Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,068)

Search Parameters:
Keywords = pollutant distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 558 KB  
Article
Asthma Hospitalizations in Children Before and After COVID-19: Insights from Northern Colombia
by Moisés Árquez-Mendoza, Karen Franco-Valencia, Marco Anaya-Romero, Maria Acevedo-Cerchiaro, Stacey Fragozo-Messino, Deiby Luz Pertuz-Guzman and Jaime Luna-Carrascal
Clin. Pract. 2025, 15(10), 184; https://doi.org/10.3390/clinpract15100184 - 6 Oct 2025
Abstract
Background: Pediatric asthma is a multifactorial condition influenced by environmental, biological, and social determinants. The COVID-19 pandemic introduced new variables that may have affected the severity and management of asthma in children and adolescents, particularly through changes in healthcare access, treatment adherence, and [...] Read more.
Background: Pediatric asthma is a multifactorial condition influenced by environmental, biological, and social determinants. The COVID-19 pandemic introduced new variables that may have affected the severity and management of asthma in children and adolescents, particularly through changes in healthcare access, treatment adherence, and exposure to environmental risk factors. Objective: To evaluate the association between asthma severity and various factors including nutritional status, corticosteroid use, COVID-19 vaccination, and pollutant exposure before and during the COVID-19 pandemic in a pediatric population. Methods: A retrospective analysis was conducted using 307 medical records of patients aged 3 to 17 years. Data collected included sociodemographic characteristics, nutritional indicators, history of corticosteroid use, vaccination status against COVID-19, and exposure to environmental pollutants. Asthma severity was assessed using the pulmonary score, and multiple statistical analyses, including logistic regression using the Bayesian Logistic Regression Model (BLRM), were employed to identify significant associations. Results: The analysis revealed a statistically significant impact of the pandemic on hospitalization rates (p = 0.0187) and the use of corticosteroids (p = 0.009), indicating changes in asthma management during this period. Notable differences were observed in the geographic distribution of mild versus severe asthma cases prior to the pandemic, associated with nutritional status and gender (p = 0.018). During the pandemic, breastfeeding history, body weight, and hospitalization emerged as significant predictors of asthma severity (p < 0.05). In addition, breastfeeding in young children (aged 3 to 6 years) and hospitalization were strongly associated with pulmonary scores, with significance values of 0.022 and 0.012, respectively, as identified by the BLRM. Conclusions: These findings suggest that the pandemic context influenced both the clinical course and management of pediatric asthma. Preventive strategies should consider individual and environmental factors such as nutrition, early-life health practices (e.g., breastfeeding), and equitable access to appropriate asthma care and vaccination. Tailoring pediatric asthma management to these variables may improve outcomes and reduce disparities in disease severity. Full article
Show Figures

Figure 1

15 pages, 517 KB  
Article
Knowledge on Indoor Air Quality (K-IAQ): Development and Evaluation of a Questionnaire Through the Application of Item Response Theory
by Letizia Appolloni, Diego Valeri and Daniela D’Alessandro
Atmosphere 2025, 16(10), 1163; https://doi.org/10.3390/atmos16101163 - 6 Oct 2025
Abstract
Indoor air pollution is a major cause of noncommunicable diseases, and increasing people’s knowledge about the related risks is a key action for prevention. Many studies describe questionnaires for evaluating knowledge on indoor air quality that often involve selected population groups and take [...] Read more.
Indoor air pollution is a major cause of noncommunicable diseases, and increasing people’s knowledge about the related risks is a key action for prevention. Many studies describe questionnaires for evaluating knowledge on indoor air quality that often involve selected population groups and take time to fill out. This study describes the validation of a questionnaire built “ad hoc” that aims to be easy to fill out, reliable, and valid. The validation process integrated two psychometric approaches: the Classical Test Theory (CTT), which uses the Kuder–Richardson 20 (KR-20) formula to measure the internal consistency and reliability of the questionnaire as a whole, and the Item Response Theory (IRT), which evaluates each statement (item)’s validity. The questionnaire, distributed using social media to a self-selected sample of people, reached a sample of 621 subjects. In terms of internal consistency, the questionnaire was found to be satisfactory, with a KR-20 value of 0.74 (CI 0.71–0.77). The IRT analysis showed that the statements included in the questionnaire can distinguish between high-performing and low-performing interviewees, since 100% of the items reached a value of the “discrimination parameter aj” that was within or above the recommended range. In terms of difficulty, many statements (53.3%) showed a low level of difficulty, obtaining a low “difficulty parameter bj” value, while another 20% of the items showed a high level of difficulty. Regarding the pseudo-guessing parameter, known as the c-parameter, the probability of answering correctly for a low-performing interviewee was observed in three items (1, 6, and 9), and the same statements fell outside the range for all three parameters evaluated in the IRT. The application of the IRT highlights the criticality of some questions that would not have emerged using the CTT approach alone. Although the questionnaire is acceptable overall, it will be appropriate to evaluate whether to revise or exclude the critical questions in order to improve the instrument’s performance. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

