Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (406)

Search Parameters:
Keywords = plug-in hybrid electric vehicle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1554 KB  
Systematic Review
A Systematic Review of Life Cycle Assessment of Electric Vehicles Studies: Goals, Methodologies, Results and Uncertainties
by Oluwapelumi John Oluwalana and Katarzyna Grzesik
Energies 2025, 18(22), 5867; https://doi.org/10.3390/en18225867 - 7 Nov 2025
Viewed by 531
Abstract
This review analyzes how recent electric-vehicle LCAs have been carried out, emphasizing goals and scope, functional units, system boundaries (cradle-to-grave and well-to-wheel), and attributional versus consequential modeling rather than reporting outcomes. Using a systematic search of studies mainly from 2018–2025, it maps common [...] Read more.
This review analyzes how recent electric-vehicle LCAs have been carried out, emphasizing goals and scope, functional units, system boundaries (cradle-to-grave and well-to-wheel), and attributional versus consequential modeling rather than reporting outcomes. Using a systematic search of studies mainly from 2018–2025, it maps common tools and data sources (Ecoinvent, GREET, GaBi, and regional inventories) and summarizes LCIA practices, underscoring the need to report versions, regionalization, and assumptions transparently for comparability. Uncertainty studies are uneven: sensitivity and scenario analyses are common, while probabilistic approaches (e.g., Monte Carlo) are less used, indicating room for more consistent, multi-parameter uncertainty analysis. The results show that outcomes are context-dependent: BEVs deliver the largest life-cycle GHG cuts on low-carbon grids with improved battery production and end-of-life management; PHEVs and HEVs act as transitional options shaped by real-world use; and FCEV benefits depend on low-carbon hydrogen. Vehicle-integrated photovoltaics and solar-powered vehicles are promising yet under-studied, with performance tied to local irradiance, design, and grid evolution. Future research suggests harmonized reporting, more regionalized and time-aware modeling, broader probabilistic uncertainty, and comprehensive LCAs of VIPV/SPV and circular pathways to support policy-ready, comparable results. Full article
Show Figures

Figure 1

15 pages, 1421 KB  
Article
Electrifying Transport: Assessing the Air Quality and Policy Implications of Battery Electric vs. Plug-In Hybrid Vehicles
by Georgios Spyropoulos, Konstantinos Spyrakis, Konstantinos Christopoulos and Emmanouil Kostopoulos
Future Transp. 2025, 5(4), 167; https://doi.org/10.3390/futuretransp5040167 - 7 Nov 2025
Viewed by 218
Abstract
The transportation sector is responsible for over 20% of Europe’s CO2 emissions, significantly worsening urban air quality and compromising public health. Electric vehicles (EVs)—namely BEVs and PHEVs—offer some relief by lowering noise and pollution in urban settings. Nevertheless, their effectiveness in benefiting [...] Read more.
The transportation sector is responsible for over 20% of Europe’s CO2 emissions, significantly worsening urban air quality and compromising public health. Electric vehicles (EVs)—namely BEVs and PHEVs—offer some relief by lowering noise and pollution in urban settings. Nevertheless, their effectiveness in benefiting the environment relies on the current electricity generation mix. In accordance with national energy goals, this study evaluates the environmental effects of EV adoption in Greece until 2035, utilizing a scenario-based approach grounded in the forecasts of the Greek National Energy and Climate Plan. Three different electrification pathways are examined to explore how varying levels of electric vehicle adoption and progress in decarbonizing the power sector could reduce air pollution, particularly in cities. By comparing the projected CO2, CO, NOx, PM10, and SO2 pollutant output from BEVs and PHEVs with those of internal combustion engine vehicles, the study highlights the significance of integrating renewable energy sources and assesses the potential for EVs to reduce emissions within Greece’s changing energy mix. Full article
Show Figures

