Emerging Approaches to Anthelmintic Therapy Using Medicinal Plants and Phytochemicals: A Review of Natural Products Against Strongyloidiasis
Abstract
1. Introduction
2. Anti-Helminthic Drugs
2.1. Effect of Pharmacological Treatments on Strongyloides spp.
2.2. Drug Targets
2.3. Resistance to Anti-Helminthic Drugs
3. Pharmaceutical Uses of Natural Products
4. Methodology
4.1. Research Question
4.2. Study Design and Selection Criteria
5. Results
5.1. Medicinal Plants with Anti-Strongyloides Activity
5.2. Medicinal Biomolecules with Anti-Strongyloides Activity
5.3. Anti-Strongyloides Nanoparticles
6. Limitations
7. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
% | Percent |
EO | Essential oil |
FEC | Fecal egg counts |
IVM | Ivermectin |
MeOH | Methanol |
NO | Nitric oxide |
NPs | Nanoparticles |
SEM | Scanning electron microscopy |
TEM | Transmission electron microscopy |
LM | Light microscopy |
LDI | Larval development inhibition |
LDT | Larval development test |
PC50 | 50% paralysis concentration |
IC50 | 50% inhibition concentration |
IC90 | 90% inhibition concentration |
LC50 | 50% lethal concentration |
S.p. | Strongyloides papillosus |
S.rn | Strongyloides ransomi |
S.r. | Strongyloides ratti |
S.s. | Strongyloides stercoralis |
S.v. | Strongyloides venezuelensis |
S.w. | Strongyloides westeri |
STH | Soil-transmitted helminths |
References
- Pérez-Molina, J.A.; Díaz-Menéndez, M.; Pérez-Ayala, A.; Ferrere, F.; Monje, B.; Norman, F.; López-Vélez, R. Tratamiento de Las Enfermedades Causadas Por Parásitos. Enferm. Infecc. Microbiol. Clin. 2010, 28, 44–59. [Google Scholar] [CrossRef]
- Pardo, J.; Luis Pérez-Arellano, J.; Galindo, I.; Belhassen, M.; Cordero, M.; Muro, A. Diagnóstico de Helmintiasis Importadas. Enferm. Infecc. Microbiol. Clin. 2007, 25, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Pullan, R.L.; Smith, J.L.; Jasrasaria, R.; Brooker, S.J. Global Numbers of Infection and Disease Burden of Soil Transmitted Helminth Infections in 2010. Parasit. Vectors 2014, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Fleitas, P.E.; Travacio, M.; Martí-Soler, H.; Socías, M.E.; Lopez, W.R.; Krolewiecki, A.J. The Strongyloides stercoralis-Hookworms Association as a Path to the Estimation of the Global Burden of Strongyloidiasis: A Systematic Review. PLoS Negl. Trop. Dis. 2020, 14, e0008184. [Google Scholar] [CrossRef]
- Mascarini-Serra, L. Prevention of Soil-Transmitted Helminth Infection. J. Glob. Infect. Dis. 2011, 3, 175. [Google Scholar] [CrossRef]
- Rossin, M.; Varela, G.; Timi, J. Strongyloides myopotami in Ctenomyid Rodents: Transition from Semi-Aquatic to Subterranean Life Cycle. Acta Parasitol. 2009, 54, 257–262. [Google Scholar] [CrossRef]
- Ruano, A.L.; Martín, T.; Pardo, J.; López-Abán, J.; Alvarez Muro, A. Avances En El Estudio Sobre La Estrongiloidosis. Enfermedades Emerg. 2005, 7, 102–109. [Google Scholar]
- Truscott, J.E.; Turner, H.C.; Farrell, S.H.; Anderson, R.M. Soil-Transmitted Helminths: Mathematical Models of Transmission, the Impact of Mass Drug Administration and Transmission Elimination Criteria. Adv. Parasitol. 2016, 94, 133–198. [Google Scholar] [CrossRef] [PubMed]
- Muro, A.; Pérez-Arellano, J.-L. Nitric Oxide and Respiratory Helminthic Diseases. J. Biomed. Biotechnol. 2010, 2010, 958108. [Google Scholar] [CrossRef]
- DiGiulio, M. Strongyloidiasis. J. Nurse Pract. 2019, 15, 438–443. [Google Scholar] [CrossRef]
- Coles, G.C. Anthelmintic Resistance–Looking to the Future: A UK Perspective. Res. Vet. Sci. 2005, 78, 99–108. [Google Scholar] [CrossRef]
- Rodríguez-Garza, N.E.; Gomez-Flores, R.; Quintanilla-Licea, R.; Elizondo-Luévano, J.H.; Romo-Sáenz, C.I.; Marín, M.; Sánchez-Montejo, J.; Muro, A.; Peláez, R.; López-Abán, J. In Vitro Anthelmintic Effect of Mexican Plant Extracts and Partitions Against Trichinella spiralis and Strongyloides venezuelensis. Plants 2024, 13, 3484. [Google Scholar] [CrossRef]
- Gayer, M.; Legros, D.; Formenty, P.; Connolly, M.A. Conflict and Emerging Infectious Diseases. Emerg. Infect. Dis. 2007, 13, 1625–1631. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Pérez, L.; Pérez-Tanoira, R.; Cabello-Úbeda, A.; Petkova-Saiz, E.; Górgolas-Hernández-Mora, M. Geohelmintos. Enferm. Infecc. Microbiol. Clin. 2016, 34, 384–389. [Google Scholar] [CrossRef]
- Tamarozzi, F.; Martello, E.; Giorli, G.; Fittipaldo, A.; Staffolani, S.; Montresor, A.; Bisoffi, Z.; Buonfrate, D. Morbidity Associated with Chronic Strongyloides stercoralis Infection: A Systematic Review and Meta-Analysis. Am. J. Trop. Med. Hyg. 2019, 100, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Arellano, J.L.; Andrade, M.A.; López-Abán, J.; Carranza, C.; Muro, A. Helmintos y Aparato Respiratorio. Arch. Bronconeumol. 2006, 42, 81–91. [Google Scholar] [CrossRef]
- WHO. 2030 Targets for Soil-Transmitted Helminthiases Control Programmes; Control of Neglected Tropical Diseases: Geneva, Switzerland, 2020; pp. 1–22. [Google Scholar]
- Bisanzio, D.; Montresor, A.; French, M.; Reithinger, R.; Rodari, P.; Bisoffi, Z.; Buonfrate, D. Preventive Chemotherapy for the Control of Strongyloidiasis in School-Age Children: Estimating the Ivermectin Need. PLoS Negl. Trop. Dis. 2021, 15, e0009314. [Google Scholar] [CrossRef]
- Gandasegui, J.; Onwuchekwa, C.; Krolewiecki, A.J.; Doyle, S.R.; Pullan, R.L.; Enbiale, W.; Kepha, S.; Hatherell, H.A.; van Lieshout, L.; Cambra-Pellejà, M.; et al. Ivermectin and Albendazole Coadministration: Opportunities for Strongyloidiasis Control. Lancet Infect. Dis. 2022, 22, e341–e347. [Google Scholar] [CrossRef]
- Cervantes-Ceballos, L.; Sánchez-Hoyos, J.; Sanchez-Hoyos, F.; Torres-Niño, E.; Mercado-Camargo, J.; Echeverry-Gómez, A.; Jotty Arroyo, K.; del Olmo-Fernández, E.; Gómez-Estrada, H. An Overview of Genus Malachra L.—Ethnobotany, Phytochemistry, and Pharmacological Activity. Plants 2022, 11, 2808. [Google Scholar] [CrossRef] [PubMed]
- Elizondo-Luévano, J.H.; Hernández-García, M.E.; Pérez-Narváez, O.A.; Castro-Ríos, R.; Chávez-Montes, A. Berberina, Curcumina y Quercetina Como Potenciales Agentes Con Capacidad Antiparasitaria. Rev. Biol. Trop. 2020, 68, 1241–1249. [Google Scholar] [CrossRef]
- Elizondo-Luévano, J.H.; Castro-Ríos, R.; Sánchez-García, E.; Hernández-García, M.E.; Vargas-Villarreal, J.; Rodríguez-Luis, O.E.; Chávez-Montes, A. In Vitro Study of Antiamoebic Activity of Methanol Extracts of Argemone mexicana on Trophozoites of Entamoeba histolytica HM1-IMSS. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 7453787. [Google Scholar] [CrossRef]
- Elizondo-Luevano, J.H.; Verde-Star, J.; González-Horta, A.; Castro-Ríos, R.; Hernández-García, M.E.; Chávez-Montes, A. In Vitro Effect of Methanolic Extract of Argemone mexicana against Trichomonas vaginalis. Korean J. Parasitol. 2020, 58, 135–145. [Google Scholar] [CrossRef]
- Bethony, J.; Brooker, S.; Albonico, M.; Geiger, S.M.; Loukas, A.; Diemert, D.; Hotez, P.J. Soil-Transmitted Helminth Infections: Ascariasis, Trichuriasis, and Hookworm. Lancet 2006, 367, 1521–1532. [Google Scholar] [CrossRef] [PubMed]
- Vercruysse, J.; Behnke, J.M.; Albonico, M.; Ame, S.M.; Angebault, C.; Bethony, J.M.; Engels, D.; Guillard, B.; Hoa, N.T.V.; Kang, G.; et al. Assessment of the Anthelmintic Efficacy of Albendazole in School Children in Seven Countries Where Soil-Transmitted Helminths Are Endemic. PLoS Negl. Trop. Dis. 2011, 5, e948. [Google Scholar] [CrossRef]
- Keiser, J.; Utzinger, J. Efficacy of Current Drugs against Soil-Transmitted Helminth Infections: Systematic Review and Meta-Analysis. JAMA 2008, 299, 1937–1948. [Google Scholar] [CrossRef]
- Taylor-Robinson, D.C.; Jones, A.P.; Garner, P. Deworming Drugs for Treating Soil-Transmitted Intestinal Worms in Children: Effects on Growth and School Performance. In Cochrane Database of Systematic Reviews; Taylor-Robinson, D.C., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2007; p. CD000371. [Google Scholar]
- Clarke, N.E.; Doi, S.A.R.; Wangdi, K.; Chen, Y.; Clements, A.C.A.; Nery, S.V. Efficacy of Anthelminthic Drugs and Drug Combinations against Soil-Transmitted Helminths: A Systematic Review and Network Meta-Analysis. Clin. Infect. Dis. 2019, 68, 96–105. [Google Scholar] [CrossRef]
- Isern, J.A.; Carlucci, R.; Labadie, G.R.; Porta, E.O.J. Progress and Prospects of Triazoles in Advanced Therapies for Parasitic Diseases. Trop. Med. Infect. Dis. 2025, 10, 142. [Google Scholar] [CrossRef]
- Salikin, N.H.; Nappi, J.; Majzoub, M.E.; Egan, S. Combating Parasitic Nematode Infections, Newly Discovered Antinematode Compounds from Marine Epiphytic Bacteria. Microorganisms 2020, 8, 1963. [Google Scholar] [CrossRef]
- Mandal, S.; Moudgil, M.; Mandal, S.K. Rational Drug Design. Eur. J. Pharmacol. 2009, 625, 90–100. [Google Scholar] [CrossRef]