24 pages, 5085 KB  
Article
Investigating BTEX Emissions in Greece: Spatiotemporal Distribution, Health Risk Assessment and Ozone Formation Potential
by Panagiotis Georgios Kanellopoulos, Eirini Chrysochou and Evangelos Bakeas
Atmosphere 2025, 16(10), 1162; https://doi.org/10.3390/atmos16101162 - 4 Oct 2025
Abstract
This study investigates the atmospheric concentrations, spatiotemporal distribution, the associated health risks and the ozone formation potential of benzene, toluene, ethylbenzene and xylenes (BTEX) across 33 monitoring sites of Greece over a one-year period. Samples were collected using passive diffusive samplers and analyzed [...] Read more.
This study investigates the atmospheric concentrations, spatiotemporal distribution, the associated health risks and the ozone formation potential of benzene, toluene, ethylbenzene and xylenes (BTEX) across 33 monitoring sites of Greece over a one-year period. Samples were collected using passive diffusive samplers and analyzed by gas chromatography–mass spectrometry (GC-MS). The highest BTEX concentrations were detected during winter and autumn, particularly in urban and industrial areas such as in the Attica and Thessaloniki regions, likely due to enhanced emissions from combustion-related activities and reduced atmospheric dispersion. Health risk assessment revealed that hazard quotient (HQ) values for all compounds were within the acceptable limits. However, lifetime cancer risk (LTCR) for benzene exceeded the recommended limits in multiple regions during the colder seasons, indicating notable public health concern. Source apportionment using diagnostic ratios suggested varying seasonal emission sources, with vehicular emissions prevailing in winter and marine or industrial emissions in summer. Xylenes and toluene exhibited the highest ozone formation potential (OFP), underscoring their role in secondary pollutant formation. These findings demonstrate the need for seasonally adaptive air quality strategies, especially in Mediterranean urban and semi-urban environments. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Graphical abstract

21 pages, 5141 KB  
Article
Groundwater Pollution Source Identification Based on a Coupled PCA–PMF–Mantel Framework: A Case Study of the Qujiang River Basin
by Xiao Li, Ying Zhang, Liangliang Xu, Jiyi Jiang, Chaoyu Zhang, Guanghao Wang, Huan Huan, Dengke Tian and Jiawei Guo
Water 2025, 17(19), 2881; https://doi.org/10.3390/w17192881 - 2 Oct 2025
Abstract
This study develops an integrated framework for groundwater pollution source identification by coupling Principal Component Analysis (PCA), Positive Matrix Factorization (PMF), and the Mantel test, with the Qujiang River Basin as a case study. The framework enables a full-process assessment, encompassing qualitative identification, [...] Read more.
This study develops an integrated framework for groundwater pollution source identification by coupling Principal Component Analysis (PCA), Positive Matrix Factorization (PMF), and the Mantel test, with the Qujiang River Basin as a case study. The framework enables a full-process assessment, encompassing qualitative identification, quantitative apportionment, and spatial validation of pollution drivers. Results indicate that groundwater chemistry is primarily influenced by three categories of sources: natural rock weathering, agricultural and domestic activities, and industrial wastewater discharge. Anthropogenic sources account for 73.7% of the total contribution, with mixed agricultural and domestic inputs dominating (38.5%), followed by industrial effluents (35.2%), while natural weathering contributes 26.3%. Mantel test analysis further shows that agricultural and domestic pollution correlates strongly with intensive farmland distribution in the midstream area, natural sources correspond to carbonate outcrops and higher elevations in the upstream, and industrial contributions cluster in downstream industrial zones. By integrating PCA, PMF, and Mantel analysis, this study offers a robust and transferable framework that improves both the accuracy and spatial interpretability of groundwater pollution source identification. The proposed approach provides scientific support for regionalized groundwater pollution prevention and control under complex hydrogeological settings. Full article
(This article belongs to the Special Issue Advance in Hydrology and Hydraulics of the River System Research 2025)
Show Figures

