin has multifaceted potential in the prevention and treatment of cardiovascular disease, further studies are needed to better understand its mechanisms and validate its efficacy in different disease stages. This review aims to provide a rationale for the clinical application of taxifolin-based cardiovascular therapies and suggest directions for future research. Full article
(This article belongs to the Special Issue Bioactive Compounds in the Prevention of Chronic Diseases)
Show Figures

Figure 1

19 pages, 1365 KB  
Review
Exploring the Therapeutic Potential of Allium cepa and Allium sativum Extracts: Current Strategies, Emerging Applications, and Sustainability Utilization
by Alaa S. Bedir, Razan S. Almasri, Yasmena O. Azar, Rana E. Elnady and Seham M. Al Raish
Biology 2025, 14(8), 1088; https://doi.org/10.3390/biology14081088 - 20 Aug 2025
Viewed by 371
Abstract
This review explores the therapeutic potential of Allium cepa (onion) and Allium sativum (garlic), focusing specifically on their antidiabetic, cardioprotective, and antibacterial effects. These widely used medicinal plants are rich in bioactive compounds that contribute to their broad spectrum of pharmacological activities. Based [...] Read more.
This review explores the therapeutic potential of Allium cepa (onion) and Allium sativum (garlic), focusing specifically on their antidiabetic, cardioprotective, and antibacterial effects. These widely used medicinal plants are rich in bioactive compounds that contribute to their broad spectrum of pharmacological activities. Based on over two decades of scientific literature, this review synthesizes findings from more than 20 years of research to highlight the efficacy of these plant extracts. Rising chronic disease rates and antimicrobial resistance have renewed interest in plant-derived therapies; in the UAE context, Allium cepa and Allium sativum are promising candidates for integrative, sustainable interventions. This review further elucidates the mechanisms through which those bioactive constituents exert therapeutic effects, current extraction strategies, and challenges in enhancing formulations for functional health applications. Additionally, it addresses their role in sustainable healthcare practices due to their renewable nature and minimal environmental impact compared to synthetic pharmaceuticals. Full article
(This article belongs to the Special Issue Plant Natural Products: Mechanisms of Action for Promoting Health)
Show Figures

Figure 1

25 pages, 3037 KB  
Article
Bioactive Potential of Nepenthes miranda Flower Extracts: Antidiabetic, Anti-Skin Aging, Cytotoxic, and Dihydroorotase-Inhibitory Activities
by Kuan-Ming Lai, Yen-Hua Huang, Yi Lien and Cheng-Yang Huang
Plants 2025, 14(16), 2579; https://doi.org/10.3390/plants14162579 - 19 Aug 2025
Viewed by 363
Abstract
Carnivorous plants have garnered attention as sources of pharmacologically active compounds, yet their floral tissues remain largely underexplored. In this study, we investigated the bioactive properties of Nepenthes miranda flower extracts prepared using water, methanol, ethanol, and acetone. Among these, the ethanol extract [...] Read more.
Carnivorous plants have garnered attention as sources of pharmacologically active compounds, yet their floral tissues remain largely underexplored. In this study, we investigated the bioactive properties of Nepenthes miranda flower extracts prepared using water, methanol, ethanol, and acetone. Among these, the ethanol extract exhibited the highest total phenolic content (18.2 mg GAE/g), flavonoid content (68.9 mg QUE/g), and antioxidant activity (DPPH IC50 = 66.9 μg/mL), along with strong antibacterial effects against Escherichia coli and Staphylococcus aureus. Cosmetically relevant enzyme inhibition assays revealed significant activity against tyrosinase (IC50 = 48.58 μg/mL), elastase (IC50 = 1.77 μg/mL), and hyaluronidase (IC50 = 7.33 μg/mL), supporting its potential as an anti-skin aging agent. For antidiabetic evaluation, the ethanol extract demonstrated potent α-glucosidase inhibition (IC50 = 24.53 μg/mL), outperforming standard inhibitors such as acarbose and quercetin. The extract also displayed marked cytotoxicity against A431 epidermoid carcinoma cells (IC50 = 90.61 μg/mL), inducing dose-dependent apoptosis, inhibiting cell migration and colony formation, and causing significant DNA damage as shown by comet assay. Furthermore, the ethanol extract strongly inhibited the activity of purified human dihydroorotase (IC50 = 25.11 μg/mL), indicating that disruption of pyrimidine biosynthesis may underlie its anticancer activity. Overall, this study provides the first characterization of N. miranda flower extracts, particularly the ethanol fraction, as a promising source of multifunctional bioactive compounds with possible applications in cosmetics, antidiabetic therapy, and cancer treatment. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

