Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (160)

Search Parameters:
Keywords = poly(butylene adipate-co-terephthalate)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3215 KB  
Article
Biaxial Stretching of PBAT/PLA Blends for Improved Mechanical Properties
by Nikki Rodriguez, Osnat Gillor, Murat Guvendiren and Lisa Axe
Polymers 2025, 17(19), 2651; https://doi.org/10.3390/polym17192651 - 30 Sep 2025
Viewed by 230
Abstract
Biodegradable polymers offer a promising solution to the growing issue of global microplastic pollution. To effectively replace conventional plastics, it is essential to develop strategies for tuning the properties of biodegradable polymers without relying on additives. Biaxial stretching promotes anisotropic crystallization in polymer [...] Read more.
Biodegradable polymers offer a promising solution to the growing issue of global microplastic pollution. To effectively replace conventional plastics, it is essential to develop strategies for tuning the properties of biodegradable polymers without relying on additives. Biaxial stretching promotes anisotropic crystallization in polymer domains, thereby altering the mechanical performance of polymer blends. In this study, we employed a design of experiment (DoE) approach to investigate the effects of biaxial stretching at three drawing temperatures (Tds) and draw ratios (λs) on a biodegradable blend of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT), aiming to optimize both the strength and ductility. The DoE analysis revealed that the composition, the λ, the interaction between the λ and composition, and the interaction between the Td and composition significantly affect the elongation at break (εBreak). For the stress at break (σBreak), the most influential factors were the interaction between the λ and PLA concentration; a three-way interaction among the λ, PLA, and Td; the Td; the λ; and finally the PLA concentration alone. The optimal εBreak and σBreak were achieved at a λ = 5 × 5 and Td = 110 °C, with a composition of 10% PLA and 90% PBAT. The stretched samples exhibited higher crystallinity compared to the pressed samples across all compositions. This work demonstrates that in addition to the composition, the processing parameters, such as the λ and Td, critically influence the mechanical properties, enabling performance enhancements without the need for compatibilizers or toxic additives. Full article
Show Figures

Graphical abstract

18 pages, 1736 KB  
Article
Insights into How Degradable Microplastics Enhance Cu2+ Mobility in Soil Through Interfacial Interaction
by Hongjia Peng, Bolun Yu, Zuhong Lin and Haipu Li
Toxics 2025, 13(9), 795; https://doi.org/10.3390/toxics13090795 - 18 Sep 2025
Viewed by 335
Abstract
The incomplete degradation of degradable plastics may pose potential ecological risks, as it can generate degradable microplastics (DMPs), especially when these DMPs coexist with heavy metals in soil. Taking petrochemical-based poly(butylene adipate-co-terephthalate) (PBAT) and bio-based polylactic acid (PLA) as representative DMPs, this study [...] Read more.
The incomplete degradation of degradable plastics may pose potential ecological risks, as it can generate degradable microplastics (DMPs), especially when these DMPs coexist with heavy metals in soil. Taking petrochemical-based poly(butylene adipate-co-terephthalate) (PBAT) and bio-based polylactic acid (PLA) as representative DMPs, this study investigated how DMPs affect the adsorption–desorption behavior of Cu2+ in soil and the underlying mechanisms via batch equilibrium experiments and characterization analyses. The experiments revealed that ion exchange (accounting for 33.6–34.3%), oxygen-containing functional group complexation, and electrostatic interactions were the primary adsorption driving forces, with chemical adsorption playing the main role. Compared to the soil, the PBAT and PLA had smaller specific surface areas and pore volumes, fewer oxygen-containing functional groups, and especially lacked O-metal functional groups. They can dilute soil, clog its pores, and cover its active sites. 1% DMPs significantly reduced the soil’s equilibrium adsorption capacity (Qe) (3.7–4.7%) and increased equilibrium desorption capacity (QDe) (1.7–2.6%), thereby increasing the mobility and ecological risk of Cu2+. PBAT and PLA had no significant difference in effects on the adsorption, but their specific mechanisms were somewhat distinct. Faced with the prevalent, worsening coexistence of DMPs and heavy metals in soil, these findings contribute to the ecological risk assessment of DMPs. Full article
Show Figures