Figure 1

18 pages, 2532 KB  
Article
Occurrence and Risk Assessment of Metals and Metalloids in Surface Drinking Water Sources of the Pearl River Basin
by Bin Li, Yang Hu, Yinying Zhu, Yubo Yang, Xiang Tu, Shouliang Huo, Qing Fu, Sheng Chang and Kunfeng Zhang
Water 2025, 17(19), 2873; https://doi.org/10.3390/w17192873 - 2 Oct 2025
Abstract
Based on monitoring data from 2019 to 2024 at 270 typical surface drinking water sources (SDWS) in the Pearl River Basin (PRB), the occurrence and health risks of metal and metalloid pollutants (MMPs) were analyzed from a large watershed scale and long-term evolution. [...] Read more.
Based on monitoring data from 2019 to 2024 at 270 typical surface drinking water sources (SDWS) in the Pearl River Basin (PRB), the occurrence and health risks of metal and metalloid pollutants (MMPs) were analyzed from a large watershed scale and long-term evolution. The results indicated that the overall pollution status of 8 MMPs (As, Cd, Pb, Mn, Sb, Ni, Ba, V) were at a low level and the concentrations of Cd, Pb, Ni, Ba, and V exhibited downward trends from 2019 to 2024. The distribution of MMPs exhibited significant regional differences with the main influencing factors including geological conditions, industrial activities, and urban development. River-type drinking water sources might be more affected by pollution from human activities such as industrial wastewater discharge, and the concentration levels of MMPs were generally higher than those in lake-type drinking water sources. Monte Carlo simulation revealed that 33.08% and 12.90% of total carcinogenic risks (TCR) exceeded the threshold of 10−6 for adults and children, respectively. Ba and Ni were the main contributors to the TCR, while As posed a certain non-carcinogenic risk to children. Sensitivity analysis indicated that concentrations of As and Ba were the main factors contributing to health risks. Although highly stringent water pollution control and a water resource protection policy have been implemented, it is still suggested to strengthen the control of As, Ba, and Ni in industrial-intensive areas and river-type water sources in the PRB. Full article
Show Figures

Figure 1

28 pages, 6579 KB  
Article
Mathematical Modeling and Optimization of a Two-Layer Metro-Based Underground Logistics System Network: A Case Study of Nanjing
by Jianping Yang, An Shi, Rongwei Hu, Na Xu, Qing Liu, Luxing Qu and Jianbo Yuan
Sustainability 2025, 17(19), 8824; https://doi.org/10.3390/su17198824 - 1 Oct 2025
Abstract
With the surge in urban logistics demand, traditional surface transportation faces challenges, such as traffic congestion and environmental pollution. Leveraging metro systems in metropolitan areas for both passenger commuting and underground logistics presents a promising solution. The metro-based underground logistics system (M-ULS), characterized [...] Read more.
With the surge in urban logistics demand, traditional surface transportation faces challenges, such as traffic congestion and environmental pollution. Leveraging metro systems in metropolitan areas for both passenger commuting and underground logistics presents a promising solution. The metro-based underground logistics system (M-ULS), characterized by extensive coverage and independent right-of-way, has emerged as a potential approach for optimizing urban freight transport. However, existing studies primarily focus on single-line scenarios, lacking in-depth analyses of multi-tier network coordination and dynamic demand responsiveness. This study proposes an optimization framework based on mixed-integer programming and an improved ICSA to address three key challenges in metro freight network planning: balancing passenger and freight demand, optimizing multi-tier node layout, and enhancing computational efficiency for large-scale problem solving. By integrating E-TOPSIS for demand assessment and an adaptive mutation mechanism based on a normal distribution, the solution space is reduced from five to three dimensions, significantly improving algorithm convergence and global search capability. Using the Nanjing metro network as a case study, this research compares the optimization performance of independent line and transshipment-enabled network scenarios. The results indicate that the networked scenario (daily cost: CNY 1.743 million) outperforms the independent line scenario (daily cost: CNY 1.960 million) in terms of freight volume (3.214 million parcels/day) and road traffic alleviation rate (89.19%). However, it also requires a more complex node configuration. This study provides both theoretical and empirical support for planning high-density urban underground logistics systems, demonstrating the potential of multimodal transport networks and intelligent optimization algorithms. Full article
Show Figures