- Croston, G.E. The Utility of Target-Based Discovery. Expert Opin. Drug Discov. 2017, 12, 427–429. [Google Scholar] [CrossRef]
- Nascimento, I.J.d.S.; Cavalcanti, M.d.A.T.; de Moura, R.O. Exploring N-Myristoyltransferase as a Promising Drug Target against Parasitic Neglected Tropical Diseases. Eur. J. Med. Chem. 2023, 258, 115550. [Google Scholar] [CrossRef]
- Abongwa, M.; Martin, R.J.; Robertson, A.P. A Brief Review On The Mode Of Action Of Antinematodal Drugs. Acta Vet. Brno 2017, 67, 137–152. [Google Scholar] [CrossRef]
- Pink, R.; Hudson, A.; Mouriès, M.-A.; Bendig, M. Opportunities and Challenges in Antiparasitic Drug Discovery. Nat. Rev. Drug Discov. 2005, 4, 727–740. [Google Scholar] [CrossRef]
- Vercruysse, J.; Charlier, J.; Van Dijk, J.; Morgan, E.R.; Geary, T.; von Samson-Himmelstjerna, G.; Claerebout, E. Control of Helminth Ruminant Infections by 2030. Parasitology 2018, 145, 1655–1664. [Google Scholar] [CrossRef]
- Gilleard, J.S. Understanding Anthelmintic Resistance: The Need for Genomics and Genetics. Int. J. Parasitol. 2006, 36, 1227–1239. [Google Scholar] [CrossRef]
- Marín, M.; Sánchez-Montejo, J.; Ramos, S.; Muro, A.; López-Abán, J.; Peláez, R. Deciphering Chemical Rules for Drug Penetration into Strongyloides. Pharmaceutics 2024, 16, 1224. [Google Scholar] [CrossRef]
- Parasitol, I.J. Anthelmintics Resistance; How to Overcome It? Iran. J. Parasitol. 2013, 8, 18–32. [Google Scholar]
- Sangster, N.C.; Gill, J. Pharmacology of Anthelmintic Resistance. Parasitol. Today 1999, 15, 141–146. [Google Scholar] [CrossRef]
- Shoop, W.L. Ivermectin Resistance. Parasitol. Today 1993, 9, 154–159. [Google Scholar] [CrossRef]
- Wolstenholme, A.J.; Fairweather, I.; Prichard, R.; von Samson-Himmelstjerna, G.; Sangster, N.C. Drug Resistance in Veterinary Helminths. Trends Parasitol. 2004, 20, 469–476. [Google Scholar] [CrossRef]
- Kaplan, R.M. Drug Resistance in Nematodes of Veterinary Importance: A Status Report. Trends Parasitol. 2004, 20, 477–481. [Google Scholar] [CrossRef]
- Al Nasr, I.; Ahmed, F.; Pullishery, F.; El-Ashram, S.; Ramaiah, V.V. Toxoplasmosis and Anti-Toxoplasma Effects of Medicinal Plant Extracts-A Mini-Review. Asian Pac. J. Trop. Med. 2016, 9, 730–734. [Google Scholar] [CrossRef]
- Bazaldúa-Rodríguez, A.F.; Quintanilla-Licea, R.; Verde-Star, M.J.; Hernández-García, M.E.; Vargas-Villarreal, J.; Garza-González, J.N. Furanocoumarins from Ruta chalepensis with Amebicide Activity. Molecules 2021, 26, 3684. [Google Scholar] [CrossRef] [PubMed]
- Quintanilla-Licea, R.; Mata-Cárdenas, B.; Vargas-Villarreal, J.; Bazaldúa-Rodríguez, A.; Verde-Star, M. Antiprotozoal Activity against Entamoeba Histolytica of Furocoumarins Isolated from Ruta chalepensis. Planta Med. 2016, 81, S1–S381. [Google Scholar] [CrossRef]
- De La Cruz-Jiménez, L.; Hernández-Torres, M.A.; Monroy-García, I.N.; Rivas-Morales, C.; Verde-Star, M.J.; Gonzalez-Villasana, V.; Viveros-Valdez, E. Biological Activities of Seven Medicinal Plants Used in Chiapas, Mexico. Plants 2022, 11, 1790. [Google Scholar] [CrossRef]
- Moser, S.; Kräutler, B. In Search of Bioactivity–Phyllobilins, an Unexplored Class of Abundant Heterocyclic Plant Metabolites from Breakdown of Chlorophyll. Isr. J. Chem. 2019, 59, 420–431. [Google Scholar] [CrossRef]
- Larqué-García, H.; Torres-Tapia, L.W.; del Olmo-Fernández, E.; Sánchez-Arreola, E.; Peraza-Sánchez, S.R. Effect of Supercritical CO2 Extraction Variability on the Yield of Tridax procumbens Roots Extract and (3S)-16,17-Didehydrofalcarinol Content. J. Supercrit. Fluids 2020, 163, 104859. [Google Scholar] [CrossRef]
- Liu, M.; Panda, S.K.; Luyten, W. Plant-Based Natural Products for the Discovery and Development of Novel Anthelmintics against Nematodes. Biomolecules 2020, 10, 426. [Google Scholar] [CrossRef] [PubMed]
- Setzer, W.N.; Ogungbe, I.V. In-Silico Investigation of Antitrypanosomal Phytochemicals from Nigerian Medicinal Plants. PLoS Negl. Trop. Dis. 2012, 6, e1727. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Kilinc, S.G.; Celik, F.; Kesik, H.K.; Simsek, S.; Ahmad, K.S.; Afzal, M.S.; Farrakh, S.; Safdar, W.; Pervaiz, F.; et al. An Inventory of Anthelmintic Plants across the Globe. Pathogens 2023, 12, 131. [Google Scholar] [CrossRef]
- Karg, C.A.; Wang, P.; Vollmar, A.M.; Moser, S. Re-Opening the Stage for Echinacea Research-Characterization of Phylloxanthobilins as a Novel Anti-Oxidative Compound Class in Echinacea purpurea. Phytomedicine 2019, 60, 152969. [Google Scholar] [CrossRef]
- Rodríguez-Garza, N.E.; Marín, M.; Sánchez-Montejo, J.; Elizondo-Luévano, J.H.; Bazaldúa-Rodríguez, A.F.; Quintanilla-Licea, R.; Romo-Sáenz, C.I.; Peláez, R.; Muro, A.; López-Abán, J. Antiparasitic Activity of Chalepensin and Graveoline Isolated from Ruta chalepensis L.: In Vitro Evaluation Against Strongyloides venezuelensis. Pathogens 2025, 14, 419. [Google Scholar] [CrossRef]
- Elizondo-Luévano, J.H.; Chávez-Montes, A.; Muro, A.; Vicente-Santiago, B.; Kačániová, M.; García-Hernández, D.G.; Bazaldúa-Rodríguez, A.F.; Larqué-García, H.; Castillo-Velázquez, U.; López-Abán, J. Nematocidal Activity of a Variety of Plants Used in Mexico Against Strongyloides venezuelensis. Parasitologia 2025, 5, 18. [Google Scholar] [CrossRef]
- Sharanappa, R.; Vidyasagar, G.M. Plant Profile, Phytochemistry and Pharmacology of Argemone Mexicana Linn. A Review. Int. J. Pharm. Pharm. Sci. 2014, 6, 45–53. [Google Scholar]
- Elizondo-Luévano, J.H.; Castro-Ríos, R.; Vicente, B.; Fernández-Soto, P.; López-Aban, J.; Muro, A.; Chávez-Montes, A. In Vitro Antischistosomal Activity of the Argemone mexicana Methanolic Extract and Its Main Component Berberine. Iran. J. Parasitol. 2021, 16, 91–100. [Google Scholar] [CrossRef]
- Sakthivadivel, M.; Thilagavathy, D. Larvicidal and Chemosterilant Activity of the Acetone Fraction of Petroleum Ether Extract from Argemone mexicana L. Seed. Bioresour. Technol. 2003, 89, 213–216. [Google Scholar] [CrossRef]
- Brahmachari, G.; Gorai, D.; Roy, R. Argemone mexicana: Chemical and Pharmacological Aspects. Rev. Bras. Farmacogn. 2013, 23, 559–575. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Hsieh, P.-W.; Chang, F.-R.; Wu, R.-R.; Liaw, C.-C.; Lee, K.-H.; Wu, Y.-C. Two New Protopines Argemexicaines A and B and the Anti-HIV Alkaloid 6-Acetonyldihydrochelerythrine from Formosan Argemone mexicana. Planta Med. 2003, 69, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Ordaz, A.; Sánchez-García, E.; Quintanilla-Licea, R.; Bazaldúa-Rodríguez, A.F.; Pérez-Hernández, R.A.; Hernández-García, M.E.; Báez-González, J.G.; Castro-Ríos, R.; Elizondo-Luévano, J.H.; Chávez-Montes, A. Amoebicidal and Trichomonicidal Capacity of Polymeric Nanoparticles Loaded with Extracts of the Plants Curcuma longa (Zingiberaceae) and Berberis vulgaris (Berberidaceae). Rev. Biol. Trop. 2022, 70, 319–331. [Google Scholar] [CrossRef]
- Moraes, D.; Levenhagen, M.A.; Costa-Cruz, J.M.; Costa Netto, A.P.d.; Rodrigues, R.M. In Vitro Efficacy of Latex and Purified Papain from Carica papaya against Strongyloides venezuelensis Eggs and Larvae. Rev. Inst. Med. Trop. Sao Paulo 2017, 59, e7. [Google Scholar] [CrossRef]
- Soleimani, A.; Keivani, N.; Lotfipour, S.; Abolhasani, S.; Valizadeh, S.; Behniafar, H. Promising Effects of Herbal Compounds against Strongyloidiasis: A Systematic Review. J. Parasit. Dis. 2022, 46, 1192–1203. [Google Scholar] [CrossRef]
- Băieş, M.-H.; Cotuţiu, V.-D.; Spînu, M.; Mathe, A.; Cozma-Petruț, A.; Bolboacǎ, S.D.; Engberg, R.M.; Collin, A.; Cozma, V. In Vivo Assessment of the Antiparasitic Effects of Allium sativum L. and Artemisia absinthium L. against Gastrointestinal Parasites in Swine from Low-Input Farms. BMC Vet. Res. 2024, 20, 126. [Google Scholar] [CrossRef] [PubMed]
- Semnan, S.; Kia, E.B.; Sharifdini, M.; Darabi, E.; Fakhrieh-Kashan, Z. Genetic Diversity of Strongyloides Stercoralis with Attention to Clinical Features in Patients Originated from Three Endemic Provinces in the North and South of Iran. Iran. J. Parasitol. 2024, 19, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Animaw, Z.; Melese, A.; Bedane, D.; Tadesse, B.; Degarege, D.; Admasu, F.; Jegnie, M.; Emmanuel, B. Prevalence, Pattern and Predictors of Clinically Important Parasites Contaminating Raw Vegetables and Fruits in Ethiopia: A Systematic Review and Meta-Analysis. BMC Infect. Dis. 2024, 24, 1146. [Google Scholar] [CrossRef]
- Soultani, M.; Bartlett, A.W.; Mendes, E.P.; Hii, S.F.; Traub, R.; Palmeirim, M.S.; Lufunda, L.M.M.; Colella, V.; Lopes, S.; Vaz Nery, S. Estimating Prevalence and Infection Intensity of Soil-Transmitted Helminths Using Quantitative Polymerase Chain Reaction and Kato-Katz in School-Age Children in Angola. Am. J. Trop. Med. Hyg. 2024, 110, 1145–1151. [Google Scholar] [CrossRef]