21 pages, 967 KB  
Review
Recent Advances in the Application of Cucurbitacin B as an Anticancer Agent
by Dongge Yin, Hongyue Chen, Shuting Lin, Yufei Sun, Xiaohong Jing, Rongrong Chang, Yang Feng, Xiaoxv Dong, Changhai Qu, Jian Ni and Xingbin Yin
Int. J. Mol. Sci. 2025, 26(16), 8003; https://doi.org/10.3390/ijms26168003 - 19 Aug 2025
Viewed by 371
Abstract
Cucurbitacin B (CuB), a tetracyclic triterpenoid compound isolated from Cucurbitaceae plants, exhibits inhibitory effects on various tumor cells (e.g., liver, gastric, and colorectal cancer cells). Since the 1970s–1980s, cucurbitacin tablets containing CuB have been used as an adjuvant therapy for chronic hepatitis and [...] Read more.
Cucurbitacin B (CuB), a tetracyclic triterpenoid compound isolated from Cucurbitaceae plants, exhibits inhibitory effects on various tumor cells (e.g., liver, gastric, and colorectal cancer cells). Since the 1970s–1980s, cucurbitacin tablets containing CuB have been used as an adjuvant therapy for chronic hepatitis and primary liver cancer. CuB exerts anticancer effects through multiple mechanisms: inducing apoptosis, cell cycle arrest (G2/M or S phase), autophagy, and cytoskeleton disruption; inhibiting migration, invasion, and angiogenesis (via VEGF/FAK/MMP-9 and Wnt/β-catenin pathways); regulating metabolic reprogramming and immune responses; inducing pyroptosis, ferroptosis, and epigenetic changes; and reversing tumor drug resistance. These effects are associated with signaling pathways like JAK/STAT, PI3K/Akt/mTOR, and FOXM1-KIF20A. To improve its application potential, strategies such as structural modification (e.g., NO donor conjugation), combination therapy (with gemcitabine or cisplatin), and nanomaterial-based delivery (e.g., liposomes and exosome-mimicking nanoparticles) have been developed to enhance efficacy, reduce toxicity, and improve bioavailability. CuB shows broad-spectrum anticancer activity, but further research is needed to clarify the mechanisms underlying its cell-specific sensitivity and interactions with the immune system. This review systematically summarizes the physicochemical properties, anticancer mechanisms, and strategies for applying CuB and suggests future research directions, providing references for scientific research and clinical translation. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

16 pages, 709 KB  
Systematic Review
An Overview of the Role of Medicinal Plants in Parkinson’s Disease: A Semi-Systematic Review
by Hedie Haxhiu, Malvina Hoxha, Ina Zela and Bruno Zappacosta
Biomedicines 2025, 13(8), 2008; https://doi.org/10.3390/biomedicines13082008 - 18 Aug 2025
Viewed by 353
Abstract
Background/Objectives: Parkinson’s disease (PD) is a complex nervous system disorder characterized by the gradual loss of dopaminergic neurons, leading to disturbances in movement, such as resting tremors, rigidity, bradykinesia, or akinesia; postural issues; and freezing (motor block). Due to the limitations and [...] Read more.
Background/Objectives: Parkinson’s disease (PD) is a complex nervous system disorder characterized by the gradual loss of dopaminergic neurons, leading to disturbances in movement, such as resting tremors, rigidity, bradykinesia, or akinesia; postural issues; and freezing (motor block). Due to the limitations and side effects of current pharmacological treatments, there is a growing interest in investigating the therapeutic potential of medicinal plants. Methods: A semi-systematic review was conducted using PubMed, Web of Science, and Scopus as main databases, identifying original research articles, systematic reviews, and relevant preclinical or clinical studies published between January 2000 and December 2024. We selected seven plants primarily for their neuroprotective effects, supported by preclinical and animal data. Only articles in English were included in the study. Results: Seventeen articles were included in the study. The results showed that Curcuma longa, Gastrodia elata blume, Ginkgo biloba, Paeonia alba radix, Pueraria lobata, Scutellaria baicalensis, and Withania somnifera have a neuroprotective role, capable of slowing down the progression of PD with different mechanisms of action, ranging from restorative properties of neurons. Conclusions: Developing new drugs based on the respective herb compounds/extracts and herbal formulas is a promising avenue for complementary therapies for PD. However, further preclinical and clinical studies are required to confirm their safety, efficacy, bioavailability, and dosage. Full article
Show Figures