Figure 1

20 pages, 862 KB  
Article
Comparison of Advanced Predictive Controllers for IPMSMs in BEV and PHEV Traction Applications
by Romain Cocogne, Sebastien Bilavarn, Mostafa El-Mokadem and Khaled Douzane
World Electr. Veh. J. 2025, 16(11), 592; https://doi.org/10.3390/wevj16110592 - 24 Oct 2025
Viewed by 486
Abstract
The adoption of Interior Permanent Magnet Synchronous Motor (IPMSM) in Battery Electric Vehicle (BEV) and Plug-in Hybrid Electric Vehicle (PHEV) drives the need for innovative approaches to improve control performance and power conversion efficiency. This paper aims at evaluating advanced Model Predictive Control [...] Read more.
The adoption of Interior Permanent Magnet Synchronous Motor (IPMSM) in Battery Electric Vehicle (BEV) and Plug-in Hybrid Electric Vehicle (PHEV) drives the need for innovative approaches to improve control performance and power conversion efficiency. This paper aims at evaluating advanced Model Predictive Control (MPC) strategies for IPMSM drives in a methodic comparison with the most widespread Field Oriented Control (FOC). Different extensions of direct Finite Control Set MPC (FCS-MPC) and indirect Continuous Control Set MPC (CCS-MPC) MPCs are considered and evaluated in terms of reference tracking performance, robustness, power efficiency, and complexity based on Matlab, Simulink™ simulations. Results confirm the inherent better control quality of MPCs over FOC in general and allow us to further identify some possible directions for improvement. Moreover, indirect MPCs perform better, but complexity may prevent them from supporting real-time implementation in some cases. On the other hand, direct MPCs are less complex and reduce inverter losses but at the cost of increased Total Harmonic Distortion (THD) and decreased robustness to parameters deviations. These results also highlight various trade-offs between different predictive control strategies and their feasibility for high-performance automotive applications. Full article
(This article belongs to the Section Propulsion Systems and Components)
Show Figures

Figure 1

27 pages, 1786 KB  
Review
Adaptive Equivalent Consumption Minimization Strategies for Plug-In Hybrid Electric Vehicles: A Review
by Massimo Sicilia, Davide Cervone, Pierpaolo Polverino and Cesare Pianese
Energies 2025, 18(20), 5475; https://doi.org/10.3390/en18205475 - 17 Oct 2025
Viewed by 527
Abstract
Adaptive Equivalent Consumption Minimization Strategies (A-ECMSs) are one of the best methodologies to optimize fuel consumption of plug-in hybrid vehicles (PHEVs) coupled with low computational requirements. In this paper, a review of A-ECMSs is proposed. Starting from an economic-environmental contextualization, hybrid vehicles are [...] Read more.
Adaptive Equivalent Consumption Minimization Strategies (A-ECMSs) are one of the best methodologies to optimize fuel consumption of plug-in hybrid vehicles (PHEVs) coupled with low computational requirements. In this paper, a review of A-ECMSs is proposed. Starting from an economic-environmental contextualization, hybrid vehicles are presented and classified, together with their modeling methodologies and the physical-mathematical representation of their components. Next, the control theory for hybrid vehicles is introduced and classified, deriving the A-ECMS approach. Several works accounting for different A-ECMS implementations, based on technology integration, time horizon, adaptivity mechanism, and technique, are addressed. The literature analysis shows a broad coverage of possibilities: the simple proportional-integral (PI) rule for equivalence factor adaptivity is often used, imposing a given battery state-of-charge (SoC); it is possible to optimally plan the battery SoC trajectory through offline optimization with optimal algorithms or by predicting ahead conditions with model predictive control (MPC) or neural networks (NNs); the integration with emerging technologies such as Vehicle-To-Everything (V2X) can be helpful, accounting also for car-following data and GPS information. Moreover, speed prediction is another common technique to optimally plan the battery SoC trajectory. Depending on available on-board computational power and data, it is possible to choose the best A-ECMS according to its application. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