- de Paula, F.M.; Gomes, B.B.; Meisel, D.M.C.L.; da-Silva Nunes, M.; Cavasini, C.E.; Scopel, K.K.G.; Gryschek, R.C.B.; Ferreira, M.U. Dynamics of Anti-Strongyloides IgG Antibody Responses and Implications for Strongyloidiasis Surveillance in Rural Amazonians: A Population-Based Panel Data Analysis. PLoS Negl. Trop. Dis. 2025, 19, e0012967. [Google Scholar] [CrossRef]
- Adam, S.F.; Magzoub, M. Preliminary Observations on the Anthelmintic Activity of Jatropha Curcas against Strongyloides and Haemonchus Infections in Goats and Sheep. Bull. Anim. Health Prod. Afr. 1976, 24, 329–331. [Google Scholar]
- Hansson, A.; Veliz, G.; Naquira, C.; Amren, M.; Arroyo, M.; Arevalo, G. Preclinical and Clinical Studies with Latex from Ficus Glabrata HBK, a Traditional Intestinal Anthelminthic in the Amazonian Area. J. Ethnopharmacol. 1986, 17, 105–138. [Google Scholar] [CrossRef]
- Mbaria, J.M.; Maitho, T.E.; Mitema, E.S.; Muchiri, D.J. Comparative Efficacy of Pyrethrum Marc with Albendazole against Sheep Gastrointestinal Nematodes. Trop. Anim. Health Prod. 1998, 30, 17–22. [Google Scholar] [CrossRef]
- Ademola, I.O.; Fagbemi, B.O.; Idowu, S.O. Evaluation of the Anthelmintic Activity of Khaya Senegalensis Extract against Gastrointestinal Nematodes of Sheep: In Vitro and in Vivo Studies. Vet. Parasitol. 2004, 122, 151–164. [Google Scholar] [CrossRef]
- Iqbal, Z.; Lateef, M.; Ashraf, M.; Jabbar, A. Anthelmintic Activity of Artemisia brevifolia in Sheep. J. Ethnopharmacol. 2004, 93, 265–268. [Google Scholar] [CrossRef]
- Boonmars, T.; Khunkitti, W.; Sithithaworn, P.; Fujimaki, Y. In Vitro Antiparasitic Activity of Extracts of Cardiospermum Halicacabum against Third-Stage Larvae of Strongyloides stercoralis. Parasitol. Res. 2005, 97, 417–419. [Google Scholar] [CrossRef]
- Ademola, I.O.; Fagbemi, B.O.; Idowu, S.O. Anthelmintic Activity of Extracts of Spondias mombin Against Gastrointestinal Nematodes of Sheep: Studies In Vitro and In Vivo. Trop. Anim. Health Prod. 2005, 37, 223–235. [Google Scholar] [CrossRef]
- Iqbal, Z.; Lateef, M.; Jabbar, A.; Ghayur, M.N.; Gilani, A.H. In Vitro and In Vivo Anthelmintic Activity of Nicotiana tabacum L. Leaves against Gastrointestinal Nematodes of Sheep. Phytother. Res. 2006, 20, 46–48. [Google Scholar] [CrossRef]
- Ademola, I.O.; Fagbemi, B.O.; Idowu, S.O. Anthelmintic Efficacy Of Nauclea latifolia Extract Against Gastrointestinal Nematodes Of Sheep: In Vitro And In Vivo Studies. Afr. J. Tradit. Complement. Altern. Med. 2007, 4, 148–156. [Google Scholar] [CrossRef]
- Ademola, I.O.; Fagbemi, B.O.; Idowu, S.O. Anthelmintic Activity of Spigelia anthelmia Extract against Gastrointestinal Nematodes of Sheep. Parasitol. Res. 2007, 101, 63–69. [Google Scholar] [CrossRef]
- Cenci, F.B.; Louvandini, H.; McManus, C.M.; DelľPorto, A.; Costa, D.M.; Araújo, S.C.; Minho, A.P.; Abdalla, A.L. Effects of Condensed Tannin from Acacia mearnsii on Sheep Infected Naturally with Gastrointestinal Helminthes. Vet. Parasitol. 2007, 144, 132–137. [Google Scholar] [CrossRef]
- Okeniyi, J.A.O.; Ogunlesi, T.A.; Oyelami, O.A.; Adeyemi, L.A. Effectiveness of Dried Carica papaya Seeds Against Human Intestinal Parasitosis: A Pilot Study. J. Med. Food 2007, 10, 194–196. [Google Scholar] [CrossRef]
- Al-Shaibani, I.R.M.; Phulan, M.S.; Shiekh, M. Anthelmintic Activity of Fumaria parviflora (Fumariaceae) against Gastrointestinal Nematodes of Sheep. Int. J. Agric. Biol. 2009, 11, 431–436. [Google Scholar]
- Amin, M.d.M.; Mostofa, M.; Hoque, M.M.I.; Sayed, M. El In Vitro Anthelmintic Efficacy of Some Indigenous Medicinal Plants against Gastrointestinal Nematodes of Cattle. J. Bangladesh Agric. Univ. 2010, 7, 57–61. [Google Scholar] [CrossRef]
- Farias, M.P.O.; Teixeira, W.C.; Wanderley, A.G.; Alves, L.C.; Faustino, M.A.G. Avaliação in Vitro Dos Efeitos Do Óleo Da Semente de Carapa Guianensis Aubl. Sobre Larvas de Nematóides Gastrintestinais de Caprinos e Ovinos. Rev. Bras. Plantas Med. 2010, 12, 220–226. [Google Scholar] [CrossRef]
- Iqbal, Z.; Lateef, M.; Jabbar, A.; Gilani, A.H. In Vivo Anthelmintic Activity of Azadirachta indica A. Juss Seeds against Gastrointestinal Nematodes of Sheep. Vet. Parasitol. 2010, 168, 342–345. [Google Scholar] [CrossRef]
- Maphosa, V.; Masika, P.J. The Potential of Elephantorrhiza elephantina as an Anthelminthic in Goats. Parasitol. Res. 2012, 111, 881–888. [Google Scholar] [CrossRef]
- Carvalho, C.O.; Chagas, A.C.S.; Cotinguiba, F.; Furlan, M.; Brito, L.G.; Chaves, F.C.M.; Stephan, M.P.; Bizzo, H.R.; Amarante, A.F.T. The Anthelmintic Effect of Plant Extracts on Haemonchus contortus and Strongyloides venezuelensis. Vet. Parasitol. 2012, 183, 260–268. [Google Scholar] [CrossRef]
- Olounladé, P.A.; Azando, E.V.B.; Hounzangbé-Adoté, M.S.; Ha, T.B.T.; Leroy, E.; Moulis, C.; Fabre, N.; Magnaval, J.F.; Hoste, H.; Valentin, A. In Vitro Anthelmintic Activity of the Essential Oils of Zanthoxylum zanthoxyloides and Newbouldia laevis against Strongyloides ratti. Parasitol. Res. 2012, 110, 1427–1433. [Google Scholar] [CrossRef] [PubMed]
- El-sherbini, G.T.; Osman, S.M. Original Research Article Anthelmintic Activity of Unripe Mangifera indica L. (Mango) against Strongyloides stercoralis. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 401–409. [Google Scholar]
- Soro, D.; Koné, W.M.; Bonfoh, B.; Dro, B.; Toily, K.B.; Kamanzi, K. In Vivo Anthelmintic Activity of Anogeissus leiocarpus Guill & Perr (Combretaceae) against Nematodes in Naturally Infected Sheep. Parasitol. Res. 2013, 112, 2681–2688. [Google Scholar] [CrossRef]
- Forbes, W.M.; Gallimore, W.A.; Mansingh, A.; Reese, P.B.; Robinson, R.D. Eryngial (Trans-2-Dodecenal), a Bioactive Compound from Eryngium foetidum: Its Identification, Chemical Isolation, Characterization and Comparison with Ivermectin in Vitro. Parasitology 2014, 141, 269–278. [Google Scholar] [CrossRef]
- Bauri, R.K.; Tigga, M.N.; Saleeb Kullu, S. A Review on Use of Medicinal Plants to Control Parasites. Indian J. Nat. Prod. Resour. 2015, 6, 268–277. [Google Scholar]
- Kanojiya, D.; Shanker, D.; Sudan, V.; Jaiswal, A.K.; Parashar, R. In Vitro and in Vivo Efficacy of Extracts of Leaves of Eucalyptus globulus on Ovine Gastrointestinal Nematodes. Parasitol. Res. 2015, 114, 141–148. [Google Scholar] [CrossRef]
- Chicaiza-Tisalema, E.; Barros-Rodríguez, M.; Zurita-Vásquez, H.; Mera-Andrade, R.; Velástegui-Espín, G.; Muñoz-Espinoza, M.; Espinoza-Vaca, S.; Ortiz-Tirado, P.; Ibarra-López, E. Efecto Antihelmíntico in Vitro Del Extracto de Albizia lophantha Sobre Nematodos Gastrointestinales de Caballos. Rev. Investig. Vet. Del Perú 2016, 27, 556. [Google Scholar] [CrossRef]
- Ismail, K.A.; Ibrahim, A.N.; Ahmed, M.A.-F.; Hetta, M.H. Comparison between the Effect of Lawsonia inermis and Flubendazole on Strongyloides Species Using Scanning Electron Microscopy. J. Parasit. Dis. 2016, 40, 415–422. [Google Scholar] [CrossRef]
- Rodríguez Molano, C.E.; Cely Reatinga, Y.; Gómez, L.D.F. In vitro effect of extract of Lotus corniculatus L. on bovine gastrointestinal nematodes. Rev. Cuba. Plantas Med. 2016, 21, 145–156. [Google Scholar]
- Malik, S.; Moraes, D.F.C.; do Amaral, F.M.M.; Ribeiro, M.N.S. Ruta Graveolens: Phytochemistry, Pharmacology, and Biotechnology. In Transgenesis and Secondary Metabolism; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–28. [Google Scholar]
- Bastos, L.A.D.; Ueta, M.T.; Garcia, V.L.; Oliveira, R.N.d.; Pinto, M.C.; Mendes, T.M.F.; Allegretti, S.M. Ethanolic Extracts of Different Fruit Trees and Their Activity against Strongyloides venezuelensis. Int. J. Mod. Biol. Res. 2017, 5, 1–7. [Google Scholar]
- Poolperm, S.; Jiraungkoorskul, W. An Update Review on the Anthelmintic Activity of Bitter Gourd, Momordica Charantia. Pharmacogn. Rev. 2017, 11, 31. [Google Scholar] [CrossRef]
- Romero-Benavides, J.C.; Ruano, A.L.; Silva-Rivas, R.; Castillo-Veintimilla, P.; Vivanco-Jaramillo, S.; Bailon-Moscoso, N. Medicinal Plants Used as Anthelmintics: Ethnomedical, Pharmacological, and Phytochemical Studies. Eur. J. Med. Chem. 2017, 129, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Sunita, K.; Kumar, P.; Aasif Khan, M.; Sadaf; Akhtar Husain, S.; Singh, D.K. Anthelminthic/Larvicidal Activity of Some Common Medicinal Plants. Eur. J. Biol. Res. 2017, 7, 324–336. [Google Scholar] [CrossRef]
- Sangkhantree, C.; Riyong, D.; Jitpakdi, A.; Tippawangkosol, P.; Junkum, A.; Chaithong, U.; Wannasan, A.; Champakaew, D.; Yasanya, T.; Pitasawat, B.; et al. In Vitro Anthelminthic Activity of Piper retrofractum Against Strongyloides stercoralis Third Stage Infective Larvae. Southeast. Asian J. Trop. Med. Public. Health 2018, 49, 741–754. [Google Scholar]
