Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (134)

Search Parameters:
Keywords = plastic pre-straining

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 473 KB  
Article
Influence of Sub-Inhibitory Concentrations of Sanitizers and Oxacillin on the Resistance of Methicillin-Resistant Staphylococcus spp.
by Maria Eugênia Betim, Daniel Lucino Silva dos Santos, Thiago dos Santos Lopes, Bruna Lourenço Crippa, Érika Romão Bonsaglia, Stéfani Thais Alves Dantas, Vera Lúcia Mores Rall, Fernanda Buzzola, Julia Arantes Galvão, Clarice Gebara, André Thaler and Nathália Cristina Cirone Silva
Vet. Sci. 2025, 12(10), 979; https://doi.org/10.3390/vetsci12100979 (registering DOI) - 11 Oct 2025
Viewed by 157
Abstract
Methicillin-resistant Staphylococcus spp. are microorganisms found in dairy products, bovine mastitis, and human infections. The prevalence of resistant strains from this genus in the food chain is increasing, drawing attention to transmission in the community and highlighting the importance of One Health studies. [...] Read more.
Methicillin-resistant Staphylococcus spp. are microorganisms found in dairy products, bovine mastitis, and human infections. The prevalence of resistant strains from this genus in the food chain is increasing, drawing attention to transmission in the community and highlighting the importance of One Health studies. Thus, the aim of this study was to determine the MIC of oxacillin (OXA) and the sanitizers benzalkonium chloride (BAC) and sodium hypochlorite (HP) against isolates of methicillin-resistant Staphylococcus spp., and to evaluate the possible influence of sub-MIC application of these compounds on bacterial cells, in order to observe possible microbial resistance. Ten isolates of methicillin-resistant Staphylococcus spp. (S. epidermidis and S. chromogenes) were used. Among the sanitizers, BAC showed greater efficiency during the pre-inhibition test. Increased resistance to OXA was found in isolates of S. chromogenes and S. epidermidis after sub-MICs of 50% and 90% of OXA, while sub-inhibition of HP favored resistance to OXA. The application of HP and OXA, even at low concentrations, induced a reduction in biofilm production. This study shows that sub-inhibitory sanitizer exposure in Staphylococcus spp. induces antimicrobial resistance phenotypes linked to mutations in regulatory, mobile, and DNA repair genes. These findings suggest that selective pressure promotes resistant variants through genomic plasticity and regulatory activation, supporting the hypothesis that sanitizer residues may drive multidrug resistance emergence, although further functional validation is required. Full article
(This article belongs to the Special Issue Advancements in Livestock Staphylococcus sp.)
Show Figures

Figure 1

18 pages, 4458 KB  
Article
Spatiotemporal Evolution of the Failure Process of Sandstone Monitored Using Multi-Point Fiber Bragg Grating
by Shi He, Hongyan Li, Weihua Wang, Zhongxue Sun, Yunlong Mo, Shaogang Li, Zhigang Deng, Jinjiao Ye and Qixian Li
Appl. Sci. 2025, 15(18), 9869; https://doi.org/10.3390/app15189869 - 9 Sep 2025
Viewed by 381
Abstract
Coal-rock dynamic disasters, especially rock bursts, require insight into the spatiotemporal evolution of strain and temperature to clarify failure mechanisms and improve early warning. This study aims to characterize the spatiotemporal evolution of the strain field during brittle rock instability by developing a [...] Read more.
Coal-rock dynamic disasters, especially rock bursts, require insight into the spatiotemporal evolution of strain and temperature to clarify failure mechanisms and improve early warning. This study aims to characterize the spatiotemporal evolution of the strain field during brittle rock instability by developing a multi-point Fiber Bragg Grating (FBG) strain–temperature monitoring and inversion method. Multi-directional, multi-location FBG deployment enables real-time reconstruction of strain tensors and temperature at each monitoring point, capturing both surface and internal responses under loading. The strain records resolve four stages—initial smoothing, linear growth, pre-peak nonlinearity, and failure fluctuation—with earlier sensitivity than Linear Variable Differential Transformers (LVDT), enabling finer localization of yielding and microcracking. The FBG sensors capture clear spatial heterogeneity and timing offsets during yielding, supporting instability warning. Temperature results show a slow rise followed by a surge from the end of the elastic stage into the plastic stage, reaching ~1.6 °C before declining; the thermal peak precedes the stress peak by ~0.38 s. Meanwhile, the temperature-field coefficient of variation jumps from <0.15 to >0.25, indicating a transition from diffuse heating to banded localization. Together, these strain–temperature precursors validate the FBG-based method as an effective and reliable approach for early warning of brittle rock instability. Full article
Show Figures