24 pages, 8077 KB  
Article
A Cooperative Car-Following Eco-Driving Strategy for a Plug-In Hybrid Electric Vehicle Platoon in the Connected Environment
by Zhenwei Lv, Tinglin Chen, Junyan Han, Kai Feng, Cheng Shen, Xiaoyuan Wang, Jingheng Wang, Quanzheng Wang, Longfei Chen, Han Zhang and Yuhan Jiang
Vehicles 2025, 7(4), 111; https://doi.org/10.3390/vehicles7040111 - 1 Oct 2025
Viewed by 511
Abstract
The development of the Connected and Autonomous Vehicle (CAV) and Hybrid Electric Vehicle (HEV) provides a new effective means for the optimization of eco-driving strategies. However, the existing research has not effectively considered the cooperative speed optimization and power allocation problem of the [...] Read more.
The development of the Connected and Autonomous Vehicle (CAV) and Hybrid Electric Vehicle (HEV) provides a new effective means for the optimization of eco-driving strategies. However, the existing research has not effectively considered the cooperative speed optimization and power allocation problem of the Connected and Autonomous Plug-in Hybrid Electric Vehicle (CAPHEV) platoon. To this end, a hierarchical eco-driving strategy is proposed, which aims to enhance driving efficiency and fuel economy while ensuring the safety and comfort of the platoon. Firstly, an improved car-following model is proposed, which considers the motion states of multiple preceding vehicles. On this basis, a platoon cooperative car-following decision-making method based on model predictive control is designed. Secondly, a distributed energy management strategy is constructed, and a bionic optimization algorithm based on the behavior of nutcrackers is introduced to solve nonlinear problems, so as to solve the energy distribution and management problems of powertrain systems. Finally, the tests are conducted under the driving cycle of the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Test (HWFET). The results show that the proposed strategy can ensure the driving safety of the CAPHEV platoon in different scenes, and has excellent tracking accuracy and driving comfort. Compared with the rule-based strategy, the equivalent energy consumption of UDDS and HWFET is reduced by 20.7% and 5.5% in the battery’s healthy charging range, respectively. Full article
Show Figures

Figure 1

25 pages, 1619 KB  
Article
Out of Alignment: Fixing Overlapping Segments in German Car Classification Through Data-Driven Clustering
by Moritz Seidenfus, Till Zacher, Georg Balke and Markus Lienkamp
Future Transp. 2025, 5(4), 132; https://doi.org/10.3390/futuretransp5040132 - 1 Oct 2025
Viewed by 478
Abstract
The passenger car market has experienced a radical shift: the rise of SUV, crossover vehicles, but also Battery Electric Vehicle (BEV) and Plug-In Hybrid Vehicle (PHEV), has blurred the borders between traditional vehicle segments as well as body types, resulting in reduced applicability [...] Read more.
The passenger car market has experienced a radical shift: the rise of SUV, crossover vehicles, but also Battery Electric Vehicle (BEV) and Plug-In Hybrid Vehicle (PHEV), has blurred the borders between traditional vehicle segments as well as body types, resulting in reduced applicability of conventional taxonomies of vehicle types. This study aims to provide an overview of the vehicle market by proposing a new, machine-learning-based segmentation of the entire German vehicle fleet covering the past years. We merge over 40 million registered vehicles with a technical specifications database and apply data-mining techniques to derive an improved market segmentation. We demonstrate that unsupervised learning techniques, specifically Ward and k-means clustering, yield clusters with enhanced separation, clarity, and practical usability. Clustering was applied to both raw technical features and engineered features designed to capture aspects of economy, ecology, usability, and performance. The silhouette scores can reach 0.19, a significant increase over the +0.05/−0.05 scores of the existing vehicle segments or chassis types. Full article
Show Figures

