Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (396)

Search Parameters:
Keywords = poly(N-isopropylacrylamide)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3103 KB  
Article
Engineering Thermo-Responsive Hydrogels with Tailored Mechanics for Biomedical Integration
by Sungmo Choi, Minkyeong Pyo, Sangmin Lee, Yunseo Jeong, Yuri Nam, Seonghyeon Park, Yoon-A Jang, Kisung Kim and Chan Ho Park
Polymers 2025, 17(17), 2424; https://doi.org/10.3390/polym17172424 - 8 Sep 2025
Viewed by 717
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm) hydrogels exhibit temperature-responsive volume changes near physiological temperature, but their low mechanical strength in the swollen state limits use in structurally demanding biomedical applications. In this study, we systematically investigated poly(NIPAAm-co-acrylamide), P(NIPAAm-co-AAm), hydrogels with varying AAm-to-NIPAAm ratios to explore the compositional [...] Read more.
Poly(N-isopropylacrylamide) (PNIPAAm) hydrogels exhibit temperature-responsive volume changes near physiological temperature, but their low mechanical strength in the swollen state limits use in structurally demanding biomedical applications. In this study, we systematically investigated poly(NIPAAm-co-acrylamide), P(NIPAAm-co-AAm), hydrogels with varying AAm-to-NIPAAm ratios to explore the compositional trade-offs between thermal responsiveness and mechanical performance. Hydrogels were synthesized under fixed crosslinker and water content conditions, and evaluated through compressive mechanical testing, thermal swelling analysis, and crosslinking density estimation. Our results show that increasing AAm content enhances mechanical strength and stiffness but reduces the magnitude of temperature-induced volumetric shrinkage. An intermediate comonomer formulation demonstrated an optimal balance, maintaining both sufficient mechanical integrity for transdermal microneedle insertion and a reversible volume transition. This study highlights the potential of compositional tuning in hydrogel systems to meet the competing demands of responsiveness and durability in advanced biomedical applications. Full article
(This article belongs to the Special Issue Smart Polymeric Materials for Biomedical Applications)
Show Figures

Graphical abstract

15 pages, 9602 KB  
Article
Photothermal and Magnetic Actuation of Multimodal PNIPAM Hydrogel-Based Soft Robots
by Xiangyu Teng, Zhizheng Gao, Xuehao Feng, Shuliang Zhu and Wenguang Yang
Gels 2025, 11(9), 692; https://doi.org/10.3390/gels11090692 - 1 Sep 2025
Viewed by 499
Abstract
Soft robot motion performance has long been a core focus in scientific research. This study investigates the motion capabilities of soft robots constructed using poly(N-isopropylacrylamide) (PNIPAM) hydrogels, with key innovations in material design and functional enhancement. By optimizing the hydrogel formulation and incorporating [...] Read more.
Soft robot motion performance has long been a core focus in scientific research. This study investigates the motion capabilities of soft robots constructed using poly(N-isopropylacrylamide) (PNIPAM) hydrogels, with key innovations in material design and functional enhancement. By optimizing the hydrogel formulation and incorporating molybdenum disulfide (MoS2) to endow it with photothermal response properties, the material achieves muscle-like controllable contraction and expansion deformation—a critical breakthrough in mimicking biological motion mechanics. Building on this material advancement, the research team developed a series of soft robotic prototypes to systematically explore the hydrogel’s motion characteristics. A flytrap-inspired soft robot demonstrates rapid opening–closing movements, replicating the swift responsiveness of natural carnivorous plants. For terrestrial locomotion, a hexapod crawling robot utilizes the photo-induced stretch-recovery mechanism of both horizontally configured and pre-bent feet to achieve stable directional propulsion. Most notably, a magnetically driven rolling robot integrates magnetic units to realize versatile multimodal movement: it achieves a stable rolling speed of 1.8 cm/s across flat surfaces and can surmount obstacles up to 1.5 times its own body size. This work not only validates the strong potential of PNIPAM hydrogel-based soft robots in executing complex motion tasks but also provides valuable new insights for the development of multimodal soft robotic systems, paving the way for future innovations in adaptive and bio-inspired robotics. Full article
(This article belongs to the Special Issue Functional Hydrogels for Soft Electronics and Robotic Applications)
Show Figures