Figure 1

41 pages, 868 KB  
Review
Reconstructing the Antibiotic Pipeline: Natural Alternatives to Antibacterial Agents
by Chiemerie T. Ekwueme, Ifeoma V. Anyiam, David C. Ekwueme, Christian K. Anumudu and Helen Onyeaka
Biomolecules 2025, 15(8), 1182; https://doi.org/10.3390/biom15081182 - 18 Aug 2025
Viewed by 532
Abstract
The discovery of penicillin led to remarkable progress in the treatment of diseases and far-reaching advancements in novel antibiotics’ development and use. However, the uncontrolled use and abuse of antibiotics in subsequent years have led to the emergence of the antimicrobial resistance (AMR) [...] Read more.
The discovery of penicillin led to remarkable progress in the treatment of diseases and far-reaching advancements in novel antibiotics’ development and use. However, the uncontrolled use and abuse of antibiotics in subsequent years have led to the emergence of the antimicrobial resistance (AMR) crisis, which now threatens modern medicine. There is an increasing number of emerging and reemerging infectious diseases, which have worsened the state of AMR and pose a serious threat to global health. The World Health Organization (WHO) reports the inadequacy of the drug development pipeline to meet the needs of the pharmaceutical sector in the face of AMR, and this poses a significant challenge in the treatment of diseases. Natural products (NPs) represent a promising group of antibiotic alternatives that can potentially mitigate AMR, as they bypass the pharmacodynamics of traditional antibiotics, thereby making them immune to the mechanisms of AMR. NPs, including plant derivatives, bacteriophages, metals, antimicrobial peptides, enzymes, and immune modulators, as monotherapies or in synergism with existing antibiotics, are gaining attention in a bid to reconstruct the antibiotic pipeline. Harnessing these as antimicrobial agents to curb AMR can help to provide sufficient defence against these infectious pathogens. The current review provides a comprehensive overview of the state of AMR and the potential of the above-mentioned antibiotic alternatives. Additionally, we discuss progress made and research breakthroughs in the application of these alternative therapies in humans, exploring findings from clinical trials and experimental models. The review further evaluates the advancement in technology, interdisciplinary approaches to the formulation and utilisation of NPs, and collaborations in alternative drug development. The research gaps present in this ever-evolving field are highlighted and evaluated together with regulatory issues, safety concerns, and technical difficulties in implementation. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

24 pages, 9295 KB  
Review
Cannabis Derivatives as Ingredients of Functional Foods to Combat the COVID-19 Pandemic
by Xiaoli Qin, Xiai Yang, Yanchun Deng, Litao Guo, Zhimin Li, Xiushi Yang and Chunsheng Hou
Foods 2025, 14(16), 2830; https://doi.org/10.3390/foods14162830 - 15 Aug 2025
Viewed by 454
Abstract
Lower respiratory infections predominantly affect children under five and the elderly, with influenza viruses and respiratory syncytial viruses (including SARS-CoV-2) being the most common pathogens. The COVID-19 pandemic has posed significant global public health challenges. While vaccination remains crucial, its efficacy is limited, [...] Read more.
Lower respiratory infections predominantly affect children under five and the elderly, with influenza viruses and respiratory syncytial viruses (including SARS-CoV-2) being the most common pathogens. The COVID-19 pandemic has posed significant global public health challenges. While vaccination remains crucial, its efficacy is limited, highlighting the need for complementary approaches to mitigate immune hyperactivation in severe COVID-19 cases. Medicinal plants like Cannabis sativa show therapeutic potential, with over 85% of SARS-CoV-2-infected patients in China receiving traditional herbal treatments. This review explores the antiviral applications of cannabis and its bioactive compounds, particularly against SARS-CoV-2, while evaluating their pharmacological and food industry potential. Cannabis contains over 100 cannabinoids, terpenes, flavonoids, and fatty acids. Cannabinoids may block viral entry, modulate immune responses (e.g., suppressing pro-inflammatory cytokines via CB2/PPARγ activation), and alleviate COVID-19-related psychological stress. There are several challenges with pharmacological and food applications of cannabinoids, including clinical validation of cannabinoids for COVID-19 treatment and optimizing cannabinoid solubility/bioavailability for functional foods. However, rising demand for health-focused products presents market opportunities. Genetic engineering to enhance cannabinoid yields and integrated pharmacological studies are needed to unlock cannabis’s full potential in drug discovery and nutraceuticals. Cannabis-derived compounds hold promise for antiviral therapies and functional ingredients, though further research is essential to ensure safety and efficacy. Full article
(This article belongs to the Special Issue Functional Food and Safety Evaluation: Second Edition)
Show Figures