Figure 1

19 pages, 589 KB  
Article
The Impact of the Expected Utility and Experienced Utility Gap on Electric Vehicle Repurchase Intention in Jiangsu, China
by Xiao Zheng, Jiaxin Huang, Mengzhe Wang and Wenbo Li
World Electr. Veh. J. 2025, 16(9), 517; https://doi.org/10.3390/wevj16090517 - 12 Sep 2025
Viewed by 622
Abstract
The global automotive industry’ s rapid transformation has led to electric vehicles (EVs) capturing a significant market share as a sustainable transportation option. To sustain this growth, it is crucial to not only attract new users but also retain existing ones through repurchases. [...] Read more.
The global automotive industry’ s rapid transformation has led to electric vehicles (EVs) capturing a significant market share as a sustainable transportation option. To sustain this growth, it is crucial to not only attract new users but also retain existing ones through repurchases. This decision is shaped by both vehicle attributes and users’ prior experiences. This study examines the impact of five dimensions of expected utility and experienced utility gap (including cost utility, functional utility, emotional utility, environmental utility, and social utility) on the repurchase intentions of 863 Chinese EV users. Discrete choice experiments were used to analyze these factors, considering both vehicle and personal attributes. The results show that when emotional utility exceeds expectations, users are more likely to repurchase pure electric and plug-in hybrid electric vehicles. However, if environmental and social utilities fall short of expectations, users may be discouraged from choosing these two vehicle types. In contrast, decisions regarding gasoline vehicles are primarily driven by economic and habitual factors, with minimal influence from emotional, environmental, or social utilities. Additionally, EV users show a preference for medium-sized models that offer shorter charging times and longer driving ranges. These findings offer insights for enhancing consumer acceptance, accelerating EV market penetration, and supporting the automotive industry’s sustainable development, thereby contributing to the achievement of environmental sustainability goals. Full article
Show Figures

Figure 1

19 pages, 7952 KB  
Article
Research on Combined Thermal Management System of Power Battery and Air Conditioning Based on MPC
by Xiaojun Xia, Libo Chen, Yi Huang, Yan Zhang and Xiaoliu Xu
World Electr. Veh. J. 2025, 16(8), 452; https://doi.org/10.3390/wevj16080452 - 8 Aug 2025
Viewed by 1452
Abstract
Efficient thermal management of power batteries is critical for the safety of new energy vehicles. In this study, we present a novel combined thermal management system that integrates the battery-cooling system with the air-conditioning system. The system employs model predictive control (MPC) to [...] Read more.
Efficient thermal management of power batteries is critical for the safety of new energy vehicles. In this study, we present a novel combined thermal management system that integrates the battery-cooling system with the air-conditioning system. The system employs model predictive control (MPC) to regulate the battery water pump. To evaluate its performance, the MPC strategy is compared with ON-OFF, PID, and fuzzy control strategies. The system model was established and simulated in a high-temperature environment (40 °C) based on a plug-in hybrid electric vehicle (PHEV). The results demonstrate that the MPC-controlled pump exhibits the fastest response speed, maintaining battery temperature fluctuations within 1 °C, comparable to fuzzy control but with significantly lower power consumption. Specifically, the MPC strategy reduces pump power consumption by 46.3% compared to ON-OFF control, 31.3% compared to PID control, and 36% compared to fuzzy control. Based on a comprehensive evaluation of pump response speed, battery temperature fluctuation, and pump power consumption, MPC exhibits the best overall performance. Full article
Show Figures

Graphical abstract

18 pages, 4029 KB  
Article
Characterizing CO2 Emission from Various PHEVs Under Charge-Depleting Conditions
by Nan Yang, Xuetong Lian, Zhenxiao Bai, Liangwu Rao, Junxin Jiang, Jiaqiang Li, Jiguang Wang and Xin Wang
Atmosphere 2025, 16(8), 946; https://doi.org/10.3390/atmos16080946 - 7 Aug 2025
Viewed by 510
Abstract
With the significant growth in the number of PHEVs, conducting in-depth research on their CO2 emission characteristics is essential. This study used the Horiba OBS-ONE Portable Emission Measurement System (PEMS) to measure the CO2 emissions of three Plug-in Hybrid Electric Vehicle [...] Read more.
With the significant growth in the number of PHEVs, conducting in-depth research on their CO2 emission characteristics is essential. This study used the Horiba OBS-ONE Portable Emission Measurement System (PEMS) to measure the CO2 emissions of three Plug-in Hybrid Electric Vehicle (PHEV) types: one Series Hybrid Electric Vehicle (S-HEV), one Parallel Hybrid Electric Vehicle (P-HEV), and one Series-Parallel Hybrid Electric Vehicle (SP-HEV), during real driving conditions. The findings show a correlation between acceleration and increased CO2 emissions for P-HEV, while acceleration has a relatively minor impact on S-HEV and SP-HEV emissions. Under urban driving conditions, the SP-HEV displays the lowest average CO2 emission rate. However, under suburban and highway conditions, the average CO2 emission rates follow the order S-HEV > SP-HEV > P-HEV. An analysis of CO2 emission factors across different road types and vehicle-specific power (VSP) ranges indicates that within low VSP intervals (VSP ≤ 0 for urban, VSP ≤ 5 for suburban, and VSP ≤ 15 for highway roads), the P-HEV exhibits the best CO2 emission control. As VSP increases, the P-HEV’s emission factors rise under all three road conditions, with its emission control capability weakening when VSP exceeds 5 in urban, 15 in suburban, and 20 on highway roads. For the SP-HEV, CO2 emission factors increase with VSP in urban and suburban areas but remain stable on highways. The S-HEV shows minimal changes in emission factors with varying VSP. This research provides valuable insights into the CO2 emission patterns of PHEVs, aiding vehicle optimization and policy development. Full article
(This article belongs to the Special Issue Traffic Related Emission (3rd Edition))
Show Figures