Figure 1

15 pages, 3403 KB  
Article
Impact of Heavy Metal Contamination on Physical and Physicochemical Characteristics of Soil near Aurubis-Pirdop Copper Smelter in Bulgaria
by Milena Kercheva, Patrycja Boguta, Kamil Skic, Viktor Kolchakov, Katerina Doneva and Maya Benkova
Pollutants 2025, 5(4), 33; https://doi.org/10.3390/pollutants5040033 - 1 Oct 2025
Abstract
Soil contamination with heavy metals (HM) poses a risk to human health and can impact different soil functions. This study aimed to determine the influence of heavy metal pollution on the physical and physicochemical characteristics of the two profiles of alluvial–deluvial soil under [...] Read more.
Soil contamination with heavy metals (HM) poses a risk to human health and can impact different soil functions. This study aimed to determine the influence of heavy metal pollution on the physical and physicochemical characteristics of the two profiles of alluvial–deluvial soil under grassland located at different distances from the Aurubis-Pirdop Copper smelter in Bulgaria. Data for soil particle-size distribution, soil bulk and particle densities, mineralogical composition, soil organic carbon contents, cation exchange properties, surface charge, soil water retention curves, pore size distribution—obtained by mercury intrusion porosimetry (MIP)—and thermal properties were obtained. The contents of Pb, Cu, As, Zn, and Cd were above the maximum permissible level in the humic horizon and decreased with depth and distance from the Copper smelter. Depending on HM speciation, the correlations are established with SOC and most physicochemical parameters. It can be concluded that the HMs impact the clay content, specific surface area, distribution of pores, and the water stability of soil aggregate fraction 1–3 mm to varying degrees. Full article
Show Figures

Figure 1

21 pages, 3367 KB  
Article
Factors Affecting Distribution of Pharmaceutically Active Compounds in Bottom Sediments of Odra River Estuary (SW Baltic Sea)
by Joanna Giebułtowicz, Dawid Kucharski, Grzegorz Nałęcz-Jawecki, Artur Skowronek, Agnieszka Strzelecka, Łukasz Maciąg and Przemysław Drzewicz
Molecules 2025, 30(19), 3935; https://doi.org/10.3390/molecules30193935 - 1 Oct 2025
Abstract
The results from previous environmental studies on the physicochemical properties of bottom sediments from the Odra River estuary (SW Baltic Sea) and their contamination by pharmaceutically active compounds (PhACs) were compiled and analyzed by the use of various statistical methods (Principal Component Analysis, [...] Read more.
The results from previous environmental studies on the physicochemical properties of bottom sediments from the Odra River estuary (SW Baltic Sea) and their contamination by pharmaceutically active compounds (PhACs) were compiled and analyzed by the use of various statistical methods (Principal Component Analysis, ANOVA/Kruskal–Wallis, Spearman correlation analysis, Partial Least Squares Discriminant Analysis, and Cluster Analysis). These studies included data on 130 PhACs determined in sediment samples collected from 70 sites across the Odra River estuary as well as the site distance to wastewater treatment plant discharge, PhACs’ physicochemical properties (Kd, Kow, pKa, solubility, metabolism), and sales data. Additionally, total organic carbon, total nitrogen, total phosphorus, acid volatile sulfides, clay mineral content, and trace elements such as As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sn, and Zn were analyzed. Clay mineral content and TP were identified as the key physicochemical factors influencing the spatial distribution of PhACs in bottom sediments, exerting a greater impact than the distance of sampling sites from WWTP discharge points. The distribution of PhACs in the estuary was also influenced by the Kd and solubility of the compounds. More soluble pharmaceuticals with low adsorption affinity to sediments were detected more frequently and transported to distant locations, whereas less soluble compounds with high adsorption affinity settled down in bottom sediments near contamination sources. Neither the proportion of a drug excreted unchanged, nor its prescription frequency and sales volume, influenced the spatial distribution of PhACs. In general, Kd may be a useful parameter in the planning of environmental monitoring and tracing migration of PhACs in aquatic environments. Full article
(This article belongs to the Section Cross-Field Chemistry)
Show Figures