Figure 1

27 pages, 3312 KB  
Review
Influence of Structure–Property Relationships of Polymeric Biomaterials for Engineering Multicellular Spheroids
by Sheetal Chowdhury and Amol V. Janorkar
Bioengineering 2025, 12(8), 857; https://doi.org/10.3390/bioengineering12080857 - 9 Aug 2025
Viewed by 708
Abstract
Two-dimensional cell culture systems lack the ability to replicate the complex, three-dimensional (3D) architecture and cellular microenvironments found in vivo. Multicellular spheroids (MCSs) present a promising alternative, with the ability to mimic native cell–cell and cell–matrix interactions and provide 3D architectures similar to [...] Read more.
Two-dimensional cell culture systems lack the ability to replicate the complex, three-dimensional (3D) architecture and cellular microenvironments found in vivo. Multicellular spheroids (MCSs) present a promising alternative, with the ability to mimic native cell–cell and cell–matrix interactions and provide 3D architectures similar to in vivo conditions. These factors are critical for various biomedical applications, including cancer research, tissue engineering, and drug discovery and development. Polymeric materials such as hydrogels, solid scaffolds, and ultra-low attachment surfaces serve as versatile platforms for 3D cell culture, offering tailored biochemical and mechanical cues to support cellular organization. This review article focuses on the structure–property relationships of polymeric biomaterials that influence MCS formation, growth, and functionality. Specifically, we highlight their physicochemical properties and their influence on spheroid formation using key natural polymers, including collagen, hyaluronic acid, chitosan, and synthetic polymers like poly(lactic-co-glycolic acid) and poly(N-isopropylacrylamide) as examples. Despite recent advances, several challenges persist, including spheroid loss during media changes, limited viability or function in long-term cultures, and difficulties in scaling for high-throughput applications. Importantly, the development of MCS platforms also supports the 3R principle (Replacement, Reduction, and Refinement) by offering ethical and physiologically relevant alternatives to animal testing. This review emphasizes the need for innovative biomaterials and methodologies to overcome these limitations, ultimately advancing the utility of MCSs in biomedical research. Full article
(This article belongs to the Special Issue 3D Cell Culture Systems: Current Technologies and Applications)
Show Figures

Figure 1

24 pages, 6999 KB  
Article
Plasmid DNA Delivery to Cancer Cells with Poly(L-lysine)-Based Copolymers Bearing Thermally Sensitive Segments: Balancing Polyplex Tightness, Transfection Efficiency, and Biocompatibility
by Mustafa Kotmakci, Natalia Toncheva-Moncheva, Sahar Tarkavannezhad, Bilge Debelec Butuner, Ivaylo Dimitrov and Stanislav Rangelov
Pharmaceutics 2025, 17(8), 1012; https://doi.org/10.3390/pharmaceutics17081012 - 2 Aug 2025
Viewed by 826
Abstract
Background/Objectives. Efficient nucleic acid delivery into target cells remains a critical challenge in gene therapy. Due to its advantages in biocompatibility and safety, recent research has increasingly focused on non-viral gene delivery. Methods. A series of copolymers—synthesized by integrating thermally sensitive poly(N-isopropylacrylamide) [...] Read more.
Background/Objectives. Efficient nucleic acid delivery into target cells remains a critical challenge in gene therapy. Due to its advantages in biocompatibility and safety, recent research has increasingly focused on non-viral gene delivery. Methods. A series of copolymers—synthesized by integrating thermally sensitive poly(N-isopropylacrylamide) (PNIPAm), hydrophilic poly(ethylene glycol) (PEG) grafts, and a polycationic poly(L-lysine) (PLL) block of varying lengths ((PNIPAm)77-graft-(PEG)9-block-(PLL)z, z = 10–65)—were investigated. Plasmid DNA complexation with the copolymers was achieved through temperature-modulated methods. The resulting polyplexes were characterized by evaluating complex strength, particle size, zeta potential, plasmid DNA loading capacity, resistance to anionic stress, stability in serum, and lysosomal membrane destabilization assay. The copolymers’ potential for plasmid DNA delivery was assessed through cytotoxicity and transfection studies in cancer cell lines. Results. Across all complexation methods, the copolymers effectively condensed plasmid DNA into stable polyplexes. Particle sizes (60–90 nm) ranged with no apparent correlation to copolymer type, complexation method, or N/P ratio, whereas zeta potentials (+10–+20 mV) and resistance to polyanionic stress were dependent on the PLL length and N/P ratio. Cytotoxicity analysis revealed a direct correlation between PLL chain length and cell viability, with all copolymers demonstrating minimal cytotoxicity at concentrations required for efficient transfection. PNL-20 ((PNIPAm)77-graft-(PEG)9-block-(PLL)20) exhibited the highest transfection efficiency among the tested formulations while maintaining low cytotoxicity. Conclusions. The study highlights the promising potential of (PNIPAm)77-graft-(PEG)9-block-(PLL)z copolymers for effective plasmid DNA delivery to cancer cells. It reveals the importance of attaining the right balance between polyplex tightness and plasmid release to achieve improved biocompatibility and transfection efficiency. Full article
Show Figures