Figure 1

20 pages, 2341 KB  
Article
Magnetic Field Measurement of Various Types of Vehicles, Including Electric Vehicles
by Hiromichi Fukui, Norihiro Minami, Masatoshi Tanezaki, Shinichi Muroya and Chiyoji Ohkubo
Electronics 2025, 14(15), 2936; https://doi.org/10.3390/electronics14152936 - 23 Jul 2025
Cited by 1 | Viewed by 6055
Abstract
Since around the year 2000, following the introduction of electric vehicles (EVs) to the market, some people have expressed concerns about the level of magnetic flux density (MFD) inside vehicles. In 2013, we reported the results of MFD measurements for electric vehicles (EVs), [...] Read more.
Since around the year 2000, following the introduction of electric vehicles (EVs) to the market, some people have expressed concerns about the level of magnetic flux density (MFD) inside vehicles. In 2013, we reported the results of MFD measurements for electric vehicles (EVs), hybrid electric vehicles (HEVs), and internal combustion engine vehicles (ICEVs). However, those 2013 measurements were conducted using a chassis dynamometer, and no measurements were taken during actual driving. In recent years, with the rapid global spread of EVs and plug-in hybrid electric vehicles (PHEVs), the international standard IEC 62764-1:2022, which defines methods for measuring magnetic fields (MF) in vehicles, has been issued. In response, and for the first time, we conducted new MF measurements on current Japanese vehicle models in accordance with the international standard IEC 62764-1:2022, identifying the MFD levels and their sources at various positions within EVs, PHEVs, and ICEVs. The measured MFD values in all vehicle types were below the reference levels recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) for public exposure. Furthermore, we performed comparative measurements with the MF data obtained in 2013 and confirmed that the MF levels remained similar. These findings are expected to provide valuable insights for risk communication with the public regarding electromagnetic fields, particularly for those concerned about MF exposure inside electrified vehicles. Full article
(This article belongs to the Special Issue Innovations in Electromagnetic Field Measurements and Applications)
Show Figures

Figure 1

29 pages, 2500 KB  
Article
PHEV Routing with Hybrid Energy and Partial Charging: Solved via Dantzig–Wolfe Decomposition
by Zhenhua Chen, Qiong Chen, Cheng Xue and Yiying Chao
Mathematics 2025, 13(14), 2239; https://doi.org/10.3390/math13142239 - 10 Jul 2025
Cited by 1 | Viewed by 542
Abstract
This study addresses the Plug-in Hybrid Electric Vehicle Routing Problem (PHEVRP), an extension of the classical VRP that incorporates energy mode switching and partial charging strategies. We propose a novel routing model that integrates three energy modes—fuel-only, electric-only, and hybrid—along with partial recharging [...] Read more.
This study addresses the Plug-in Hybrid Electric Vehicle Routing Problem (PHEVRP), an extension of the classical VRP that incorporates energy mode switching and partial charging strategies. We propose a novel routing model that integrates three energy modes—fuel-only, electric-only, and hybrid—along with partial recharging decisions to enhance energy flexibility and reduce operational costs. To overcome the computational challenges of large-scale instances, a Dantzig–Wolfe decomposition algorithm is designed to efficiently reduce the solution space via column generation. Experimental results demonstrate that the hybrid-mode with partial charging strategy consistently outperforms full-charging and single-mode approaches, especially in clustered customer scenarios. To further evaluate algorithmic performance, an Ant Colony Optimization (ACO) heuristic is introduced for comparison. While the full model fails to solve instances with more than 30 customers, the DW algorithm achieves high-quality solutions with optimality gaps typically below 3%. Compared to ACO, DW consistently provides better solution quality and is faster in most cases, though its computation time may vary due to pricing complexity. Full article
Show Figures