Graphical abstract

20 pages, 3750 KB  
Article
Heavy Metal Pollution and Health-Ecological Risk Assessment in Agricultural Soils: A Case Study from the Yellow River Bend Industrial Parks
by Zang Liu, Li Mo, Jiahui Liang, Huading Shi, Jingjing Yao and Xiaoxiu Lun
Toxics 2025, 13(10), 834; https://doi.org/10.3390/toxics13100834 - 30 Sep 2025
Abstract
Agricultural soils near industrial parks in the Yellow River bend region face severe heavy metal pollution, posing a significant to human health. This study integrated field sampling with laboratory analysis and applied geostatistical analysis, positive matrix factorization (PMF) modeling, and health risk assessment [...] Read more.
Agricultural soils near industrial parks in the Yellow River bend region face severe heavy metal pollution, posing a significant to human health. This study integrated field sampling with laboratory analysis and applied geostatistical analysis, positive matrix factorization (PMF) modeling, and health risk assessment models to systematically investigate the pollution levels, spatial distribution, sources, and ecological health risks of heavy metals in the area. The main findings are as follows: (1) The average concentrations of the eight heavy metals (Hg, Cr, Cu, Pb, Zn, As, Cd, and Ni) in the study area were 0.04, 48.3, 54.3, 45.7, 70.0, 22.9, 0.4, and 35.7 mg·kg−1, respectively. The concentrations exceeded local background values by factors ranging from 1.32 to 11.2. Exceedances of soil screening and control values were particularly pronounced for Cd and As. Based on the geoaccumulation index, over 75% of the sampling sites for Cr, Pb, Zn, and Cd were classified as moderately to heavily polluted. Potential ecological risk assessment highlighted Cd as the significant ecological risk factor, indicating considerable heavy metal pollution in the region. (2) Kriging interpolation demonstrated elevated concentrations in the western (mid-upper) and eastern (mid-lower) subregions. Pearson correlation analysis suggested common sources for Cu-Pb-As-Cd and Cr-Zn-Ni. (3) PMF source apportionment identified four primary sources: traffic emissions (38.19%), natural and agricultural mixed sources (34.55%), metal smelting (17.61%), and atmospheric deposition (10.10%). (4) Health risk assessment indicated that the non-carcinogenic risk for both adults and children was within acceptable limits (adults: 0.065; children: 0.12). Carcinogenic risks were also acceptable (adults: 5.67 × 10−5; children: 6.70 × 10−5). In conclusion, priority should be given to the control of traffic emissions and agriculturally derived sources in the management of soil heavy metal contamination in this region, while the considerable contribution of smelting activities warrants heightened attention. This study provides a scientific basis for the prevention, control, and targeted remediation of regional soil heavy metal pollution. Full article
16 pages, 9811 KB  
Article
Revealing Influencing Mechanisms and Spatial Pattern of Soil Cadmium Through Geodetector and Spatial Analysis
by Jingyun Wang, Jun Yang, Chen Zhao, Xinglei Tian, Xiaofeng Zhao, Wei Zhao, Hao Xin and Xianjun Li
Land 2025, 14(10), 1975; https://doi.org/10.3390/land14101975 - 30 Sep 2025
Abstract
Elucidating the dominant factors governing heavy metal accumulation and their spatial heterogeneity in soils is fundamental to implementing science-based environmental management protocols. In this study, a Geodetector model, spatial interpolation, bivariate local Moran’s I (BLMI), and hotspot analysis were adopted to reveal the [...] Read more.
Elucidating the dominant factors governing heavy metal accumulation and their spatial heterogeneity in soils is fundamental to implementing science-based environmental management protocols. In this study, a Geodetector model, spatial interpolation, bivariate local Moran’s I (BLMI), and hotspot analysis were adopted to reveal the spatial pattern and driving mechanisms of soil cadmium (Cd) across six townships in southern Shimen County, Hunan Province. Results showed that Cd accumulation in the study area was predominantly controlled by natural factors, though anthropogenic contributions were also significant. Strata (q = 0.068), soil type (q = 0.045), and atmospheric deposition (q = 0.046) emerged as the most influential factors. The interaction between different driving factors exhibited a synergistic enhancing effect. Spatial interpolation revealed elevated Cd concentrations primarily clustered in central and western regions, particularly concentrated in Jiashan Town. BLMI analysis confirmed significant spatial correlations between Cd distribution and driving factors, and hotspot areas showing strong spatial coherence with strata and soil type. This study provides valuable insights for understanding the driving mechanisms of soil heavy metal pollution and informs targeted contamination control strategies. Full article
(This article belongs to the Topic Water-Soil Pollution Control and Environmental Management)
Show Figures