- Cabral, E.R.M.; Moraes, D.; Levenhagen, M.A.; Matos, R.A.F.d.; Costa-Cruz, J.M.; Rodrigues, R.M. In Vitro Ovicidal and Larvicidal Activity of Carica papaya Seed Hexane Extract against Strongyloides venezuelensis. Rev. Inst. Med. Trop. Sao Paulo 2019, 61, e59. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, V.F.; Ramos, L.D.A.; da Silva, C.A.; Nebo, L.; Moraes, D.; da Silva, F.F.A.; da Costa, N.C.A.; Rodrigues Junior, R.D.O.; de Souza, L.F.; Rodrigues, R.M. In Vitro Anthelmintic Activity of Siparuna guianensis Extract and Essential Oil against Strongyloides venezuelensis. J. Helminthol. 2019, 94, e50. [Google Scholar] [CrossRef]
- Nsereko, G.; Emudong, P.; Omujal, J.; Acai, J.; Kungu, J.M.; Kabi, F.; Mugerwa, S.; Bugeza, J. Comparison of the Efficacy of Crude Methanolic Extracts of Cassia occidentalis and Euphorbia hirta with Levamisole-HCL against Gastrointestinal Nematodes of Economic Importance to Goat Production in Uganda. Trop. Anim. Health Prod. 2019, 51, 2269–2278. [Google Scholar] [CrossRef]
- Rivero-Perez, N.; Jaramillo Colmenero, A.; Peláez Acero, A.; Rivas Jacobo, M.; Ballesteros Rodea, G.; Zaragoza Bastida, A. Actividad Antihelmíntica de La Vaina de Leucaena leucocephala Sobre Nematodos Gastrointestinales de Ovinos (In Vitro). Abanico Vet. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Zhong, R.; Xiang, H.; Cheng, L.; Zhao, C.; Wang, F.; Zhao, X.; Fang, Y. Effects of Feeding Garlic Powder on Growth Performance, Rumen Fermentation, and the Health Status of Lambs Infected by Gastrointestinal Nematodes. Animals 2019, 9, 102. [Google Scholar] [CrossRef]
- Boyko, O.O.; Kabar, A.M.; Brygadyrenko, V.V. Nematicidal Activity of Aqueous Tinctures of Medicinal Plants against Larvae of the Nematodes Strongyloides papillosus and Haemonchus contortus. Biosyst. Divers. 2020, 28, 119–123. [Google Scholar] [CrossRef]
- Riyong, D.; Sangkhantree, C.; Champakaew, D.; Jitpakdi, A.; Tippawangkosol, P.; Junkum, A.; Chaithong, U.; Wannasan, A.; Yasanya, T.; Somboon, P.; et al. Nematocidal Effect of Piper retrofractum Vahl on Morphology and Ultrastructure of Strongyloides stercoralis Third-Stage Infective Larvae. J. Helminthol. 2020, 94, e130. [Google Scholar] [CrossRef]
- Elizondo-Luévano, J.H.; Castro-Ríos, R.; López-Abán, J.; Gorgojo-Galindo, O.; Fernández-Soto, P.; Vicente, B.; Muro, A.; Chávez-Montes, A. Berberine: A Nematocidal Alkaloid from Argemone mexicana against Strongyloides venezuelensis. Exp. Parasitol. 2021, 220, 108043. [Google Scholar] [CrossRef] [PubMed]
- Mourão Mulvaney, L.C.; Xavier-Júnior, F.H.; Rodrigues, A.M.S.; Stien, D.; Allegretti, S.M.; Garcia, V.L. Antimicrobial and Anthelmintic Activities of the Ethanolic Extract, Fractions and Isolated Compounds from Manilkara zapota L. P. Royen (Sapotaceae). J. Pharm. Pharmacol. 2021, 73, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Boyko, O.O.; Brygadyrenko, V.V. Nematicidal Activity of Aqueous Tinctures of Plants against Larvae of the Nematode Strongyloides papillosus. Trop. Biomed. 2021, 38, 85–93. [Google Scholar] [CrossRef]
- Kiambom, T.; Kouam, M.K.; Ngangoum, C.D.; Kate, B.; Teguia, A. In Vivo Anthelmintic Effect of Ginger (Zingiber officinale) Powder against Gastointestinal Nematodes of Artificially Infected Pigs. Arch. Vet. Sci. Med. 2021, 04, 1–12. [Google Scholar] [CrossRef]
- Maestrini, M.; Molento, M.B.; Forzan, M.; Perrucci, S. In Vitro Anthelmintic Activity of an Aqueous Extract of Glycyrrhiza glabra and of Glycyrrhetinic Acid against Gastrointestinal Nematodes of Small Ruminants. Parasite 2021, 28, 64. [Google Scholar] [CrossRef]
- Adak, M.; Kumar, P. Herbal Anthelmintic Agents: A Narrative Review. J. Tradit. Chin. Med. 2022, 42, 641–651. [Google Scholar] [CrossRef]
- Burgos Cantoni, C.N.; Rodríguez, M. Efecto Antiparasitario de Los Extractos Etanólicos de Campomanesia xanthocarpa (Guavirá) Frente a Strongyloides stercoralis. Rev. Impacto 2022, 2, 59–61. [Google Scholar]
- Dube, M.; Llanes, D.; Saoud, M.; Rennert, R.; Imming, P.; Häberli, C.; Keiser, J.; Arnold, N. Albatrellus confluens (Alb. & Schwein.) Kotl. & Pouz.: Natural Fungal Compounds and Synthetic Derivatives with In Vitro Anthelmintic Activities and Antiproliferative Effects against Two Human Cancer Cell Lines. Molecules 2022, 27, 2950. [Google Scholar] [CrossRef]
- Dube, M.; Raphane, B.; Sethebe, B.; Seputhe, N.; Tiroyakgosi, T.; Imming, P.; Häberli, C.; Keiser, J.; Arnold, N.; Andrae-Marobela, K. Medicinal Plant Preparations Administered by Botswana Traditional Health Practitioners for Treatment of Worm Infections Show Anthelmintic Activities. Plants 2022, 11, 2945. [Google Scholar] [CrossRef]
- Medeiros, P.B.d.S.; Mendes, T.M.F.; Garcia, V.L.; De Oliveira, R.N.; Duart, L.B.; Allegretti, S.M. The Effect of Spondias mombin L. against Strongyloides venezuelensis: An in Vitro Approach. Acta Trop. 2022, 234, 106617. [Google Scholar] [CrossRef]
- Jato, J.; Orman, E.; Duah Boakye, Y.; Oppong Bekoe, E.; Oppong Bekoe, S.; Asare-Nkansah, S.; Spiegler, V.; Hensel, A.; Liebau, E.; Agyare, C. Anthelmintic Agents from African Medicinal Plants: Review and Prospects. Evid.-Based Complement. Altern. Med. 2022, 2022, 8023866. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.K.; Daemen, M.; Sahoo, G.; Luyten, W. Essential Oils as Novel Anthelmintic Drug Candidates. Molecules 2022, 27, 8327. [Google Scholar] [CrossRef] [PubMed]
- Raj, R.; Kohli, A. A Comprehensive Study on Anthemintic Activity of Some Herbal Plants and Its Essential Oil. J. Res. Appl. Sci. Biotechnol. 2022, 1, 102–109. [Google Scholar] [CrossRef]
- Azeez Olanrewaju, Y.; Monsurat Bolanle, S.; Bolanle Temitope, A. Common Plant Bioactive Components Adopted in Combating Gastrointestinal Nematodes in Small Ruminant—A Review. Agric. Sci. 2023, 20, 61–73. [Google Scholar] [CrossRef]
- Boyko, O.; Brygadyrenko, V. Survival of Nematode Larvae Strongyloides papillosus and Haemonchus contortus under the Influence of Various Groups of Organic Compounds. Diversity 2023, 15, 254. [Google Scholar] [CrossRef]
- Catedral, C.P.A.; Gallego, R.O.L.; De Asis, N.S.; Orrillante, C.J.P. Antihelmintic Effect of Squash Seeds (Cucurbita moschata) and Papaya Seeds (Carica papaya) in Gastrointestinal Parasites in Native Chicken (Gallus gallus domesticus). IOP Conf. Ser. Earth Environ. Sci. 2023, 1208, 012057. [Google Scholar] [CrossRef]
- de Souza, Z.C.; Júnior, F.H.X.; Pinheiro, I.O.; de Souza Rebouças, J.; de Abreu, B.O.; Mesquita, P.R.R.; de Medeiros Rodrigues, F.; Quadros, H.C.; Mendes, T.M.F.; Nguewa, P.; et al. Ameliorating the Antiparasitic Activity of the Multifaceted Drug Ivermectin through a Polymer Nanocapsule Formulation. Int. J. Pharm. 2023, 639, 122965. [Google Scholar] [CrossRef] [PubMed]
- Kuhn Agnes, K.N.; Boeff, D.D.; de Oliveira Carvalho, L.; Konrath, E.L. Ethnobotanical Knowledge on Native Brazilian Medicinal Plants Traditionally Used as Anthelmintic Agents—A Review. Exp. Parasitol. 2023, 249, 108531. [Google Scholar] [CrossRef]
- Parsaeimehr, K.; Cheraghi, H.; Moghaddam, G.; Rafat, S.A. The Effect of Raw Garlic in Diet, on Blood Phase and Intestinal Parasites of Adult Sheep. J. Altern. Vet. Med. 2023, 6, 939–945. [Google Scholar]
- Busari, I.O.; Elizondo-Luévano, J.H.; Aiyelaagbe, O.O.; Soetan, K.O.; Babayemi, O.J.; Gorgojo-Galindo, O.; Muro, A.; Vicente, B.; López-Abán, J. Anthelmintic Activity of Three Selected Ethnobotanical Plant Extracts against Strongyloides venezuelensis. Exp. Parasitol. 2024, 263–264, 108801. [Google Scholar] [CrossRef] [PubMed]
- Luoga, W.; Mansur, F.; Buttle, D.J.; Duce, I.R.; Garnett, M.C.; Lowe, A.; Behnke, J.M. The relative anthelmintic efficacy of plant-derived cysteine proteinases on intestinal nematodes. J. Helminthol. 2015, 89, 165–174. [Google Scholar] [CrossRef]
- Satou, T.; Koga, M.; Matsuhashi, R.; Koike, K.; Tada, I.; Nikaido, T. Assay of Nematocidal Activity of Isoquinoline Alkaloids Using Third-Stage Larvae of Strongyloides ratti and S. venezuelensis. Vet. Parasitol. 2002, 104, 131–138. [Google Scholar] [CrossRef]
- Boyko, A.A.; Brygadyrenko, V.V. Changes in the Viability of Strongyloides ransomi Larvae (Nematoda, Rhabditida) under the Influence of Synthetic Flavourings. Regul. Mech. Biosyst. 2017, 8, 36–40. [Google Scholar] [CrossRef]
- da Silva, G.D.; de Lima, H.G.; de Sousa, N.B.; de Jesus Genipapeiro, I.L.; Uzêda, R.S.; Branco, A.; Costa, S.L.; Batatinha, M.J.M.; Botura, M.B. In Vitro Anthelmintic Evaluation of Three Alkaloids against Gastrointestinal Nematodes of Goats. Vet. Parasitol. 2021, 296, 109505. [Google Scholar] [CrossRef]
- Keiser, J.; Häberli, C. Assessment of FDA-Approved Drugs against Strongyloides ratti in Vitro and in Vivo to Identify Potentially Active Drugs against Strongyloidiasis. Parasit. Vectors 2021, 14, 615. [Google Scholar] [CrossRef]