Figure 1

19 pages, 5526 KB  
Article
Low Cycle Fatigue Life Prediction for Hydrogen-Charged HRB400 Steel Based on CPFEM
by Bin Zeng, Xue-Fei Wei, Ji-Zuan Tan and Ke-Shi Zhang
Materials 2025, 18(16), 3920; https://doi.org/10.3390/ma18163920 - 21 Aug 2025
Viewed by 764
Abstract
Addressing the limitations of traditional fatigue life prediction methods, which rely on extensive experimental data and incur high costs, and given the current absence of studies that employ deformation inhomogeneity parameters to construct fatigue-indicator parameter (FIP) for predicting low-cycle fatigue (LCF) life of [...] Read more.
Addressing the limitations of traditional fatigue life prediction methods, which rely on extensive experimental data and incur high costs, and given the current absence of studies that employ deformation inhomogeneity parameters to construct fatigue-indicator parameter (FIP) for predicting low-cycle fatigue (LCF) life of metals in hydrogen environments, this study firstly explores how hydrogen pre-charging influences the LCF behavior of hot-rolled ribbed bar grade 400 (HRB400) steel via experimental and crystal plasticity simulation, and focus on the relationship between the fatigue life and the evolution of microscale deformation inhomogeneity. The experimental results indicate that hydrogen charging causes alterations in cyclic hysteresis, an expansion of the elastic range of the stabilized hysteresis loop, and a significant reduction in LCF life. Secondly, a novel FIP was developed within the crystal plasticity finite element method (CPFEM) framework to predict the LCF life of HRB400 steel under hydrogen influence. This FIP incorporates three internal variables: hydrogen embrittlement index, axial strain variation coefficient, and macroscopic stress ratio. These variables collectively account for the hydrogen charging effects and stress peak impacts on the microscale deformation inhomogeneity. The LCF life of hydrogen-charged HRB400 steel can be predicted using this new FIP. We performed fatigue testing under only one loading condition to measure the corresponding fatigue life and determine the FIP critical value. This helped predict fatigue life under different cyclic loading conditions for the same hydrogen-charged material. We compared the experimental data to validate the novel FIP to accurately predict the LCF life of hydrogen-charged HRB400 steel. The error between the predicted results and the measured results is limited to a factor of two. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 3317 KB  
Article
Experimental Study on the Electromagnetic Forming Behavior of Pre-Painted Al 99.0 Sheet
by Dorin Luca, Vasile Șchiopu and Dorian D. Luca
J. Manuf. Mater. Process. 2025, 9(8), 259; https://doi.org/10.3390/jmmp9080259 - 3 Aug 2025
Viewed by 620
Abstract
Development of forming methods for surface-coated metals is a current concern due to their economic and environmental advantages. For a successful forming operation, it is necessary that both components, the substrate and the coating, are able to withstand stress without damage until the [...] Read more.
Development of forming methods for surface-coated metals is a current concern due to their economic and environmental advantages. For a successful forming operation, it is necessary that both components, the substrate and the coating, are able to withstand stress without damage until the final shape and dimensions are reached. This goal can be achieved through good knowledge of the elastic and plastic properties of the substrate and the coating, the compatibility between them, the appropriate surface treatment, and the rigorous control of technological forming parameters. Our study was carried out with flat specimens of pre-painted Al 99.0 sheet that were electromagnetically formed by bulging. Forming behavior was investigated as depending on the initial thickness of the substrate, on the aluminum sheet pretreatment, as well as on the plastic deformation path of the metal–paint structure. To verify the damage to the paint layer, tests with increasing strains were performed, and the interface between the metal and the coating layer was investigated by scanning electron microscopy. The obtained results indicate that electromagnetic forming of pre-painted sheets can be a feasible method for specific applications if the forming degree of the substrate is tightly correlated with the type of desired coating and with the pretreatment method used for the metal surface. Full article
Show Figures