Figure 1

15 pages, 1519 KB  
Article
Heavy Metal Mobilization in Urban Stormwater Runoff from Residential, Commercial, and Industrial Zones
by Amber Hatter, Daniel P. Heintzelman, Megan Heminghaus, Jonathan Foglein, Mahbubur Meenar and Eli K. Moore
Pollutants 2025, 5(4), 32; https://doi.org/10.3390/pollutants5040032 - 30 Sep 2025
Abstract
Increased precipitation and extreme weather due to climate change can remobilize recent and legacy environmental contaminants from soil, sediment, and sewage overflows. Heavy metals are naturally distributed in Earth’s crust, but anthropogenic activity has resulted in concentrated emissions of toxic heavy metals and [...] Read more.
Increased precipitation and extreme weather due to climate change can remobilize recent and legacy environmental contaminants from soil, sediment, and sewage overflows. Heavy metals are naturally distributed in Earth’s crust, but anthropogenic activity has resulted in concentrated emissions of toxic heavy metals and deposition in surrounding communities. Cities around the world are burdened with heavy metal pollution from past and present industrial activity. The city of Camden, NJ, represents a valuable case study of climate impacts on heavy metal mobilization in stormwater runoff due to similar legacy and present-day industrial pollution that has taken place in Camden and in many other cities. Various studies have shown that lead (Pb) and other toxic heavy metals have been emitted in Camden due to historic and recent industrial activity, and deposited in nearby soils and on impervious surfaces. However, it is not known if these heavy metals can be mobilized in urban stormwater, particularly after periods of high precipitation. In this study, Camden, NJ stormwater was collected from streets and parks after heavy rain events in the winter and spring for analysis with inductively coupled plasma-mass spectrometry (ICP-MS) to identify lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As). Lead was by far the most abundant of the four target elements in stormwater samples followed by Hg, Cd, and As. The locations with the highest Pb concentrations, up to 686.5 ppb, were flooded allies and streets between commercial and residential areas. The highest concentrations of Hg (up to 11.53 ppb, orders of magnitude lower than Pb) were found in partially flooded streets and ditches. Lead stormwater concentrations exceed EPA safe drinking levels at the majority of analyzed locations, and Hg stormwater concentrations exceed EPA safe drinking levels at all analyzed locations. While stormwater is not generally ingested, dermal contact and hand-to-mouth behavior by children are potential routes of exposure. Heavy metal concentrations were lower in stormwater collected from parks and restored areas of Camden, indicating that these areas have a lower heavy metal exposure risk. This study shows that heavy metal pollution can be mobilized in stormwater runoff, resulting in elevated exposure risk in industrial cities. Full article
(This article belongs to the Section Water Pollution)
Show Figures