Figure 1

18 pages, 1520 KB  
Article
Transitioning to Cleaner Transport: Evaluating the Environmental and Economic Performance of ICE, HEVs, and PHEVs in Bangladesh
by MD Shiyan Sadik, Md Ishmam Labib and Asma Safia Disha
World Electr. Veh. J. 2025, 16(7), 380; https://doi.org/10.3390/wevj16070380 - 6 Jul 2025
Viewed by 1497
Abstract
The transportation sector in South Asia largely depends on internal combustion engine (ICE) vehicles, which are responsible for a large share of greenhouse gas (GHG) emissions, air pollution, and the increase in fuel prices. Although hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles [...] Read more.
The transportation sector in South Asia largely depends on internal combustion engine (ICE) vehicles, which are responsible for a large share of greenhouse gas (GHG) emissions, air pollution, and the increase in fuel prices. Although hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fully electric vehicles (EVs) constitute promising alternatives, the rate of their implementation is low due to factors such as the high initial investment, the absence of the required infrastructure, and the reliance on fossil fuel-based electricity. This study is the first of its kind to examine Bangladesh’s drivetrain options in a comprehensive way, with in-depth real-world emission testing and economic analysis as the main tools of investigation into the environmental and economic feasibility of different technologies used in the vehicles available in Bangladesh, including lifecycle costs and infrastructure constraints. The study findings have shown that hybrid and plug-in hybrid vehicles are the best options, since they have moderate emissions and cost efficiency, respectively. Fully electric vehicles, however, face two main challenges: the overall lack of charging infrastructure and the overall high purchase prices. Among the evaluated technologies, PHEVs exhibited the lowest environmental and economic burden. The Toyota Prius PHEV emitted 98% less NOx compared to the diesel-powered Pajero Sport and maintained the lowest per-kilometer cost at BDT 6.39. In contrast, diesel SUVs emitted 178 ppm NOx and cost 22.62 BDT/km, reinforcing the transitional advantage of plug-in hybrid technology in Bangladesh’s context. Full article
Show Figures

Figure 1

20 pages, 2286 KB  
Article
Optimizing PHEV Routing with Hybrid Mode and Partial Charging via Labeling-Based Methods
by Zhenhua Chen, Qiong Chen, Yiying Chao and Cheng Xue
Mathematics 2025, 13(13), 2092; https://doi.org/10.3390/math13132092 - 25 Jun 2025
Viewed by 475
Abstract
This study investigates a variant of the shortest path problem (SPP) tailored for plug-in hybrid electric vehicles (PHEVs), incorporating two practical features: hybrid energy mode switching and partial charging. A novel modeling framework is proposed that enables PHEVs to dynamically switch between electricity [...] Read more.
This study investigates a variant of the shortest path problem (SPP) tailored for plug-in hybrid electric vehicles (PHEVs), incorporating two practical features: hybrid energy mode switching and partial charging. A novel modeling framework is proposed that enables PHEVs to dynamically switch between electricity and fuel along each edge and to recharge partially at charging stations. Unlike most prior studies that rely on more complex modeling approaches, this paper introduces a compact mixed-integer linear programming (MILP) model that remains directly solvable using commercial solvers such as Gurobi. To address large-scale networks, a customized labeling algorithm is developed for an efficient solution. Numerical results on benchmark networks show that the hybrid mode and partial charging can reduce total cost by up to 29.76% and significantly affect route choices. The proposed algorithm demonstrates strong scalability, solving instances with up to 33,000 nodes while maintaining near-optimal performance, with less than 5% deviation in smaller cases. Full article
Show Figures