Figure 1

20 pages, 5053 KB  
Article
Physics-Informed Neural Networks for Depth-Dependent Constitutive Relationships of Gradient Nanostructured 316L Stainless Steel
by Huashu Li, Yang Cheng, Zheheng Wang and Xiaogui Wang
Materials 2025, 18(15), 3532; https://doi.org/10.3390/ma18153532 - 28 Jul 2025
Cited by 1 | Viewed by 585
Abstract
The structural units with different characteristic scales in gradient nanostructured (GS) 316L stainless steel act synergistically to achieve the matching of strength and plasticity, and the intrinsic plasticity of nanoscale and ultrafine grains is fully demonstrated. The macroscopic stress–strain responses of each material [...] Read more.
The structural units with different characteristic scales in gradient nanostructured (GS) 316L stainless steel act synergistically to achieve the matching of strength and plasticity, and the intrinsic plasticity of nanoscale and ultrafine grains is fully demonstrated. The macroscopic stress–strain responses of each material unit in the GS surface layer can be measured directly by tension or compression tests on microspecimens. However, the experimental results based on microspecimens do not reflect either the extraordinary strengthening effect caused by non-uniform deformation or the intrinsic plasticity of nanoscale and ultrafine grains. In this paper, a method for constructing depth-dependent constitutive relationships of GS materials was proposed, which combines strain hardening parameter (hardness) with physics-informed neural networks (PINNs). First, the microhardness distribution on the specimen cross-sections was measured after stretching to different strains, and the hardness–strain–force test data were used to construct the depth-dependent PINNs model for the true strain–hardness relationship (PINNs_εH). Hardness–strain–force test data from specimens with uniform coarse grains were used to pre-train the PINNs model for hardness and true stress (PINNs_Hσ), on the basis of which the depth-dependent PINNs_Hσ model for GS materials was constructed by transfer learning. The PINNs_εσ model, which characterizes the depth-dependent constitutive relationships of GS materials, was then constructed using hardness as an intermediate variable. Finally, the accuracy and validation of the PINNs_εσ model were verified by a three-point flexure test and finite element simulation. The modeling method proposed in this study can be used to determine the position-dependent constitutive relationships of heterogeneous materials. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