Figure 1

20 pages, 7345 KB  
Article
Integrated Analysis of Heavy-Metal Pollution in Three Gorges Reservoir Sediments: Spatial Distribution, Source Apportionment, and Ecological Risk Assessment
by Haitao Yan, Baocheng Wang, Kaikai Zheng, Chunlan Peng, Jinbo Yan and Bao Qian
Water 2025, 17(19), 2852; https://doi.org/10.3390/w17192852 - 30 Sep 2025
Abstract
The Three Gorges Reservoir, serving as a crucial ecological barrier for the middle-lower Yangtze River basin, faces substantial threats to watershed ecosystems from sediment-associated heavy metal, threatening aquatic ecosystems and human health via bioaccumulation. Leveraging the legislative framework of the Yangtze River Protection [...] Read more.
The Three Gorges Reservoir, serving as a crucial ecological barrier for the middle-lower Yangtze River basin, faces substantial threats to watershed ecosystems from sediment-associated heavy metal, threatening aquatic ecosystems and human health via bioaccumulation. Leveraging the legislative framework of the Yangtze River Protection Law, this study analyzed sediment cores (0–65 cm) collected from 12 representative sites in the Three Gorges Reservoir using 2020 Air–Space–Ground integrated monitoring data from the Changjiang Water Resources Commission. Concentrations of nine heavy metals (Cd, Cu, Pb, Fe, Mn, Cr, As, Hg, and Zn) were quantified to characterize spatial and vertical distribution patterns. Source apportionment was conducted through correlation analysis and principal component analysis (PCA). Contamination severity and ecological risks were assessed via geo-accumulation index (Igeo), potential ecological risk index (RI), and acute toxicity metrics. The findings indicated substantial spatial heterogeneity in sediment heavy-metal concentrations, with the coefficients of variation (CV) for Hg and Cd reaching 214.46% and 116.76%, respectively. Cu and Pb showed surface enrichment, while Cd exhibited distinct vertical accumulation. Source apportionment indicated geogenic dominance for most metals, with anthropogenic contributions specifically linked to Cd and Hg enrichment. Among the metals assessed, Cd emerged as the primary ecological risk driver, with localized strong risk levels (Ei > 320), particularly at FP and SS sites. These findings establish a scientific foundation for precision pollution control and ecological restoration strategies targeting reservoir sediments. Full article
(This article belongs to the Special Issue Sources, Transport, and Fate of Contaminants in Waters and Sediment)
Show Figures

Figure 1

22 pages, 1597 KB  
Article
The Plastic Signature: Microplastic Ingestion and Phthalate Exposure in Parapenaeus longirostris from Three Tyrrhenian Sites (Mediterranean Sea)
by Laura Ciaralli, Sara Vencato, Giuseppe Andrea de Lucia, Tommaso Valente, Eleonora Monfardini, Giovanni Libralato, Loredana Manfra, Martina Radicioli, Cecilia Silvestri, Sandro Dattilo, Paolo Maria Riccobene, Giorgia Gioacchini, Daniela Berto, Valentina Lombardi, Mariacristina Cocca and Marco Matiddi
Microplastics 2025, 4(4), 67; https://doi.org/10.3390/microplastics4040067 - 30 Sep 2025
Abstract
Microplastic pollution is pervasive in marine ecosystems and poses a growing threat to marine organisms and human health. This study simultaneously investigates microplastic ingestion and phthalate exposure in Parapenaeus longirostris, a commercially valuable and ecologically relevant Mediterranean crustacean occupying an intermediate trophic [...] Read more.
Microplastic pollution is pervasive in marine ecosystems and poses a growing threat to marine organisms and human health. This study simultaneously investigates microplastic ingestion and phthalate exposure in Parapenaeus longirostris, a commercially valuable and ecologically relevant Mediterranean crustacean occupying an intermediate trophic position. Specimens were collected from three coastal areas in the central Tyrrhenian Sea (Western Mediterranean): near the Tiber River mouth, one of the most polluted rivers in Italy, and two additional sites to the north and south. The frequency of individuals with ingested microplastics varied among locations: 78% near the Tiber River, 64% at site S, and 38% at site N, reflecting anthropogenic pressure gradients. Analyses confirmed the lower occurrence at site N, indicating higher ingestion near land-based pollution sources. Ingested microplastic polymer types varied among sites, reflecting location-specific contamination. Phthalates were present in shrimp muscle at all sites (5–1122 ng/g w.w.) with the highest average concentration (68.26 ± 55.74 ng/g) at the site with the highest microplastic ingestion. Although no statistical correlation was found, the similar spatial distribution of microplastics and phthalates suggests a potential link influenced by local pollution and individual variability. These findings provide novel evidence of microplastic and phthalate contamination in P. longirostris, highlighting its role as a trophic connector mediating contaminant transfer through the food web. While current levels suggest no potential risk to human health, continued monitoring and further studies on exposure along trophic pathways are recommended. Full article
(This article belongs to the Collection Feature Papers in Microplastics)
Show Figures