Figure 1

15 pages, 2741 KB  
Article
Development of a Curcumin-Loaded Hyaluronic Acid Nanogel Formulation Using Wet Granulation Method for Enhanced Dissolution and Stability
by Natkhanang Mookkie Boonpetcharat, May Thu Thu Kyaw, Veerakiet Boonkanokwong and Jittima Amie Luckanagul
Gels 2025, 11(8), 585; https://doi.org/10.3390/gels11080585 - 29 Jul 2025
Cited by 1 | Viewed by 1464
Abstract
Curcumin is widely recognized for its various pharmacological properties, including antioxidant, anti-inflammatory, and anti-tumor activities. Nevertheless, the development of curcumin as a therapeutic agent is impeded by its limited oral bioavailability, which stems from its chemical instability, poor aqueous solubility, and rapid degradation. [...] Read more.
Curcumin is widely recognized for its various pharmacological properties, including antioxidant, anti-inflammatory, and anti-tumor activities. Nevertheless, the development of curcumin as a therapeutic agent is impeded by its limited oral bioavailability, which stems from its chemical instability, poor aqueous solubility, and rapid degradation. This study aimed to develop granule formulations incorporating poly(N-isopropylacrylamide)-grafted hyaluronic acid or HA-g-pNIPAM to enhance dissolution and protect curcumin from degradation. Three formulations were developed: F10 (HA-g-pNIPAM physically mixed with curcumin), F10 Encap (curcumin encapsulated within HA-g-pNIPAM), and F11 (curcumin granules without HA-g-pNIPAM). The stability results showed that F10 Encap effectively maintained curcumin content throughout the study period, retaining approximately 94% of its initial concentration by day 30, compared to 70% from F11 (p < 0.05) at 30 °C and 75% relative humidity. All dried curcumin granules exhibited excellent flowability, as determined by the angle of repose measurements. All three formulations exhibited a consistent particle size distribution across replicates, with a peak in the 150–180 μm size range. The sustained release observed for F10 Encap and F10 after the initial burst suggested that the HA-g-pNIPAM provided a controlled release mechanism, ensuring continuous curcumin dissolution over 240 min in gastric and intestinal conditions. These findings suggested that HA-g-pNIPAM improved dissolution and stability of curcumin. Full article
Show Figures