17 pages, 7494 KB  
Article
The Effect of Strain Aging on the Microstructure and Mechanical Properties of Steel for Reel-Lay Coiled Steel Pipelines
by Yuxi Cao, Guofeng Zuo, Yang Peng, Lin Zhu, Shuai Tong, Shubiao Yin and Xinjun Sun
Materials 2025, 18(15), 3462; https://doi.org/10.3390/ma18153462 - 24 Jul 2025
Viewed by 788
Abstract
Deep-sea oil and gas pipelines undergo significant plastic strain during reel-lay installation. Additionally, the static strain aging phenomenon that occurs during service can further deteriorate the mechanical properties of the pipelines. This study investigates the plastic deformation mechanism of reel-lay pipeline steel by [...] Read more.
Deep-sea oil and gas pipelines undergo significant plastic strain during reel-lay installation. Additionally, the static strain aging phenomenon that occurs during service can further deteriorate the mechanical properties of the pipelines. This study investigates the plastic deformation mechanism of reel-lay pipeline steel by subjecting the test steel to 5% pre-strain followed by aging treatment at 250 °C for 1 h. The present study systematically correlates the evolution of mechanical properties with microstructural changes through microstructural characterization techniques such as EBSD, TEM, and XRD. The results demonstrate that after pre-straining, the yield strength of the experimental steel increases due to dislocation strengthening and residual stress generation, while its uniform elongation decreases. Although no significant changes in grain size are observed macroscopically, microstructural characterization reveals a substantial increase in dislocation density within the matrix, forming dislocation cells and walls. These substructures lead to a deterioration of the material’s work hardening capacity. Following aging treatment, the tested steel exhibits further increased yield strength and reduced uniform elongation. After aging treatment, although the dislocation density in the matrix slightly decreases and dislocation tangles are somewhat reduced, the Cottrell atmosphere pinning effect leads to a further decline in work hardening capability, ultimately resulting in the deterioration of plasticity in reel-lay pipeline steel. The instantaneous hardening exponent curve shows that the work hardening phenomenon becomes more pronounced in the tested steel after strain aging as the tempering temperature increases. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

29 pages, 7048 KB  
Article
Research on Synergistic Control Technology for Composite Roofs in Mining Roadways
by Lei Wang, Gang Liu, Dali Lin, Yue Song and Yongtao Zhu
Processes 2025, 13(8), 2342; https://doi.org/10.3390/pr13082342 - 23 Jul 2025
Viewed by 326
Abstract
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of [...] Read more.
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of the composite roof and developed a synergistic control system, validated through industrial application. Key findings indicate significant differences in mechanical behavior and failure mechanisms between individual rock specimens and composite rock masses. A theoretical “elastic-plastic-fractured” zoning model for the composite roof was established based on the theory of surrounding rock deterioration, elucidating the mechanical mechanism where the cohesive strength of hard rock governs the load-bearing capacity of the outer shell, while the cohesive strength of soft rock controls plastic flow. The influence of in situ stress and support resistance on the evolution of the surrounding rock zone radii was quantitatively determined. The FLAC3D strain-softening model accurately simulated the post-peak behavior of the surrounding rock. Analysis demonstrated specific inherent patterns in the magnitude, ratio, and orientation of principal stresses within the composite roof under mining influence. A high differential stress zone (σ1/σ3 = 6–7) formed within 20 m of the working face, accompanied by a deflection of the maximum principal stress direction by 53, triggering the expansion of a butterfly-shaped plastic zone. Based on these insights, we proposed and implemented a synergistic control system integrating high-pressure grouting, pre-stressed cables, and energy-absorbing bolts. Field tests demonstrated significant improvements: roof-to-floor convergence reduced by 48.4%, rib-to-rib convergence decreased by 39.3%, microseismic events declined by 61%, and the self-stabilization period of the surrounding rock shortened by 11%. Consequently, this research establishes a holistic “theoretical modeling-evolution diagnosis-synergistic control” solution chain, providing a validated theoretical foundation and engineering paradigm for composite roof support design. Full article
Show Figures