- Dube, M.; Saoud, M.; Rennert, R.; Fotso, G.W.; Andrae-Marobela, K.; Imming, P.; Häberli, C.; Keiser, J.; Arnold, N. Anthelmintic Activity and Cytotoxic Effects of Compounds Isolated from the Fruits of Ozoroa insignis Del. (Anacardiaceae). Biomolecules 2021, 11, 1893. [Google Scholar] [CrossRef]
- Nikelo, W.; Mpayipheli, M.; McGaw, L. Managing Internal Parasites of Small Ruminants Using Medicinal Plants a Review on Alternative Remedies, Efficacy Evaluation Techniques and Conservational Strategies. Am. J. Anim. Vet. Sci. 2022, 17, 228–238. [Google Scholar] [CrossRef]
- Boyko, O.; Brygadyrenko, V. Survival of Nematode Larvae after Treatment with Eugenol, Isoeugenol, Thymol, and Carvacrol. Front. Biosci. (Elite Ed) 2023, 15, 25. [Google Scholar] [CrossRef] [PubMed]
- Shanley, H.T.; Taki, A.C.; Nguyen, N.; Wang, T.; Byrne, J.J.; Ang, C.-S.; Leeming, M.G.; Nie, S.; Williamson, N.; Zheng, Y.; et al. Structure-Activity Relationship and Target Investigation of 2-Aryl Quinolines with Nematocidal Activity. Int. J. Parasitol. Drugs Drug Resist. 2024, 24, 100522. [Google Scholar] [CrossRef] [PubMed]
- Raghav, D.; Ashraf, S.M.; Mohan, L.; Rathinasamy, K. Berberine Induces Toxicity in HeLa Cells through Perturbation of Microtubule Polymerization by Binding to Tubulin at a Unique Site. Biochemistry 2017, 56, 2594–2611. [Google Scholar] [CrossRef]
- Olazarán-Santibañez, F.; Rivera, G.; Vanoye-Eligio, V.; Mora-Olivo, A.; Aguirre-Guzmán, G.; Ramírez-Cabrera, M.; Arredondo-Espinoza, E. Antioxidant and Antiproliferative Activity of the Ethanolic Extract of Equisetum myriochaetum and Molecular Docking of Its Main Metabolites (Apigenin, Kaempferol, and Quercetin) on β-Tubulin. Molecules 2021, 26, 443. [Google Scholar] [CrossRef]
- Mira, A.; Shimizu, K. In Vitro Cytotoxic Activities and Molecular Mechanisms of Angelica shikokiana Extract and Its Isolated Compounds. Pharmacogn. Mag. 2015, 11, 564. [Google Scholar] [CrossRef]
- Mukhtar, E.; Adhami, V.M.; Sechi, M.; Mukhtar, H. Dietary Flavonoid Fisetin Binds to β-Tubulin and Disrupts Microtubule Dynamics in Prostate Cancer Cells. Cancer Lett. 2015, 367, 173–183. [Google Scholar] [CrossRef]
- Acharya, B.R.; Chatterjee, A.; Ganguli, A.; Bhattacharya, S.; Chakrabarti, G. Thymoquinone Inhibits Microtubule Polymerization by Tubulin Binding and Causes Mitotic Arrest Following Apoptosis in A549 Cells. Biochimie 2014, 97, 78–91. [Google Scholar] [CrossRef]
- Zhang, N.; Li, W.; Fu, B. Vaccines against Trichinella spiralis: Progress, Challenges and Future Prospects. Transbound. Emerg. Dis. 2018, 65, 1447–1458. [Google Scholar] [CrossRef]
- Carlos, J.; Carvalho, T.; Maistro, E.L. Anthocyanins-Loaded Eudragit® L100 Nanoparticles: In Vitro Cytotoxic and Genotoxic Analysis. Genet. Mol. Res. 2018, 17, gmr16039875. [Google Scholar] [CrossRef]
- Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-Based Nanoparticles: An Overview of Biomedical Applications. J. Control. Release 2012, 161, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Rezvantalab, S.; Drude, N.I.; Moraveji, M.K.; Güvener, N.; Koons, E.K.; Shi, Y.; Lammers, T.; Kiessling, F. PLGA-Based Nanoparticles in Cancer Treatment. Front. Pharmacol. 2018, 9, 1260. [Google Scholar] [CrossRef]
- Goel, M.; Sharma, A.; Sharma, B. Recent Advances in Biogenic Silver Nanoparticles for Their Biomedical Applications. Sustain. Chem. 2023, 4, 61–94. [Google Scholar] [CrossRef]
- Rahimi, M.T.; Ahmadpour, E.; Rahimi Esboei, B.; Spotin, A.; Kohansal Koshki, M.H.; Alizadeh, A.; Honary, S.; Barabadi, H.; Ali Mohammadi, M. Scolicidal Activity of Biosynthesized Silver Nanoparticles against Echinococcus granulosus Protoscolices. Int. J. Surg. 2015, 19, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Elizondo-Luevano, J.H.; Castro-Ríos, R.; Parra-Saldívar, R.; Larqué-García, H.; Garza-Tapia, M.; Melchor-Martínez, E.M.; Chávez-Montes, A. Influence of the Polymer and Solvent Variables on the Nanoencapsulation of the Flavonoid Quercetin: Preliminary Study Based on Eudragit® Polymers. Appl. Sci. 2023, 13, 7816. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; Meng, L.; Zhang, Y.; Ai, R.; Qi, N.; He, H.; Xu, H.; Tang, X. Thiolated Eudragit Nanoparticles for Oral Insulin Delivery: Preparation, Characterization and in Vivo Evaluation. Int. J. Pharm. 2012, 436, 341–350. [Google Scholar] [CrossRef]
- Patra, C.h.N.; Priya, R.; Swain, S.; Kumar Jena, G.; Panigrahi, K.C.; Ghose, D. Pharmaceutical Significance of Eudragit: A Review. Futur. J. Pharm. Sci. 2017, 3, 33–45. [Google Scholar] [CrossRef]
- Nemati, S.; Mottaghi, M.; Karami, P.; Mirjalali, H. Development of Solid Lipid Nanoparticles-Loaded Drugs in Parasitic Diseases. Discov. Nano 2024, 19, 7. [Google Scholar] [CrossRef]
- Fakheri, A.; Esmaeilnejad, B.; Akbari, H.; Molaei, R. In vitro evaluation of anthelmintic activity of biocompatibile carbon quantum dot nanocomposite against egg and larval stages of equine strongyles. BMC Vet. Res. 2025, 21, 32. [Google Scholar] [CrossRef]
- Larki, S.; Alborzi, A.; Jamshidian, J.; Madankan, F. The Evaluation of Iron Oxide, Zinc Oxide and Aluminum Oxide Nanoparticles on the Pre-Parasitic Stages of Trichostrongylid gastrointestinal nematodes in small ruminants. J. Anim. Prod. 2025, 27, 107–119. [Google Scholar] [CrossRef]
- Hamid, L.; Alsayari, A.; Tak, H.; Mir, S.A.; Almoyad, M.A.A.; Wahab, S.; Bader, G.N. An Insight into the Global Problem of Gastrointestinal Helminth Infections amongst Livestock: Does Nanotechnology Provide an Alternative? Agriculture 2023, 13, 1359. [Google Scholar] [CrossRef]
- Trujillo-Rodríguez, I.; López-Abán, J.; Alonso-Sardón, M.; Vicente-Santiago, B.; Muro-Álvarez, A.; Manzano-Román, R. Current Efficacy of Multiepitope Vaccines Against Helminths: A Systematic Review. Biomolecules 2025, 15, 867. [Google Scholar] [CrossRef]
- Stroffolini, G.; Tamarozzi, F.; Fittipaldo, A.; Mazzi, C.; Le, B.; Nery, S.V.; Buonfrate, D. Impact of Preventive Chemotherapy on Strongyloides stercoralis: A Systematic Review and Meta-Analysis. PLoS Negl. Trop. Dis. 2023, 17, e0011473. [Google Scholar] [CrossRef]
- Mwamula, A.O.; Kabir, M.d.F.; Lee, D. A Review of the Potency of Plant Extracts and Compounds from Key Families as an Alternative to Synthetic Nematicides: History, Efficacy, and Current Developments. Plant Pathol. J. 2022, 38, 53–77. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Avato, P. Chemical Composition and Nematicidal Properties of Sixteen Essential Oils—A Review. Plants 2021, 10, 1368. [Google Scholar] [CrossRef]
- Sargison, N.D. Pharmaceutical treatments of gastrointestinal nematode infections of sheep–future of anthelmintic drugs. Vet. Parasitol. 2012, 189, 79–84. [Google Scholar] [CrossRef]
- Khan, D.A.; Hasan, M.N.; Boonhok, R.; Sungkanu, S.; Singhaboot, Y.; Shorna, A.A.; Hasan, A.; Chotivanich, K.; Wilairatana, P.; Siyadatpanah, A.; et al. In vitro and in silico investigations of Propolis-derived phytochemicals as potential inhibitors of Plasmodium falciparum. Vet. World 2025, 18, 1644–1659. [Google Scholar] [CrossRef]
- Saberi, R.; Ghorbanzadeh, A.; Tabaripour, R.; Sarvi, S.; Gholami, S.; Hosseini, S.A. Prevalence of Strongyloidiasis in Immunocompromised Patients in Mazandaran Province of Northern Iran: A Comprehensive Study Utilizing Simultaneous Parasitological, Serological, and Molecular Techniques. Parasite Epidemiol. Control 2025, 29, e00425. [Google Scholar] [CrossRef]
- Crudo Blackburn, C.; Yan, S.M.; McCormick, D.; Herrera, L.N.; Iordanov, R.B.; Bailey, M.D.; Bottazzi, M.E.; Hotez, P.J.; Mejia, R. Parasitic Contamination of Soil in the Southern United States. Am. J. Trop. Med. Hyg. 2024, 111, 506–514. [Google Scholar] [CrossRef]
- Crego-Vicente, B.; Febrer-Sendra, B.; Nindia, A.; Pessela, A.; Aixut, S.; Martínez-Campreciós, J.; Mediavilla, A.; Silgado, A.; Sulleiro, E.; Treviño, B.; et al. First Field Study Using Strong-LAMP for Diagnosis of Strongyloidiasis in Cubal, Angola. Parasit. Vectors 2023, 16, 393. [Google Scholar] [CrossRef] [PubMed]
- Schär, F.; Trostdorf, U.; Giardina, F.; Khieu, V.; Muth, S.; Marti, H.; Vounatsou, P.; Odermatt, P. Strongyloides stercoralis: Global Distribution and Risk Factors. PLoS Negl. Trop. Dis. 2013, 7, e2288. [Google Scholar] [CrossRef]
- Yeung, S.; Bharwada, Y.; Bhasker, S.; Boggild, A. Strongyloidiasis: What Every Gastroenterologist Needs to Know. Ther. Adv. Chronic Dis. 2022, 13, 20406223221137499. [Google Scholar] [CrossRef] [PubMed]
- Ghareeb, R.Y.; Alfy, H.; Fahmy, A.A.; Ali, H.M.; Abdelsalam, N.R. Utilization of Cladophora glomerata Extract Nanoparticles as Eco-Nematicide and Enhancing the Defense Responses of Tomato Plants Infected by Meloidogyne javanica. Sci. Rep. 2020, 10, 19968. [Google Scholar] [CrossRef] [PubMed]