Graphical abstract

19 pages, 4349 KB  
Article
Thermoresponsive Behavior, Degradation, and Bioactivity of Nanohydroxyapatite on Graphene Oxide Nanoscroll-Enhanced Poly(N-isopropylacrylamide)-Based Scaffolds
by Lillian Tsitsi Mambiri, Riley Guillory and Dilip Depan
Polymers 2025, 17(15), 2014; https://doi.org/10.3390/polym17152014 - 23 Jul 2025
Viewed by 507
Abstract
Osteoarthritis and metastatic bone cancers create pathological oxidative environments characterized by elevated reactive oxygen species (ROS). ROS impair bone regeneration by degrading the scaffold and suppressing mineralization. To address these challenges, we fabricated thermoresponsive scaffolds based on poly(N-isopropylacrylamide) (PNIPAAm) incorporating in situ-grown nanohydroxyapatite [...] Read more.
Osteoarthritis and metastatic bone cancers create pathological oxidative environments characterized by elevated reactive oxygen species (ROS). ROS impair bone regeneration by degrading the scaffold and suppressing mineralization. To address these challenges, we fabricated thermoresponsive scaffolds based on poly(N-isopropylacrylamide) (PNIPAAm) incorporating in situ-grown nanohydroxyapatite on graphene oxide nanoscrolls (nHA-GONS) using stereolithography (SLA). Three scaffold formulations were studied: pure PNIPAAm (PNP), PNIPAAm with 5 wt.% nHA-GONS (P5G), and PNIPAAm with 5 wt.% nHA-GONS reinforced with polycaprolactone (PCL) microspheres (PN5GP). Each scaffold was evaluated for (i) swelling and lower critical solution temperature (LCST) using differential scanning calorimetry (DSC); (ii) oxidative degradation assessed using Fourier-transform infrared spectroscopy (FTIR), mass loss, and antioxidant assays; and (iii) mineralization and morphology via immersion in simulated body fluid followed by microscopy. The PN5GP and P5G scaffolds demonstrated reversible swelling, sustained antioxidant activity, and enhanced calcium deposition, which enable redox stability and mineralization under oxidative environments, critical for scaffold functionality in bone repair. PNP scaffolds exhibited copper accumulation, while PN5GP suffered from accelerated mass loss driven by the PCL phase. These findings identify the P5G formulation as a promising scaffold. This study introduces a quantitative framework that enables the predictive design of oxidation-resilient scaffolds. Full article
Show Figures

Figure 1

12 pages, 11599 KB  
Article
Dual pH- and Temperature-Responsive Fluorescent Hybrid Materials Based on Carbon Dot-Grafted Triamino-Tetraphenylethylene/N-Isopropylacrylamide Copolymers
by Huan Liu, Yuxin Ding, Longping Zhou, Shirui Xu and Bo Liao
C 2025, 11(3), 53; https://doi.org/10.3390/c11030053 - 22 Jul 2025
Viewed by 656
Abstract
Carbon dots (CDs), a class of carbon-based fluorescent nanomaterials, have garnered significant attention due to their tunable optical properties and functional versatility. In this study, we developed a hybrid material by grafting pH- and temperature-responsive copolymers onto CDs via reversible addition-fragmentation chain-transfer (RAFT) [...] Read more.
Carbon dots (CDs), a class of carbon-based fluorescent nanomaterials, have garnered significant attention due to their tunable optical properties and functional versatility. In this study, we developed a hybrid material by grafting pH- and temperature-responsive copolymers onto CDs via reversible addition-fragmentation chain-transfer (RAFT) polymerization. Triamino-tetraphenylethylene (ATPE) and N-isopropylacrylamide (NIPAM) were copolymerized at varying ratios and covalently linked to CDs, forming a dual-responsive system. Structural characterization using FTIR, 1H NMR, and TEM confirmed the successful grafting of the copolymers onto CDs. The hybrid material exhibited pH-dependent fluorescence changes in acidic aqueous solutions, with emission shifting from 450 nm (attributed to CDs) to 500 nm (aggregation-induced emission, AIE, from ATPE) above a critical pH threshold. Solid films of the hybrid material demonstrated reversible fluorescence quenching under HCl vapor and recovery/enhancement under NH3 vapor, showing excellent fatigue resistance over multiple cycles. Temperature responsiveness was attributed to the thermosensitive poly(NIPAM) segments, with fluorescence intensity increasing above 35 °C due to polymer chain collapse and ATPE aggregation. This work provides a strategy for designing multifunctional hybrid materials with potential applications in recyclable optical pH/temperature sensors. Full article
Show Figures