Figure 1

16 pages, 21960 KB  
Article
Interplay of C Alloying, Temperature, and Microstructure in Governing Mechanical Behavior and Deformation Mechanisms of High-Manganese Steels
by Chenghao Zhang, Jinfu Zhao, Tengxiang Zhao, Ling Kong, Chunlei Zheng, Haokun Yang and Yuhui Wang
Metals 2025, 15(7), 779; https://doi.org/10.3390/met15070779 - 9 Jul 2025
Viewed by 351
Abstract
This study investigates the mechanical behavior and deformation mechanisms of Fe-30Mn-0.05C (30Mn0.05C) and Fe-34Mn-0.7C (34Mn0.7C) steels at room temperature (RT) and liquid nitrogen temperature (LNT). The 30Mn0.05C sample exhibited a significant enhancement in both strength and ductility at LNT, achieving a total elongation [...] Read more.
This study investigates the mechanical behavior and deformation mechanisms of Fe-30Mn-0.05C (30Mn0.05C) and Fe-34Mn-0.7C (34Mn0.7C) steels at room temperature (RT) and liquid nitrogen temperature (LNT). The 30Mn0.05C sample exhibited a significant enhancement in both strength and ductility at LNT, achieving a total elongation of 85%. In contrast, the 34Mn0.7C sample demonstrated superior ductility (90%) at RT, with a marginal reduction in plasticity but a remarkable increase in strength (>1100 MPa) at LNT. Compared to the 30Mn0.05C, the 34Mn0.7C, characterized by higher carbon content, displayed more pronounced dynamic strain aging (DSA) effects. Additionally, a greater density of deformation twins was activated at LNT, revealing a strong correlation between deformation twinning and DSA effects. This interplay accounts for the simultaneous strength improvement and ductility reduction observed in the 34Mn0.7C at LNT. Furthermore, the 34Mn0.7C sample exhibited a significantly refined grain structure after rolling, contributing to a substantial strength increase (approaching 1500 MPa) at the expense of ductility. This trade-off can be attributed to the pre-introduction of a higher density of dislocations and deformation twins during rolling, which facilitated strengthening but limited further plastic deformation. Full article
Show Figures

Figure 1

35 pages, 8248 KB  
Article
Pre-Failure Deformation Response and Dilatancy Damage Characteristics of Beishan Granite Under Different Stress Paths
by Yang Han, Dengke Zhang, Zheng Zhou, Shikun Pu, Jianli Duan, Lei Gao and Erbing Li
Processes 2025, 13(6), 1892; https://doi.org/10.3390/pr13061892 - 15 Jun 2025
Viewed by 499
Abstract
Different from general underground engineering, the micro-damage prior to failure of the surrounding rock has a significant influence on the geological disposal of high-level radioactive waste. However, the quantitative research on pre-failure dilatancy damage characteristics and stress path influence of hard brittle rocks [...] Read more.
Different from general underground engineering, the micro-damage prior to failure of the surrounding rock has a significant influence on the geological disposal of high-level radioactive waste. However, the quantitative research on pre-failure dilatancy damage characteristics and stress path influence of hard brittle rocks under high stress levels is insufficient currently, and especially, the stress path under simultaneous unloading of axial and confining pressures is rarely discussed. Therefore, three representative mechanical experimental studies were conducted on the Beishan granite in the pre-selected area for high-level radioactive waste (HLW) geological disposal in China, including increasing axial pressure with constant confining pressure (path I), increasing axial pressure with unloading confining pressure (path II), and simultaneous unloading of axial and confining pressures (path III). Using the deviatoric stress ratio as a reference, the evolution laws and characteristics of stress–strain relationships, deformation modulus, generalized Poisson’s ratio, dilatancy index, and dilation angle during the path bifurcation stage were quantitatively analyzed and compared. The results indicate that macro-deformation and the plastic dilatancy process exhibit strong path dependency. The critical value and growth gradient of the dilatancy parameter for path I are both the smallest, and the suppressive effect of the initial confining pressure is the most significant. The dilation gradient of path II is the largest, but the degree of dilatancy before the critical point is the smallest due to its susceptibility to fracture. The critical values of the dilatancy parameters for path III are the highest and are minimally affected by the initial confining pressure, indicating the most significant dilatancy properties. Establish the relationship between the deformation parameters and the crack-induced volumetric strain and define the damage variable accordingly. The critical damage state and the damage accumulation process under various stress paths were examined in detail. The results show that the damage evolution is obviously differentiated with the bifurcation of the stress paths, and three different types of damage curve clusters are formed, indicating that the damage accumulation path is highly dependent on the stress path. The research findings quantitatively reveal the differences in deformation response and damage characteristics of Beishan granite under varying stress paths, providing a foundation for studying the nonlinear mechanical behavior and damage failure mechanisms of hard brittle rock under complex loading conditions. Full article
Show Figures