Drug | Activity | Reference |
---|---|---|
Albendazole | ++ | [1,24,26,27] |
Ivermectin | +++ | |
Mebendazole | + | |
Pyrantel pamoate | − |
Anthelmintic Drug | Year | Mechanism | Reference | |
---|---|---|---|---|
Initial Approval | First Report of Resistance Published | |||
Benzimidazoles | 1961 | 1964 | Mutations: β-tubulin; Phe200Try, Phe167Try or Glu198Ala. | [40,41,42,43] |
Imidothiazoles-tetrahydropyrimidines | 1970 | 1979 | Changes in nicotinic acetylcholine receptors. | |
Avermectin-mylbemicins | 1981 | 1988 | Sensitivity reducted of GluCl/GABA receptors. |
Variable | Study Cases |
---|---|
General subjects | Efficacy, safety, resistance, and natural products. |
Year of publication | From 1 January 1976 to 21 July 2025. |
Pharmaceutical or natural product | Name of the phytopharmaceutical, extract, molecule/metabolite. |
Conditions of application | Base product, combinations and formulations (oral route, tablets, macroparticles, complementary treatment, alternative treatment, application patterns, model, topical, and subcutaneous). |
Parasite | Strongyloides. |
Phase | Egg; larvae. |
Population | Children, Adults, General population. |
Type of study | Experimental model (in vitro, in vivo, and in silico), original research, review, systematic review, and clinical trial. |
Search Strategy | ||||||
---|---|---|---|---|---|---|
Concept 1 | Concept 2 | Concept 3 | Concept 4 | |||
Strongyloides | AND | Strongyloidosis | AND | Natural product, | AND | In vivo |
Plant, | OR | |||||
Extract OR Extraction, | In vitro | |||||
Purification, | OR | |||||
Isolation | In silico |
Plant Species | Strongyloides Specie | Formulation | Model | Activity | Authors, Published Year [Reference] |
---|---|---|---|---|---|
Jatropha curcas | Strongyloides infections | Not specified. | In vivo | Preliminary observations on the anti-Strongyloides activity in goats and sheep. | Adam & Magzoub, 1976 [69] |
Ficus glabrata | S.s. | Latex | In vivo | Reduction in egg and larvae output by 42%. Evaluation in a location in Peru. 1 cm3/kg per day for three consecutive days. | Hansson et al., 1986 [70] |
Pyrethrum marc | Strongyloides spp. | Dorper sheep were fed a diet based on the P. marc plant. | In vivo | Fecal egg counts (FEC) reduction in sheep. Treatments: 36 mg/kg body weight at days 0, 2, 4, 6, 8, and 10. The larvae recovered were 0.8%. | Mbaria et al., 1998 [71] |
Khaya senegalensis | Strongyloides sp. | Aq. and EtOH extracts. | In vitro and In vivo | Anthelmintic activity against gastrointestinal nematodes of sheep. In vitro test (LC50 or LD50 in mg/mL at 7 days): LC50 of aqueous extract: 0.7. LD50 of ethanolic extract: 0.5. In vivo test (FEC %): 125 mg/Kg: 33% FEC at day 3 to 9. 250 mg/Kg: 75% FEC at day 9 to 12. 500 mg/Kg: 0% FEC at day 12. | Ademola et al., 2004 [72] |
Artemisia brevifolia | S.p. | In vitro assays: Crude Aq. and MeOH extracts. In vivo assays: The crude powder, Crude Aq. and MeOH extracts. | In vivo and In vitro | Dose-dependent anthelmintic activity | Iqbal et al., 2004 [73] |
Cardiospermum halicacabum | S.s. | Lyophilized Aq. and alcohol extracts. | In vitro | In vitro effect of C. halicacabum extracts for their effectiveness against L3 of S.s. | Boonmars et al., 2005 [74] |
Spondias mombin | Strongyloides spp. | Aq. and EtOH Extracts. | In vitro and In vivo | Anthelmintic activity against gastrointestinal nematodes (L3) of sheep. In vitro test LC50 in mg/mL: Aqueous extract = 1; Ethanolic extract = 0.5. In vivo test (FEC %): 0.125 g/Kg: 10% reduction in FEC at day 3 to 12. 0.25 g/Kg: 60% reduction in FEC at day 3 to 12. 0.5 g/Kg: 65% reduction of FEC at day 3 to 12. | Ademola et al., 2005 [75] |
Nicotiana tabacum | S.p. | Crude Aq. and MeOH extract. | In vivo and In vitro | Aq. and MeOH extracts of N. tabacum exhibit dose-dependent anthelmintic activity both in vitro and in vivo. | Iqbal et al., 2006 [76] |
Nauclea latifolia | Strongyloides spp. | Aq. and EtOH extracts. | In vitro and In vivo | Anthelmintic activity against gastrointestinal nematodes (L3) of sheep. In vitro test LC50 in mg/mL: Aqueous extract = 0.7; Ethanolic extract = 0.7. In vivo test (FEC %): 0.25 g/Kg: 30% reduction in FEC at day 3 to 12. 0.5 g/Kg: 60% reduction of FEC at day 3 to 12. | Ademola et al., 2007b [77] |
Spigelia anthelmia | Strongyloides sp. | Aq. and EtOH extracts. | In vitro and In vivo | Anthelmintic activity against gastrointestinal nematodes of sheep. In vitro test LC50 in mg/mL: Aqueous extract = 0.71; Ethanolic extract = 0.63. In vivo test (FEC %): 0.125 g/Kg: 23% reduction in FEC at day 3. 0.25 g/Kg: 74% reduction in FEC at day 3. 0.5 g/Kg: 75% reduction of FEC at day 3. | Ademola et al., 2007a [78] |
Acacia negra (Acacia mearnsii) | S.p. | Tannin from A. negra | In vivo | A diet containing condensed tannins from the A. negra decreased the presence of S.p. eggs and larvae in feces of infected lambs. | Cenci et al., 2007 [79] |
Carica papaya | S.s. | Air-dried C. papaya seeds. | In vivo | LM examination of wet preparations of freshly passed stools to confirm the presence of intestinal parasites, their larvae, and ova. 100% effectiveness after 7 days. | Okeniyi et al., 2007 [80] |
Fusarium parviflora | S.p. and other gastrointestinal nematodes | Aq. and EtOH extracts. | In vivo and In vitro | Effect in hatch and LDI in in vitro and FEC reduction in in vivo tests. | Al-Shaibani et al., 2009 [81] |
20 indigenous medicinal plants of Bangladesh | Strongyloides sp. | Aq. extracts | In vivo | Dose-dependent anthelmintic activity. | Amin et al., 2010 [82] |
Carapa guianensis | Strongyloides sp. | Seed oil | In vitro | Ovicidal and larvicidal effect against gastrointestinal nematodes of goats and sheep. | Farias et al., 2010 [83] |
Azadirachta indica | S.p. and other gastrointestinal nematodes | Crude powder, crude Aq. and MeOH extracts of A. indica seeds. | In vivo | Dose-dependent anthelmintic activity. FEC and larval reduction and counts post-treatments from coprocultures of sheep. | Iqbal et al., 2010 [84] |
Elephantorrhiza elephantina | Strongyloides sp. | MeOH extract, n-hexane, EtOAc and Aq. fractions. | In vitro and In vivo | Reduction % of FEC and larval count. Effect on body weight of sheep. | Maphosa & Masika, 2012 [85] |
Piper tuberculatum and Lippia sidoides | S.v. | Essential oil of L. sidoides and extract of P. tuberculatum. | In vivo | Effect in Rattus norvegicus: Decrease in the presence of adult worms recovered from the initial third of the intestine of rats. | Carvalho et al., 2012 [86] |
Zanthoxylum zanthoxyloides and Newbouldia laevis | S.r. | Hydrodistillation and essential oils. | In vitro | Essential oil activity of Z. zanthoxyloides: Egg hatching IC50 and IC90 in μg/mL: IC50 = 18; IC90 = 29. Larval migration IC50 and IC90 in μg/mL: IC50 = 47; IC90 = 165. Essential oil activity of N. laevis: Egg hatching IC50 and IC90 in μg/mL: IC50 = 20; IC90 = 38. Larval migration IC50 and IC90 in μg/mL: IC50 = 52; IC90 = 146. | Olounladé et al., 2012 [87] |
Mangifera indica | S.s. | Aq. extracts of immature fruits. | In vitro | 100% inhibition of LDI (L3) at 100 mg/mL−1 (6 h post treatment). | El-sherbini & Osman, 2013 [88] |
Anogeissus leiocarpus | S.p. | EtOH extract. | In vitro | The administration of 80 mg/kg EtOH extract (single oral dose) induced high efficacy (100%) against adult S.p. | Soro et al., 2013 [89] |
Eryngium foetidum | S.s. | MeOH-water (4:1, v/v) crude extracts and its main compound trans-2-dodecenal (eryngial). | In vitro | Anthelmintic activity against infective third-stage larvae (L3) of S.s. | Forbes et al., 2014 [90] |
Fusarium parviflora | S.p. | Aq. and EtOH extracts of F. parviflora. | In vivo and In vitro | F. parviflora: Effect in LDI and FEC. | Bauri et al., 2015 [91] |
Eucalyptus globulus | S.p. | Crude Aq. and MeOH extract. | In vivo and In vitro | Efficacy of extracts on ovine gastrointestinal nematodes. In vitro test ED50 and ED99 in mg/mL: Aqueous extract: EHT: ED50 = 1.5; ED99 = 7.1 LDT: ED50 = 20; ED99 = 109 MeOH extract: EHT: ED50 = 3.76; ED99 = 33.81 LDT: ED50 = 15.6; ED99 = 94.5 In vivo test FEC %: Aqueous extract: LDT = 5 g/single oral dose. 66% of FEC reduction was observed in in vivo test on day 21 post-treatment, although in initial stages it showed 58.0 and 80% effectiveness on days 7 and 14 post-treatment. | Kanojiya et al., 2015 [92] |
Albizia lophantha | S.w. | Alcoholic extract. | In vitro | Dose-dependent anthelmintic (reduction in LDI and FEC) activity. | Chicaiza-Tisalema et al., 2016 [93] |
Lawsonia inermis | S.s. and Strongyloides spp. | MeOH extract and n-hexane subpartition. | In vitro | SEM determination of ultrastructural changes in L3 caused by extracts after 24, 48, 72 and 96 h of incubation. | Ismail et al., 2016 [94] |