Figure 1

22 pages, 12082 KB  
Article
Simulation of Water Renewal Time in West Lake Based on Delft3D and Its Environmental Impact Analysis
by Pinyan Xu, Longwei Zhang, Xianliang Zhang, Zhihua Mao, Lihua Rao, Jun Yang and Yinying Zhou
Water 2025, 17(19), 2847; https://doi.org/10.3390/w17192847 - 29 Sep 2025
Abstract
Artificial water replenishment has improved the ecological environment of West Lake by introducing external clean water, but pollution issues still persist in some local regions. However, whether enhancing water exchange through internal water diversion within the lake can improve local water quality remains [...] Read more.
Artificial water replenishment has improved the ecological environment of West Lake by introducing external clean water, but pollution issues still persist in some local regions. However, whether enhancing water exchange through internal water diversion within the lake can improve local water quality remains unverified. This study employed the Delft3D hydrodynamic model to simulate the spatiotemporal distribution of local water renewal time in West Lake, revealing that regions with prolonged water renewal times exhibited diminished resilience to water quality disturbances. This study utilized the Random Forest algorithm to determine the responsiveness of West Lake’s water transparency to parameters such as local water renewal time, and further discussed the impact of reducing local water renewal time on transparency under different water quality conditions. The results indicate that the sensitivity of West Lake’s transparency to water quality parameters closely resembles that of lakes with rainwater storage. The primary mechanism by which external water diversion improves transparency is through pollutant dilution, whereas enhanced local water exchange capacity contributes minimally to this effect. This conclusion demonstrates that localized internal water diversion within the lake is only suitable for preventing ecological issues such as regional eutrophication and algal blooms, but cannot effectively improve the overall lake ecosystem. Furthermore, this study identifies key factors affecting water transparency in artificially managed waters, highlighting priority monitoring indicators for similar water bodies. It also provides evidence to support research on aquatic optics and the development of remote sensing algorithms for such waters. Full article
Show Figures

Figure 1

20 pages, 5845 KB  
Article
Study on Optimization of Structure of Porous Lateral Flow Storage Tank
by Qiwen Gao, Jiangang Feng, Hui Xu and Rui Zhang
Appl. Sci. 2025, 15(19), 10536; https://doi.org/10.3390/app151910536 - 29 Sep 2025
Abstract
Sediment buildup in storage tanks over extended operation periods may compromise their efficiency. To prevent pollutant deposition in storage tanks and enhance their hydraulic self-cleaning efficiency, this study addressed the unique structural configuration of lateral flow in storage tanks. Conducting numerical simulations to [...] Read more.
Sediment buildup in storage tanks over extended operation periods may compromise their efficiency. To prevent pollutant deposition in storage tanks and enhance their hydraulic self-cleaning efficiency, this study addressed the unique structural configuration of lateral flow in storage tanks. Conducting numerical simulations to investigate the hydraulic characteristics within storage tanks, an integrated approach combining physical experiments and response surface methodology (RSM) was employed to optimize flow distribution. Key findings reveal that tangential and normal velocity differences lead to flow distribution nonuniformity, exacerbated by increased inflow Froude number (Fr) and reduced relative weir height (hi). Based on the flow-splitting mechanism, an optimized “combined raised baffle” was proposed. Through single-factor experiments, Plackett–Burman (PB) screening, and RSM experiments, the optimal combination for maximal flow uniformity was determined as h1 = 1.27, h2 = 1.23, and h3 = 1.24, achieving an 87.18% improvement in Qy compared to the initial design. After optimization, the incoming flow pattern of the inlet channel of the storage pond was improved, and the difference between tangential and normal flow velocity in the flow field was significantly reduced. This research provides a novel approach and methodological paradigm for optimizing storage tanks and other hydraulic structures, demonstrating significant academic and engineering value. Full article
Show Figures

Figure 1

Back to TopTop