Graphical abstract

13 pages, 3561 KB  
Article
Preparing Surface-Functionalized Polymer Films with Hierarchically Ordered Structure by a Combination of Nanoimprinting and Controlled Graft Polymerization
by Masahiko Minoda, Daichi Shimizu, Tatsuya Nohara and Jin Motoyanagi
Surfaces 2025, 8(3), 48; https://doi.org/10.3390/surfaces8030048 - 11 Jul 2025
Viewed by 574
Abstract
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared [...] Read more.
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared by combining both nanoimprinting using anodically oxidized porous alumina (AAO) as a template and surface-initiated atom transfer radical polymerization (SI-ATRP). To prepare such polymer films, we designed a new copolymer (poly{[2-(4-methyl-2-oxo-2H-chromen-7-yloxy)ethyl methacrylate]-co-[2-(2-bromo-2-methylpropionyloxy)ethyl methacrylate]}; poly(MCMA-co-HEMABr)) with coumarin moieties and α-haloester moieties in the pendants. The MCMA repeating units function to fix the pillar structure by photodimerization, and the HEMABr ones act as the polymerization initiation sites for SI-ATRP on the pillar surfaces. Surface structures consisting of vertically oriented multiple pillars were fabricated on the spin-coated poly(MCMA-co-HEMABr) thin films by nanoimprinting using an AAO template. Then, the coumarin moieties inside each pillar were crosslinked by UV light irradiation to fix the pillar structure. SEM observation confirmed that the internally crosslinked pillar structures were maintained even when immersed in organic solvents such as 1,2-dichloroethane and anisole, which are employed as solvents under SI-ATRP conditions. Finally, poly(2,2,2-trifluoroethyl methacrylate) and poly(N-isopropylacrylamide) chains were grafted onto the thin film by SI-ATRP, respectively, to prepare the hierarchically ordered surface structure. Furthermore, in this study, the surface properties as well as the thermoresponsive hydrophilic/hydrophobic switching of the obtained polymer films were investigated. The surface morphology and chemistry of the films with and without pillar structures were compared, especially the interfacial properties expressed as wettability. Grafting poly(TFEMA) increased the static contact angle for both flat and pillar films, and the con-tact angle of the pillar film surface increased from 104° for the flat film sample to 112°, suggesting the contribution of the pillar structure. Meanwhile, the pillar film surface grafted with poly(NIPAM) brought about a significant change in wettability when changing the temperature between 22 °C and 38 °C. Full article
(This article belongs to the Special Issue Surface Science: Polymer Thin Films, Coatings and Adhesives)
Show Figures

Graphical abstract

13 pages, 2327 KB  
Article
Biocompatible and Biodegradable Nanocarriers for Targeted Drug Delivery in Precision Medicine
by Xin Jin, Hu Qian, Yuxiang Xie, Changzhi Liu, Yuan Cheng, Jinsong Hou and Jiandong Zheng
Biomimetics 2025, 10(7), 430; https://doi.org/10.3390/biomimetics10070430 - 1 Jul 2025
Viewed by 508
Abstract
Despite the promising natural origin, biocompatibility, and biodegradability of chitosan for biomedical applications, developing biodegradable nanocarriers with controllable sizes and precise drug delivery targeting remains a significant challenge, hindering its integration into precision medicine. To address this, we synthesized gold nanocage (AuNCs)/poly-(N-isopropylacrylamide-co-carboxymethyl chitosan) [...] Read more.
Despite the promising natural origin, biocompatibility, and biodegradability of chitosan for biomedical applications, developing biodegradable nanocarriers with controllable sizes and precise drug delivery targeting remains a significant challenge, hindering its integration into precision medicine. To address this, we synthesized gold nanocage (AuNCs)/poly-(N-isopropylacrylamide-co-carboxymethyl chitosan) core-shell multifunctional composite nanospheres (CPAu) through a two-step one-pot method. The resulting CPAu nanospheres (~146 nm in size) exhibited multi-sensitive release properties, excellent biocompatibility, and potent photothermal therapy (PTT) activity. These nanospheres effectively encapsulated diverse antitumor drugs while demonstrating triple responsiveness (thermo-, reduction-, and PTT-triggered) for targeted tumor cell delivery, thereby achieving enhanced antitumor efficacy in combinatorial chemotherapy. Full article
Show Figures