Figure 1

19 pages, 3755 KB  
Article
Study on Hydrogen Embrittlement Behavior of X65 Pipeline Steel in Gaseous Hydrogen Environment
by Linlin Yu, Hui Feng, Shengnan Li, Zhicheng Guo and Qiang Chi
Metals 2025, 15(6), 596; https://doi.org/10.3390/met15060596 - 27 May 2025
Cited by 1 | Viewed by 1479
Abstract
Pipeline steel is highly susceptible to hydrogen embrittlement (HE) in hydrogen environments, which compromises its structural integrity and operational safety. Existing studies have primarily focused on the degradation trends of mechanical properties in hydrogen environments, but there remains a lack of quantitative failure [...] Read more.
Pipeline steel is highly susceptible to hydrogen embrittlement (HE) in hydrogen environments, which compromises its structural integrity and operational safety. Existing studies have primarily focused on the degradation trends of mechanical properties in hydrogen environments, but there remains a lack of quantitative failure prediction models. To investigate the failure behavior of X65 pipeline steel under hydrogen environments, this paper utilized notched round bar specimens with three different radii and smooth round bar specimens to examine the effects of pre-charging time, the coupled influence of stress triaxiality and hydrogen concentration, and the coupled influence of strain rate and hydrogen concentration on the HE sensitivity of X65 pipeline steel. Fracture surface morphologies were characterized using scanning electron microscopy (SEM), revealing that hydrogen-enhanced localized plasticity (HELP) dominates failure mechanisms at low hydrogen concentrations, while hydrogen-enhanced decohesion (HEDE) becomes dominant at high hydrogen concentrations. The results demonstrate that increasing stress triaxiality or decreasing strain rate significantly intensifies the HE sensitivity of X65 pipeline steel. Based on the experimental findings, failure prediction models for X65 pipeline steel were developed under the coupled effects of hydrogen concentration and stress triaxiality as well as hydrogen concentration and strain rate, providing theoretical support and mathematical models for the engineering application of X65 pipeline steel in hydrogen environments. Full article
Show Figures

Figure 1

30 pages, 14214 KB  
Article
Experimental and Simulation Study of the Effect of Plastic Residual Strain on the Electrochemical Corrosion of Biomagnesium Alloys
by Xinqi He and Chao Xie
Materials 2025, 18(11), 2482; https://doi.org/10.3390/ma18112482 - 25 May 2025
Viewed by 628
Abstract
In this study, the effect of plastic residual strain on the corrosion behavior of ZK60 magnesium alloy was systematically revealed using a research method combining experimental characterization and numerical simulation. Based on the multiphysical field coupling theory, a numerical model containing deformation field, [...] Read more.
In this study, the effect of plastic residual strain on the corrosion behavior of ZK60 magnesium alloy was systematically revealed using a research method combining experimental characterization and numerical simulation. Based on the multiphysical field coupling theory, a numerical model containing deformation field, corrosion phase field, and material transfer field was constructed, and the dynamic simulation of plastic residual strain-induced corrosion damage was successfully realized. Tafel polarization curves obtained from electrochemical tests were fitted to the key parameters of the secondary current distribution. The kinetic parameter L controlling the corrosion rate in the phase-field model was innovatively determined by the inverse calibration method, and a quantitative relationship between the kinetics of electrochemical corrosion and the phase-field theory was established. The corrosion depth distribution of the pre-strained specimens is quantitatively characterized and the results are in agreement with the finite element simulation results. The coupled strain-corrosion analysis method proposed in this study provides a theoretical basis for the design and life prediction of corrosion resistance of components under complex stress states. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