Lotus corniculatus | S.p. | EtOH extracts. | In vitro | Inhibition of egg hatching S.p. | Rodríguez-Molano, C. E., Cely-Reatiga, Y. and Gómez-Lara, D. F., 2016 [95] |
Ruta graveolens | S.s. | Boiled infusion, taken as tea three times a day for 6 to 7 days. | In situ | It mentions that the ethereal extract of the leaves has been shown to have anthelmintic activity against S.s., Artcylostoma caninum, and A. duodenale, and the essential oil against Ascaris suilla, Hirudo medicinalis, Tubifex riuolorum, and Anguillula aceti. | Malik et al., 2016 [96] |
24 plant species from the following families: Anacardiaceae, Arecaceae, Celastraceae, Fabaceae, Jungladaceae, Malpighiaceae, Myrtaceae, Proteaceae, Sapindaceae, Sapotaceae, Tiliaceae, and Urticaceae | S.v. | EtOH extracts and fractions. | In vitro | The correlation between time, motility, oviposition of S.v., and mortality with the concentration of each of the extracts was determined after 72 h. | Bastos et al., 2017 [97] |
Spondias mombin | S.v. | EtOH extracts and fractions. | In vitro | S. mombin EtOH extract and aqueous fraction showed 100% mortality rate after 72 h, for all tested concentrations. | Bastos et al., 2017 [97] |
C. papaya | S.v. | Lyophilized, fresh and frozen latex; and purified papain. | In vitro | In vitro efficacy of latex and papain against S.v. larvae and FEC after 48 h. | Moraes et al., 2017 [62] |
Momordica charantia | Strongyloides spp. | Aq. extract of leaves and seeds. | In vivo | Aq. extract of M. charantia leaves and seeds showed efficacy against Strongyloides sp. in the cattle. | Poolperm & Jiraungkoorskul, 2017 [98] |
Many plants | S.s. and other filarial nematodes and some STHs. | A variety of plant extracts. | In vivo and In vitro | A variety of anthelmintic properties. | Romero-Benavides et al., 2017 [99] |
Cardiospermum halicacabum | S.s. | Aq. and alcohol extracts. | In vitro | Showed reduction in the viability of L3. | Sunita et al., 2017 [100] |
Piper retrofractum, Abelmoschus esculentus, and C. papaya | S.s. | EtOH extracts. | In vitro | LC50 in mg/mL at 24 h: P. retrofractum = 0.04; A. esculentus = 0.09; C. papaya = 0.10. LC99 in mg/mL at 24 h: P. retrofractum = 0.13; A. esculentus = 0.60; C. papaya = 0.48. | Sangkhantree et al., 2018 [101] |
C. papaya | S.v. | Seed hexane extract. | In vitro | Ovicidal and larvicidal (L3) activity. | Cabral et al., 2019 [102] |
Siparuna guianensis | S.v. | EtOH extract, ethyl acetate and Aq. fractions, essential oil and α-bisabolol. | In vitro | Anthelmintic properties of extracts and isolated compounds S.v. eggs (after 48 h) and L3 (after 24 h). | Carvalho et al., 2019 [103] |
Cassia occidentalis and Euphorbia hirta | Strongyloides spp. | Leaf hydroalcoholic extract. | In vivo and In vitro | Both plant extracts disrupt lifecycles by suppressing the egg-laying capacity in adult worms and killing infective larvae. | Nsereko et al., 2019 [104] |
Leucaena leucocephala | Strongyloides spp. and other gastrointestinal nematodes | Hydroalcoholic extract. | In vivo and In vitro | The hydroalcoholic extract pods act by inhibiting FEC and viability of L3. | Rivero-Perez et al., 2019 [105] |
Allium sativum | Gastrointestinal nematodes | Garlic powder. | In vivo | Effects on growth performance, Rumen fermentation, and the health of lambs infected by gastrointestinal nematodes. | Zhong et al., 2019 [106] |
Aqueous tinctures of 48 plant species from the following families: Anacardiaceae, Araliaceae, Asparagaceae, Berberidaceae, Bignoniaceae, Calycanthaceae, Celastraceae, Colchicaceae, Cupressaceae, Dennstaedtiaceae, Eucommiaceae, Fabaceae, Fagaceae, Geraniaceae, Ginkgoaceae, Lamiaceae, Magnoliaceae, Moraceae, Phyllanthaceae, Pinaceae, Ranunculaceae, Rosaceae, Rutaceae, Simaroubaceae, Tamaricaceae, Taxaceae, and Vitaceae | L3 of S.p. and Haemonchus contortus | Aqueous tincture. | In vitro | Dose-dependent anthelmintic activity. | Boyko et al., 2020 [107] |
Piper retrofractum | S.s. | Hexane extract. | In vitro | Nematocidal effect on morphology and ultrastructure of S.s. L3. The L3 were evaluated for structural alterations by LM, SEM, and TEM. | Riyong et al., 2020 [108] |
Argemone mexicana | S.v. | MeOH extract and sub-partition. | In vitro | LC50 in μg/mL at 96 h: Methanolic extract = 92.1. Methanol subfraction = 19.5. | Elizondo-Luévano et al., 2021a [109] |
Manilkara zapota | S.v. | EtOH extract, fractions, and isolated compounds (Chlorogenic acid and myricitrin). | In vitro | Larvicidal (L4) activity. | Mourão Mulvaney et al., 2021 [110] |
80 plant species from the following families: Amaryllidoideae, Apiaceae, Apocynaceae, Aristolochiaceae, Asparagaceae, Asteraceae, Convolvulaceae, Cornaceae, Dipsacaceae, Ericaceae, Euphorbiaceae, Fabaceae, Hypericaceae, Lamiaceae, Lamiaceae, Linaceae, Malvaceae, Oleaceae, Onagraceae, Poaceae, Polygonaceae, Ranunculaceae, Resedaceae, Rosaceae, Sapindaceae, Solanaceae, Typhaceae, Ulmaceae, Urticaceae and Violaceae | S.p. | Aq. tinctures. | In vitro | Mortality % of rhabditiform larvae (L1–2) of S.p. exposed to aqueous tinctures of leaves from 80 species of plants for 24 h. | Boyko & Brygadyrenko, 2021 [111] |
Zingiber officinale (Ginger) | S.rn. | Ginger powder. | In vivo | The ginger powder was effective in reducing egg shed and keeping the parasitic load of S.rn. and strongyle eggs constantly low for six weeks after treatment. | Kiambom et al., 2021 [112] |
Glycyrrhiza glabra | S.p. and other gastrointestinal nematodes | Root Aq. extract and glycyrrhetinic acid. | In vivo and In vitro | Dose-dependent anthelmintic activity, and FEC and LDI reduction. Inhibition of larval migration. | Maestrini et al., 2021 [113] |
Ginkgo biloba | S.p. | Aq. extract. | In vitro | 92.3% mortality rate of nematode larvae at 3% of plant extract solution. | Adak & Kumar, 2022 [114] |
Herbal anthelmintic agents | S.p., S.s. and other nematodes | Diverse natural compounds. | In vivo and In vitro | A review of diverse anthelmintic properties. | Adak & Kumar, 2022 [114] |
Campomanesia xanthocarpa | S.s. | EtOH extracts. | In vitro | Demonstrated delayed in FEC, but no anthelmintic activity against S.s. | Burgos Cantoni & Rodríguez, 2022 [115] |
Albatrellus confluens | S.r. | MeOH extract; n-hexane, chloroform, EtOAc fractions; subfractions; and synthesized compounds. | In vitro | Larvicidal (L3) % activity. | Dube, Llanes et al., 2022 [116] |
Moringa oleifera | S.r. | Crude MeOH extracts. | In vitro | M. oleifera leaves MeOH extract exhibited the 58.2% activity against S.r. L3 at 100 μg/mL. | Dube, Raphane et al., 2022 [117] |
Spondias mombin | S.v. | EtOH extract and fractions. | In vitro | Larvicidal (L3) % activity. Fraction 4 at 400 μg/mL showed 100% mortality at 4 h. Also, at 50 μg/mL caused 100% mortality 12 h after exposure. | Medeiros et al., 2022 [118] |
Compilation of many plants | Strongyloides spp. (S.p., S.r., S.v., and S.s.) | Plant extracts, fractions, and phytometabolites. | In vivo and In vitro | Bibliographic review of plants with activity against strongyloidosis. | Soleimani et al., 2022 [63] |
Artemisia brevifolia and N. tabacum | Strongyloides spp., and S.p. | A. brevifolia: MeOH and Aq. extract. N. tabacum: Crude Aq. and MeOH extract. | In vivo and In vitro | A. brevifolia: In vivo inhibition of FEC assay against S.p. in sheep. N. tabacum: In vivo inhibition of FEC assay against S.p. in sheep. | Jato et al., 2022 [119] |
Zanthoxylum zanthoxyloides and Newbouldia laevis | S.r. | EO of Zanthoxylum zanthoxyloides seeds and Newbouldia laevis leaves. | In vitro | FEC reduction. | Panda et al., 2022 [120] |
Plectranthus neochilus | S.r. | EO | In vitro | Effective against S.r. | Raj & Kohli, 2022 [121] |
Siparuna guianensis | S.v. | Hexane extracts of leaves. | In vitro | Significant inhibitory effect on the vitality of adult male worms | Ahmed et al., 2023 [52] |
A. negra, Momordica charantia, and Spondias mombin | S.p. and Strongyloides spp. | A. negra: Tannin. M. charantia: Saponins, flavonoids, and anthocyannins. S. mombin: Aq. and EtOH crude extracts. | In vivo and In vitro | A. negra: Significantly lower FEC of S.p. and other gastrointestinal nematodes after 8 weeks. Momordica charantia: Showed efficacy against Strongyloides sp. in the cattle. S. mombin: Dose-dependent anthelmintic (reduction in LDI and FEC) activity. | Azeez Olanrewaju et al., 2023 [122] |
Chemically synthesized natural compounds | S.p. | 24 h exposure to 1% solutions of glutaraldehyde, thioacetic acid, 3-furoic acid, diethyl malonate, 2-oxopentanedioic acid, butan-1-amine, isovaleric acid, ethyl acetoacetate, phenol, and naphthol-2 compounds. | In vitro | The results of the study consider 28 compounds as promising for further research on anti-nematode activity. Compounds killed 100% of the S.p. larvae of all the development stages. | Boyko and Brygadyrenko, 2023 [123] |