Figure 1

13 pages, 22545 KB  
Article
APDBD Plasma Polymerized PNIPAm Coatings with Controlled Thickness via Spin Coating Technique
by Hakim Ssekasamba, Xinwang Chen, Haodong Cui, Xiaoliang Tang, Gao Qiu, Xihua Lu and Qingsong Yu
Coatings 2025, 15(7), 762; https://doi.org/10.3390/coatings15070762 - 27 Jun 2025
Viewed by 505
Abstract
Thermosensitive Poly(N-isopropylacrylamide) (PNIPAm) films were synthesized via atmospheric pressure dielectric barrier discharge (APDBD) plasma polymerization. In order to control the thickness of the films, a spin coating technique was used during the deposition of N-isopropylacrylamide (NIPAM) monomer solution onto several glass substrates. We [...] Read more.
Thermosensitive Poly(N-isopropylacrylamide) (PNIPAm) films were synthesized via atmospheric pressure dielectric barrier discharge (APDBD) plasma polymerization. In order to control the thickness of the films, a spin coating technique was used during the deposition of N-isopropylacrylamide (NIPAM) monomer solution onto several glass substrates. We used the coefficient of determination (R-square value) in linear regression to investigate the significance and optimize spin coating parameters during the fabrication of NIPAM coatings before exposure to APDBD plasma to ensure reproducible and uniform film properties. The spin coating parameters investigated in this study include spin speed, spin time, and NIPAM solution concentration with R-square values of 0.978, 0.946, and 0.944, respectively. Also, as a result of the thermosensitive nature of NIPAM, the spin coating operating conditions of temperature and humidity were maintained at 39.0 °C and 15%, respectively. During the APDBD plasma polymerization, argon was used as the discharge gas, and the distance between the two parallel electrodes and plasma frequency were maintained at 5.0 mm and 17 kHz, respectively. The plasma exposure time required for polymerization of PNIPAm coatings was optimized to 60 s. Also, the results showed that a coating with minimal defects had an optimal thickness of 5.18 μm, fabricated under conditions of 90 wt.% NIPAM concentration, spin speed of 4000 rpm, and total spin time of 7 s. Full article
Show Figures

Figure 1

16 pages, 2914 KB  
Article
Designing Polymeric Multifunctional Nanogels for Photothermal Inactivation: Exploiting Conjugate Polymers and Thermoresponsive Platforms
by Ignacio Velzi, Edith Ines Yslas and Maria Molina
Pharmaceutics 2025, 17(7), 827; https://doi.org/10.3390/pharmaceutics17070827 - 25 Jun 2025
Viewed by 497
Abstract
Background/Objectives: Photothermal therapy (PTT) is an emerging minimally invasive strategy in biomedicine that converts near-infrared (NIR) light into localized heat for the targeted inactivation of pathogens and tumor cells. Methods and Results: In this study, we report the synthesis and characterization [...] Read more.
Background/Objectives: Photothermal therapy (PTT) is an emerging minimally invasive strategy in biomedicine that converts near-infrared (NIR) light into localized heat for the targeted inactivation of pathogens and tumor cells. Methods and Results: In this study, we report the synthesis and characterization of thermoresponsive nanogels composed of poly (N-isopropylacrylamide-co-N-isopropylmethylacrylamide) (PNIPAM-co-PNIPMAM) semi-interpenetrated with polypyrrole (PPy), yielding monodisperse particles of 377 nm diameter. Spectroscopic analyses—including 1H-NMR, FTIR, and UV-Vis—confirmed successful copolymer formation and PPy incorporation, while TEM images revealed uniform spherical morphology. Differential scanning calorimetry established a volumetric phase transition temperature of 38.4 °C, and photothermal assays demonstrated a ΔT ≈ 10 °C upon 10 min of 850 nm NIR irradiation. In vitro antimicrobial activity tests against Pseudomonas aeruginosa (ATCC 15692) showed a dose-time-dependent reduction in bacterial viability, with up to 4 log CFU/mL. Additionally, gentamicin-loaded nanogels achieved 38.7% encapsulation efficiency and exhibited stimulus-responsive drug release exceeding 75% under NIR irradiation. Conclusions: Combined photothermal and antibiotic therapy yielded augmented bacterial killing, underscoring the potential of PPy-interpenetrated nanogels as smart, dual-mode antimicrobials. Full article
Show Figures