19 pages, 2911 KB  
Article
Numerical Simulation of the Effect of Pre-Strain on Fatigue Crack Growth in AA2024-T351
by Diogo M. Neto, Edmundo Sérgio, André Agra and Fernando V. Antunes
Metals 2025, 15(5), 481; https://doi.org/10.3390/met15050481 - 24 Apr 2025
Viewed by 727
Abstract
The objective here is to study the effect of pre-strain on fatigue crack growth (FCG) in 2024-T351 aluminum alloy. Three pre-strain conditions were considered: without pre-strain, compressive and tensile permanent pre-strains of 4%. A numerical approach based on cumulative plastic strain at the [...] Read more.
The objective here is to study the effect of pre-strain on fatigue crack growth (FCG) in 2024-T351 aluminum alloy. Three pre-strain conditions were considered: without pre-strain, compressive and tensile permanent pre-strains of 4%. A numerical approach based on cumulative plastic strain at the crack tip was followed to predict FCG rate. The compressive pre-strain increased FCG rate, while the tensile pre-strain reduced the da/dN relative to the situation without pre-strain. The influence of pre-strain was linked with plasticity-induced crack closure. In fact, a linear trend was obtained between da/dN and ΔKeff for three crack lengths (a = 16.184; a = 15.048 mm and a = 15.152 mm) and three pre-strain conditions. The increase in the stress ratio from R = 0.1 to R = 0.5 and the elimination of the contact of crack flanks significantly reduced the effect of pre-strain, also pointing to the huge relevance of crack closure in this context. Finally, the effect of pre-strain on da/dN after an overload was also explained by crack closure variations. Full article
(This article belongs to the Section Metal Failure Analysis)
Show Figures

Figure 1

22 pages, 17592 KB  
Article
Impact of Feature-Selection in a Data-Driven Method for Flow Curve Identification of Sheet Metal
by Quang Ninh Hoang, Hyungbum Park, Dang Giang Lai, Sy-Ngoc Nguyen, Quoc Tuan Pham and Van Duy Dinh
Metals 2025, 15(4), 392; https://doi.org/10.3390/met15040392 - 31 Mar 2025
Viewed by 936
Abstract
This study presents an innovative data-driven methodology to model the hardening behavior of sheet metals across a broad strain range, crucial for understanding sheet metal mechanics. Conventionally, true stress–strain data from such tests are used to analyze plastic flow within the pre-necking regime, [...] Read more.
This study presents an innovative data-driven methodology to model the hardening behavior of sheet metals across a broad strain range, crucial for understanding sheet metal mechanics. Conventionally, true stress–strain data from such tests are used to analyze plastic flow within the pre-necking regime, often requiring additional experiments to inverse finite element methods, which demand extensive field data for improved accuracy. Although digital image correlation offers precise data, its implementation is costly. To address this, we integrate experimental data from standard tensile tests with a machine-learning approach to estimate the flow curve. Subsequently, we conduct finite element simulations on uniaxial tensile tests, using materials characterized by the Swift constitutive equation to build a comprehensive database. Loading force-gripper displacement curves from these simulations are then transformed into input features for model training. We propose and compare three models—Models A, B, and C—each employing different input feature selections to estimate the flow curve. Experimental validation including uniaxial tensile, plane strain, and simple shear tests on the DP590 and DP780 sheets are then carefully considered. Results demonstrate the effectiveness of our proposed method, with Model C showing the highest efficacy. Full article
(This article belongs to the Special Issue Machine Learning Models in Metals)
Show Figures