Cucurbita moschata and C. papaya | Strongyloides spp. | Squash and papaya seeds. | In vivo and In vitro | Anti-helminthic effect on gastrointestinal parasites in chicken (Gallus gallus domesticus). | Catedral et al., 2023 [124] |
Cucurbita pepo | S.v. | Nps made by pumpkin seed oil loaded with IVM. | In vitro | IVM-loaded Nps demonstrated enhanced anthelmintic activity against S.v. in comparison to free IVM. | de Souza et al., 2023 [125] |
A variety of Brazilian medicinal plants | Strongyloides sp., Strongyloides spp., S.s. and other nematodes | Diverse methods of preparation. | In vivo and In vitro | A review of diverse anthelmintic properties | Kuhn Agnes et al., 2023 [126] |
Garlic | Strongyloides sp. | Administration of garlic in diet. | In vivo | Dose-dependent anthelmintic activity and FEC reduction and counts post-treatments from coprocultures of adult sheep. Increases in blood mass. | Parsaeimehr et al., 2023 [127] |
Turraea vogelii, Senna podocarpa, and Jaundea pinnata | S.v. | Evaluation of the crude powder of the leaf extracts was extracted using different organic solvents n-hexane, ethyl acetate, and absolute methanol. | In vitro | In vitro activity against S.v. third-stage larvae. | Busari et al., 2024 [128] |
Ruta chalepensis | S.v. | Crude MeOH extract and n-hexane, chloroform, and methanol partitions. | In vitro | In vitro activity against S.v. third-stage larvae. | Rodríguez-Garza et al., 2024 [12] |
A variety of Mexican medicinal plants: Amphipterygium adstringens, Artemisia ludoviciana, Cymbopogon citratus, Heterotheca inuloides, Jatropha dioica, Justicia spicigera, Larrea tridentata, Mimosa tenuiflora, Psacalium decompositum, R. chalepensis, Semialarium mexicanum, and Smilax aspera | S.v. | Crude MeOH extracts. | In vitro | In vitro activity against S.v. third-stage larvae. | Rodríguez-Garza et al., 2024 [12] |
A. sativum and Artemisia absinthium | S.rn | Alcoholic extracts (70% EtOH). | In vivo | The current study demonstrated that administering powdered of A. sativum bulbs and A. absinthium aerial parts at doses of 180 mg/kg/day and 90 mg/kg/day, respectively, for ten consecutive days, may be effective against digestive parasites in swine. The findings of the present study revealed that A. sativum and A. absinthium have the potential of treating gastrointestinal parasitoses in swine. | Băieş et al., 2024 [64] |
A. mexicana, J. dioica, Lippia graveolens, Thymus vulgaris, and Kalanchoe daigremontiana | S.v. | Crude MeOH extracts. | In vitro | In vitro activity against S.v. third-stage larvae. | Elizondo-Luévano et al., 2025 [55] |
Plant Species/ Biomolecule | Strongyloides Specie | Formulation | Model | Activity | Authors, Published Year [Reference] |
---|---|---|---|---|---|
Isolated isoquinoline alkaloids from Macleaya cordata, Chelidonium majus, Corydalis turtschaninovii, and Corydalis Tuber | S.r. and S.v. | Isolated isoquinoline alkaloids. | In vitro | PC50 in μM at 24 h: Against S.r.: D-Chelidonine = 11; Allocryptopine = 61; Protopine = 52; Berberine = 60; Dehydrocorydaline = 32; D-Corydaline = 18; L-Stylopine: 14; Emetine = 34; Papaverine = 54. Against S.v.: Chelerythrine = 72; Sanguinarine = 60; Allocryptopine = 51; Protopine = 33; Berberine = 32; Coptisine = 48; Dehydrocorydaline = 12; D-Corydaline = 30; L-Stylopine = 13; DL-Tetrahydropalmatine = 32; Emetine = 27; and Papaverine = 3. | Satou et al., 2002 [130] |
Flavorings | S.rn. | Benzaldehyde, citral, D-limonene, and β-ionone. | In vitro | β-ionone and D-limonene at 10 g/L after 24 h caused the death of <50% of S.rn. larvae. | Boyko & Brygadyrenko, 2017 [131] |
Secondary metabolites | S.s. and some STHs | A variety of secondary metabolites. | In vivo and In vitro | A variety of anthelmintic properties. | Romero-Benavides et al., 2017 [99] |
Berberine from A. mexicana | S.v. | Purified alkaloid. | In vitro | LC50 in μg/mL at 96 h: Berberine = 1.6. | Elizondo-Luévano, et al., 2021a [109] |
Berberine, curcumin, and quercetin | S.v. | Pure alkaloid, pure polyphenol, and pure flavonoid. | In vitro | IC50 in μM at 72 h: Berberine = 2; curcumin = 14; and quercetin = 111. | Elizondo-Luévano et al., 2020 [21] |
Alkaloids | S.p. and against gastrointestinal nematodes | Berberine, harmaline, and piperine. | In vitro | Dose-dependent anthelmintic activity. The anthelmintic activity of alkaloids was evaluated using the egg hatch (EHA) and larval motility (LMA) assays. | da Silva et al., 2021 [132] |
Products found naturally | S.r. | Aconitine (pseudoalkaloid), inositol (polyol), and selamectin (avermectin). | In vitro | Effect on L3 and adult worms (dead after 72 h), at 100 and 10 µM, respectively. | Keiser, J., & Häberli, C., 2021 [133] |
Secondary metabolites from Ozoroa insignis | S.r. | Isolated compounds. | In vitro | Larvicidal (L3) % activity. Activity %: Anacardic acid 10 μM = 25 100 μM = 100 Ginkgolic acid 10 μM = 0 100 μM = 100 3-[7(Z)-pentadecenyl] phenol 10 μM = 25 100 μM = 100 | Dube et al., 2021 [134] |
Alkaloids | S.r. and S.v. | Isoquinoline alkaloids. | In vivo and In vitro | Isoquinoline alkaloids have shown strong wormicidal activity. | Nikelo et al., 2022 [135] |
Eugenol, Isoeugenol, Thymol, and Carvacrol | S.p. | Essential oil. | In vitro | Eugenol, isoeugenol, thymol, and carvacrol are promising compounds against S.p. in L1, L2, and L3 stages. | Boyko, O., & Brygadyrenko, V., 2023 [136] |
Oleic acid | S.p. | ω-9 monounsaturated fatty acid. | In vitro | 23.5% mortality of nematode larvae in 1% solution. | Boyko, O., & Brygadyrenko, V., 2023 [123] |
Secondary metabolites from R. chalepensis | S.v. | Coumarins and chalepin. | In vitro | Dose-dependent anthelmintic activity. | Rodríguez-Garza et al., 2024 [12] |
2-aryl quinolines | S.r. | Different derivative compounds. | In vitro and In silico | Nematocidal activity against S.r. larvae. | Shanley et al., 2024 [137] |
Chalepensin and Graveoline | S.v. | Chalepensin and Graveoline Isolated from R. chalepensis. | In vitro | Nematocidal activity against S.v. L3. LC50 in µM: Chalepensin 5.7 at 24 h 3.9 at 48 h 3.4 at 72 h Graveoline 28.3 at 24 h 25.9 at 48 h 24.4 at 72 h Nematocidal activity against S.v. parasitic female adults. LC50 in µM: Chalepensin 17.3 at 24 h 17.1 at 48 h 16.8 at 72 h Graveoline 27.8 at 24 h 26.9 at 48 h 26.5 at 72 h | Rodríguez-Garza et al., 2025 [54] |
Compound | Target Protein | Binding Site | Reference |
---|---|---|---|
Berberine | β-tubulin (human model) | Colchicine-binding site | [138] |
Apigenin, kaempferol, and quercetin | β-tubulin (purified) | Colchicine site | [139,140] |
Fisetin | β-tubulin | Paclitaxel site | [141] |
Thymoquinone | α and β-tubulin heterodimer | Competes at colchicine site | [142] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Abán, J.; Vicente-Santiago, B.; Gutiérrez-Soto, G.; Rodríguez-Garza, N.E.; Kačániová, M.; López-Sandin, I.; Romo-Sáenz, C.I.; Ballesteros-Torres, J.M.; Galaviz-Silva, L.; Castillo-Velázquez, U.; et al. Emerging Approaches to Anthelmintic Therapy Using Medicinal Plants and Phytochemicals: A Review of Natural Products Against Strongyloidiasis. Pathogens 2025, 14, 842. https://doi.org/10.3390/pathogens14090842
López-Abán J, Vicente-Santiago B, Gutiérrez-Soto G, Rodríguez-Garza NE, Kačániová M, López-Sandin I, Romo-Sáenz CI, Ballesteros-Torres JM, Galaviz-Silva L, Castillo-Velázquez U, et al. Emerging Approaches to Anthelmintic Therapy Using Medicinal Plants and Phytochemicals: A Review of Natural Products Against Strongyloidiasis. Pathogens. 2025; 14(9):842. https://doi.org/10.3390/pathogens14090842
Chicago/Turabian StyleLópez-Abán, Julio, Belén Vicente-Santiago, Guadalupe Gutiérrez-Soto, Nancy Edith Rodríguez-Garza, Miroslava Kačániová, Iosvany López-Sandin, Cesar Iván Romo-Sáenz, Juan Manuel Ballesteros-Torres, Lucio Galaviz-Silva, Uziel Castillo-Velázquez, and et al. 2025. "Emerging Approaches to Anthelmintic Therapy Using Medicinal Plants and Phytochemicals: A Review of Natural Products Against Strongyloidiasis" Pathogens 14, no. 9: 842. https://doi.org/10.3390/pathogens14090842
APA StyleLópez-Abán, J., Vicente-Santiago, B., Gutiérrez-Soto, G., Rodríguez-Garza, N. E., Kačániová, M., López-Sandin, I., Romo-Sáenz, C. I., Ballesteros-Torres, J. M., Galaviz-Silva, L., Castillo-Velázquez, U., Garzoli, S., & Elizondo-Luévano, J. H. (2025). Emerging Approaches to Anthelmintic Therapy Using Medicinal Plants and Phytochemicals: A Review of Natural Products Against Strongyloidiasis. Pathogens, 14(9), 842. https://doi.org/10.3390/pathogens14090842