Graphical abstract

31 pages, 4568 KB  
Review
Stimuli-Responsive DNA Hydrogel Design Strategies for Biomedical Applications
by Minhyuk Lee, Minjae Lee, Sungjee Kim and Nokyoung Park
Biosensors 2025, 15(6), 355; https://doi.org/10.3390/bios15060355 - 4 Jun 2025
Cited by 2 | Viewed by 1871
Abstract
Hydrogels are three-dimensional network structures composed of hydrophilic polymers that can swell in water and are very similar to soft tissues such as connective tissue or the extracellular matrix. DNA hydrogels are particularly notable for biomedical applications due to their high biocompatibility, physiological [...] Read more.
Hydrogels are three-dimensional network structures composed of hydrophilic polymers that can swell in water and are very similar to soft tissues such as connective tissue or the extracellular matrix. DNA hydrogels are particularly notable for biomedical applications due to their high biocompatibility, physiological stability, molecular recognition, biodegradability, easy functionalization, and low immunogenicity. Based on these advantages, stimuli-responsive DNA hydrogels that have the property of reversibly changing their structure in response to various microenvironments or molecules are attracting attention as smart nanomaterials that can be applied to biosensing and material transfer, such as in the case of cells and drugs. As DNA nanotechnology advances, DNA can be hybridized with a variety of nanomaterials, from inorganic nanomaterials such as gold nanoparticles (AuNPs) and quantum dots (QDs) to synthetic polymers such as polyacrylamide (PAAm) and poly(N-isopropylacrylamide) (pNIPAM). These hybrid structures exhibit various optical and chemical properties. This review discusses recent advances and remaining challenges in biomedical applications of stimuli-responsive smart DNA hydrogel-based systems. It also highlights various types of hybridized DNA hydrogel, explores various response mechanism strategies of stimuli-responsive DNA hydrogel, and provides insights and prospects for biomedical applications such as biosensing and drug delivery. Full article
(This article belongs to the Special Issue Hydrogel-Based Biosensors: From Design to Applications)
Show Figures

Figure 1

15 pages, 2665 KB  
Article
Development of Thermo-Responsive and Salt-Adaptive Ultrafiltration Membranes Functionalized with PNIPAM-co-PDMAC Copolymer
by Lauran Mama, Johanne Pirkin-Benameur, Vincent Bouad, David Fournier, Patrice Woisel, Joël Lyskawa, Karim Aissou and Damien Quemener
Membranes 2025, 15(6), 164; https://doi.org/10.3390/membranes15060164 - 28 May 2025
Cited by 1 | Viewed by 1383
Abstract
Access to clean water remains a critical global challenge, exacerbated by population growth, industrial activity, and climate change. In response, this study presents the development and characterization of thermo-responsive and salt-adaptive ultrafiltration membranes functionalized with a poly(N-isopropylacrylamide)–co-poly(dimethylacrylamide) (PNIPAM-co-PDMAC) copolymer. By combining the thermo-responsive [...] Read more.
Access to clean water remains a critical global challenge, exacerbated by population growth, industrial activity, and climate change. In response, this study presents the development and characterization of thermo-responsive and salt-adaptive ultrafiltration membranes functionalized with a poly(N-isopropylacrylamide)–co-poly(dimethylacrylamide) (PNIPAM-co-PDMAC) copolymer. By combining the thermo-responsive properties of PNIPAM with the hydrophilic characteristics of PDMAC, these membranes exhibit dual-stimuli responsiveness to temperature and ionic strength, allowing for precise control of permeability and fouling resistance. The experimental results demonstrated that the copolymer’s hydration state and dynamic pore size modulation are sensitive to changes in salinity and temperature, with sodium chloride (NaCl) significantly influencing the transition behavior. Preliminary fouling tests confirmed the antifouling capabilities of these membranes, with salt-triggered hydration transitions effectively reducing irreversible fouling and extending membrane durability. The membranes’ reversible properties and adaptability to dynamic operating conditions highlight their potential to enhance the efficiency and sustainability of water treatment processes. Future investigations will focus on scaling up the fabrication process and assessing the long-term stability of these membranes under real-world conditions. This study underscores the promise of smart membrane systems for advancing global water sustainability. Full article
Show Figures