Figure 1

32 pages, 29310 KB  
Article
Microstructure Evolution, Tensile/Nanoindentation Response, and Work-Hardening Behaviour of Prestrained and Subsequently Annealed LPBF 316L Stainless Steel
by Bohdan Efremenko, Yuliia Chabak, Ivan Petryshynets, Vasily Efremenko, Kaiming Wu, Sundas Arshad and František Kromka
Materials 2025, 18(5), 1102; https://doi.org/10.3390/ma18051102 - 28 Feb 2025
Cited by 2 | Viewed by 1530
Abstract
Additive manufacturing is increasingly used to produce metallic biomaterials, and post-processing is gaining increasing attention for improving the properties of as-built components. This study investigates the effect of work hardening followed by recrystallisation annealing on the tensile and nanoindentation behaviour of laser powder [...] Read more.
Additive manufacturing is increasingly used to produce metallic biomaterials, and post-processing is gaining increasing attention for improving the properties of as-built components. This study investigates the effect of work hardening followed by recrystallisation annealing on the tensile and nanoindentation behaviour of laser powder bed-fused (LPBF) 316L stainless steel, with the aim of optimising its mechanical properties. As-built and thermally stabilised (at 900 °C) specimens were prestrained in a uniaxially tensile manner at room temperature (0.12 plastic strain, ~75% of maximum work hardening) and subsequently annealed (at 900 °C or 1050 °C for 1 h). The microstructure and mechanical properties were then characterised by optical microscopy, SEM, EBSD, XRD, nanoindentation, and tensile testing. It was found that prestraining increased yield tensile strength (YTS) 1.2–1.7 times (to 690–699 MPa) and ultimate tensile strength (UTS) ~1.2 times (to 762–770 MPa), but decreased ductility 1.5 times. Annealing led to recovery and partial static recrystallisation, decreasing YTS (to 403–427 MPa), restoring ductility, and increasing the strain hardening rate; UTS and indentation hardness were less affected. Notably, the post-LPBF thermal stabilisation hindered recrystallisation and increased its onset temperature. Mechanical property changes under prestraining and annealing are discussed with respect to microstructure and crystalline features (microstrain, crystal size, dislocation density). All specimens exhibited ductile fractures with fine/ultra-fine dimples consistent with the as-built cellular structure. The combined treatment enhanced tensile strength whilst preserving sufficient ductility, achieving a strength–ductility product of 40.3 GPa·%. This offers a promising approach for tailoring LPBF 316L for engineering applications. Full article
(This article belongs to the Special Issue Research and Development of New Metal-Based Biomaterials)
Show Figures

Figure 1

18 pages, 7002 KB  
Article
Influence of Pre-Strain on the Course of Energy Dissipation and Durability in Low-Cycle Fatigue
by Stanisław Mroziński, Michał Piotrowski, Władysław Egner and Halina Egner
Materials 2025, 18(4), 893; https://doi.org/10.3390/ma18040893 - 18 Feb 2025
Viewed by 654
Abstract
The work undertaken in this paper is the comparative analysis of the accumulation of plastic strain energy in the as-received and pre-deformed (overloaded) material states, performed on the example of S420M steel. For this reason, the low-cycle fatigue tests on S420M steel specimens [...] Read more.
The work undertaken in this paper is the comparative analysis of the accumulation of plastic strain energy in the as-received and pre-deformed (overloaded) material states, performed on the example of S420M steel. For this reason, the low-cycle fatigue tests on S420M steel specimens were conducted under controlled deformation conditions, and both as-received (undeformed) and pre-deformed specimens were used in the tests. The results of the low-cycle tests were analyzed in terms of dissipated energy. This study found that pre-straining of S420M steel specimens causes a reduction in the energy of the hysteresis loop at all strain amplitude levels. This results in a slight increase in the fatigue life of pre-strained specimens compared to as-received specimens. Based on the analysis, it was also found that despite the different lifetimes obtained at the same strain amplitude levels, the fatigue characteristics in terms of energy of the as-received and pre-strained samples are statistically the same. Experimental verification of the analytical models used to describe hysteresis loops confirmed their suitability for describing fatigue behavior for specimens made of steel in both the as-received and pre-strained state. Full article
Show Figures

Figure 1

Back to TopTop