Figure 1

48 pages, 2984 KB  
Review
Progress in Nanofluid Technology: From Conventional to Green Nanofluids for Biomedical, Heat Transfer, and Machining Applications
by Beatriz D. Cardoso, Andrews Souza, Glauco Nobrega, Inês S. Afonso, Lucas B. Neves, Carlos Faria, João Ribeiro and Rui A. Lima
Nanomaterials 2025, 15(16), 1242; https://doi.org/10.3390/nano15161242 - 13 Aug 2025
Viewed by 380
Abstract
Nanofluids (NFs), consisting of nanoparticles (NPs) suspended in base fluids, have attracted growing interest due to their superior physicochemical properties and multifunctional potential. In this review, conventional and green NF technology aspects, including synthesis routes, formulation, and applications, are discussed. Conventional NFs, involving [...] Read more.
Nanofluids (NFs), consisting of nanoparticles (NPs) suspended in base fluids, have attracted growing interest due to their superior physicochemical properties and multifunctional potential. In this review, conventional and green NF technology aspects, including synthesis routes, formulation, and applications, are discussed. Conventional NFs, involving NPs synthesized using physical and chemical approaches, have improved NP morphology control but are likely to cause environmental and safety concerns. In contrast, green NFs that are plant extract, microorganism, and biogenic waste-based represent a sustainable and biocompatible alternative. The effect of key parameters (e.g., NP size, shape, concentration, dispersion stability, and base fluid properties) on the performance of NFs is critically examined. The review also covers potential applications: in biomedical engineering (e.g., drug delivery, imaging, theranostics, and antimicrobial therapies), in heat transfer (e.g., solar collectors, cooling electronics, nuclear reactors), and precision machining (e.g., lubricants and coolants). Comparative insights regarding green versus conventionally prepared NFs are provided concerning their toxicity, environmental impact, scalability, and functional performance across various applications. Overall, this review highlights the new promise of both green and conventional NFs and provides key opportunities and challenges to guide future developments in this field. Full article
Show Figures

Graphical abstract

50 pages, 2436 KB  
Review
Harnessing Phytonanotechnology to Tackle Neglected Parasitic Diseases: Focus on Chagas Disease and Malaria
by Manuela García, María S. Magi and Mónica C. García
Pharmaceutics 2025, 17(8), 1043; https://doi.org/10.3390/pharmaceutics17081043 - 12 Aug 2025
Viewed by 542
Abstract
Neglected parasitic diseases such as Chagas disease and malaria continue to pose major public health challenges, particularly in low-resource settings. Current therapies are often limited by high toxicity, poor efficacy, drug resistance, and limited accessibility. Phytochemicals, naturally occurring compounds in plants, have played [...] Read more.
Neglected parasitic diseases such as Chagas disease and malaria continue to pose major public health challenges, particularly in low-resource settings. Current therapies are often limited by high toxicity, poor efficacy, drug resistance, and limited accessibility. Phytochemicals, naturally occurring compounds in plants, have played a crucial role in medicine since ancient times and have gained renewed attention for their demonstrated antiparasitic activity. However, many products of natural origin (PNOs) face significant barriers to clinical use, including poor solubility, low bioavailability, and chemical instability. These limitations have driven researchers to explore alternative and innovative approaches based on the use of PNOs to tackle these parasitic infections more effectively. This review provides a comprehensive overview of key PNOs with proven activity against Trypanosoma cruzi and Plasmodium spp., the causative agents of Chagas disease and malaria, respectively. Recent advances in the design of phytonanoformulations are analyzed and discussed, emphasizing the potential of nanocarrier-based systems incorporating PNOs as a strategy to improve the pharmacokinetic and therapeutic properties of these natural products. By critically examining the integration of phytochemicals into nanotechnology-based drug delivery platforms, this review highlights the promise of phytonanotechnology to overcome current limitations in antiparasitic therapy and support the development of more effective and accessible treatments for neglected parasitic diseases. Full article
(This article belongs to the Special Issue Advances in Antiparasitic Agents)
Show Figures

Graphical abstract

Back to TopTop