Figure 1

59 pages, 11235 KB  
Review
A Review of EV Adoption, Charging Standards, and Charging Infrastructure Growth in Europe and Italy
by Mahwish Memon and Claudio Rossi
Batteries 2025, 11(6), 229; https://doi.org/10.3390/batteries11060229 - 12 Jun 2025
Cited by 6 | Viewed by 7139
Abstract
This work analyzes the electric vehicle (EV) sales trends of plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) and trends in the growth of Alternating Current (AC) and Direct Current (DC) charging infrastructure station scenarios in Europe and Italy. It offers [...] Read more.
This work analyzes the electric vehicle (EV) sales trends of plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) and trends in the growth of Alternating Current (AC) and Direct Current (DC) charging infrastructure station scenarios in Europe and Italy. It offers a comprehensive view of market trends, technical developments, infrastructure development, and worldwide standardization initiatives for policymakers, researchers, and industry. A detailed classification of the charging technologies of EVs, i.e., conductive, wireless power transfer (WPT), battery swapping (BS), and different EV types, is presented. Finally, this work provides a comparative overview of charging standards and protocols, including the ones established by the Society of Automotive Engineers (SAE), International Electrotechnical Commission (IEC), and Standardization Administration of China (SAC), emphasizing interoperability and cross-border integration to accelerate the transition to clean transportation. Full article
Show Figures

Graphical abstract

22 pages, 6640 KB  
Article
Dynamic Closed-Loop Validation of a Hardware-in-the-Loop Testbench for Parallel Hybrid Electric Vehicles
by Marc Timur Düzgün, Christian Heusch, Sascha Krysmon, Christian Dönitz, Sung-Yong Lee, Jakob Andert and Stefan Pischinger
World Electr. Veh. J. 2025, 16(5), 273; https://doi.org/10.3390/wevj16050273 - 14 May 2025
Cited by 1 | Viewed by 1127
Abstract
The complexity and shortening of development cycles in the automotive industry, particularly with the rise in hybrid electric vehicle sales, increases the need for efficient calibration and testing methods. Virtualization using hardware-in-the-loop testbenches has the potential to counteract these trends, specifically for the [...] Read more.
The complexity and shortening of development cycles in the automotive industry, particularly with the rise in hybrid electric vehicle sales, increases the need for efficient calibration and testing methods. Virtualization using hardware-in-the-loop testbenches has the potential to counteract these trends, specifically for the calibration of hybrid operating strategies. This paper presents a dynamic closed-loop validation of a hardware-in-the-loop testbench designed for the virtual calibration of hybrid operating strategies for a plug-in hybrid electric vehicle. Requirements regarding the hardware-in-the-loop testbench accuracy are defined based on the investigated use case. From this, a dedicated hardware-in-the-loop testbench setup is derived, including an electrical setup as well as a plant simulation model. The model is then operated in a closed loop with a series production hybrid control unit. The closed-loop validation results demonstrate that the chassis simulation reproduces driving resistance closely aligning with the reference data. The driver model follows target speed profiles within acceptable limits, achieving an R2 = 0.9993, comparable to the R2 reached by trained human drivers. The transmission model replicates the gear ratios, maintaining rotational speed deviations below 30 min−1. Furthermore, the shift strategy is implemented in a virtual control unit, resulting in a gear selection comparable to reference measurements. The energy flow simulation in the complete powertrain achieves high accuracy. Deviations in the high-voltage battery state of charge remain below 50 Wh in a WLTC charge-sustaining drive cycle and are thus within the acceptable error margin. The net energy change criterion is satisfied with the hardware-in-the-loop testbench, achieving a net energy change of 0.202%, closely matching the reference measurement of 0.159%. Maximum deviations in cumulative high-voltage battery energy are proven to be below 10% in both the charging and discharging directions. Fuel consumption and CO2 emissions are modeled with deviations below 3%, validating the simulation’s representation of vehicle efficiency. Real-time capability is achieved under all investigated operating conditions and test scenarios. The testbench achieves a real-time factor of at least 1.104, ensuring execution within the hard real-time criterion. In conclusion, the closed-loop validation confirms that the developed hardware-in-the-loop testbench satisfies all predefined requirements, accurately simulating the behavior of the reference vehicle. Full article
Show Figures

Figure 1

Back to TopTop