Figure 1

28 pages, 9047 KB  
Article
Synergistic Density Functional Theory and Molecular Dynamics Approach to Elucidate PNIPAM–Water Interaction Mechanisms
by Noor Alomari, Santiago Aparicio, Paul Meyer, Yi Zeng, Shuang Cui, Alberto Gutiérrez and Mert Atilhan
Materials 2025, 18(11), 2498; https://doi.org/10.3390/ma18112498 - 26 May 2025
Viewed by 890
Abstract
This study employs Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations to investigate interactions between water molecules and Poly(N-isopropylacrylamide) (PNIPAM). DFT reveals preferential water binding sites, with enhanced binding energy observed in the linker zone. Quantum Theory of Atoms in Molecules (QTAIM) [...] Read more.
This study employs Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations to investigate interactions between water molecules and Poly(N-isopropylacrylamide) (PNIPAM). DFT reveals preferential water binding sites, with enhanced binding energy observed in the linker zone. Quantum Theory of Atoms in Molecules (QTAIM) and electron localization function (ELF) analyses highlight the roles of hydrogen bonding and steric hindrance. MD simulations unveil temperature-dependent hydration dynamics, with structural transitions marked by changes in the radius of gyration (Rg) and the radial distribution function (RDF), aligning with DFT findings. Our work goes beyond prior studies by combining a DFT, QTAIM and MD simulations approach across different PNIPAM monomer-to-30mer structures. It introduces a systematic quantification of pseudo-saturation thresholds and explores water clustering dynamics with structural specificity, which have not been previously reported in the literature. These novel insights establish a more complete molecular-level picture of PNIPAM hydration behavior and temperature responsiveness, emphasizing the importance of amide hydrogen and carbonyl oxygen sites in hydrogen bonding, which weakens above the lower critical solution temperature (LCST), resulting in increased hydrophobicity and paving the way for understanding water sorption mechanisms, offering guidance for future applications such as dehumidification and atmospheric water harvesting. Full article
(This article belongs to the Special Issue Development and Research on Theoretical Chemistry in Materials)
Show Figures

Figure 1

16 pages, 3996 KB  
Article
Exploring the Combination of Microgels and Nanostructured Fluids for the Cleaning of Works of Art
by Jacopo Vialetto, David Chelazzi, Marco Laurati and Giovanna Poggi
Gels 2025, 11(6), 382; https://doi.org/10.3390/gels11060382 - 23 May 2025
Viewed by 494
Abstract
Cultural Heritage is a vital socioeconomic driver that must contend with works of art continuously exposed to degradation processes, which are further exacerbated by climate change. Aged coatings, varnishes, and soil can compromise the appearance of artworks, preventing their preservation and valorization. In [...] Read more.
Cultural Heritage is a vital socioeconomic driver that must contend with works of art continuously exposed to degradation processes, which are further exacerbated by climate change. Aged coatings, varnishes, and soil can compromise the appearance of artworks, preventing their preservation and valorization. In response, soft matter and colloidal systems, such as nanostructured cleaning fluids (NCFs), have proved to be valuable solutions for safely and effectively cleaning works of art. Here, a novel cleaning system is proposed, for the first time employing microgels of poly(N-isopropylacrylamide) (PNIPAM) with surface chains of oligoethylene glycol methyl ether methacrylate (OEGMA) to favor shear deformation by lubrication. These microgels are loaded with NCFs featuring “green” solvents and different kinds of bio-derived or petroleum-based surfactants (non-ionic, zwitterionic). Rheological characterization of the combined systems highlighted a sharp transition from solid to liquid-like state in the 21–24 °C range when the zwitterionic surfactant dodecyldimethylamine oxide was used; the system displays a solid-like behavior at rest but flows easily at intermediate strains. At slightly higher temperature (>24 °C), an inversion of the G′, G″ values was observed, leading to a system that behaves as a liquid. Such control of rheological behavior is significant for feasible and complete removal of soiled polymer coatings from textured ceramic surfaces, which are difficult to clean with conventional gels, without leaving residues. These results position the PNIPAM-OEGMA microgels as promising cleaning materials for the conservation of Cultural Heritage, with possible applications also in fields where gelled systems are of interest (pharmaceutics, cosmetics, detergency, etc.). Full article
(This article belongs to the Special Issue Gel Materials for Heritage Conservation)
Show Figures

Figure 1

Back to TopTop