Graphical abstract

18 pages, 3343 KB  
Article
Dodecenyl Succinic Anhydride-Modified PBAT Copolyesters with Enhanced Water Vapor Barrier Property
by Lilan Wang and Linbo Wu
Macromol 2025, 5(3), 41; https://doi.org/10.3390/macromol5030041 - 8 Sep 2025
Viewed by 375
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) possesses mechanical properties and processing advantages comparable to low-density polyethylene (LDPE). However, its poor water vapor barrier properties (~2 orders of magnitude lower than LDPE) limit its applications in agricultural films and packaging. In this study, dodecenyl succinic anhydride (DDSA) [...] Read more.
Poly(butylene adipate-co-terephthalate) (PBAT) possesses mechanical properties and processing advantages comparable to low-density polyethylene (LDPE). However, its poor water vapor barrier properties (~2 orders of magnitude lower than LDPE) limit its applications in agricultural films and packaging. In this study, dodecenyl succinic anhydride (DDSA) was employed as a functional comonomer to synthesize DDSA-modified PBAT-based copolyesters (PBADT) with varying compositions via co-esterification and melt polycondensation, and the effects of the hydrophobic alkylene side chain on surface hydrophobicity, water vapor barrier property, and other physical and mechanical properties of PBADT were systematically investigated. Results indicate that the introduction of DDSA significantly enhanced the surface hydrophobicity and water vapor barrier properties of PBAT. As the DDSA content increased from 0 to 55 mol%, the water contact angle increased from 79° to 101°, and the water vapor barrier performance improved by nearly three times. Crucially, due to the chemical bonding of hydrophobic side chains to the main chains, the PBADT films exhibited excellent stability in its water vapor barrier performance under external mechanical friction. Furthermore, DDSA introduction markedly reduced haze and increased light transmittance, demonstrating improved optical clarity. On the other hand, the existence of the long alkylene side chain of DDSA also significantly inhibited the crystallization and mechanical properties of the copolyesters. Full article
Show Figures

Graphical abstract

17 pages, 5464 KB  
Article
On the Evaluation of Flow Properties Characterizing Blown Film Extrusion of Polyolefin Alternatives
by Petr Filip, Berenika Hausnerova, Dagmar Endlerova, Bernhard Möginger and Juliana Azevedo
Polymers 2025, 17(17), 2353; https://doi.org/10.3390/polym17172353 - 29 Aug 2025
Viewed by 689
Abstract
The lower melt strength of biodegradable materials in comparison to low density polyethylenes raises serious issues regarding their processability via blown film molding. Thus, reliable rheological characterization is a viable option for assessing their efficient flow performance. The blends of poly (lactic acid) [...] Read more.
The lower melt strength of biodegradable materials in comparison to low density polyethylenes raises serious issues regarding their processability via blown film molding. Thus, reliable rheological characterization is a viable option for assessing their efficient flow performance. The blends of poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) modified with four chain-extending cross-linkers (CECLs) undergo shearing during extrusion and are subjected to extensional deformation during the subsequent film blowing. The shear viscosity data obtained with a capillary rheometer corresponded well to the molecular weights obtained by gel permeation chromatography, while an evaluation of elongational viscosity using a Sentmanat Extensional Rheometer failed due to sample sagging during the process of temperature setting and an unacceptable deviation from the theoretically supposed exponential decrease of sample cross-sections. Therefore, the response of the PBAT/PLA blends to elongation was determined via changes in the duration of time intervals corresponding to the rupture of elongated samples. An increased consistency of the PBAT/PLA blends with CECL, as previously indicated by dynamic mechanical analysis, differential scanning calorimetry, and scanning electron microscopy, was evaluated in this way. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

13 pages, 1917 KB  
Article
Sequential Fractionation of Lignin for Interfacial Optimization and Enhanced Mechanical Performance in PBAT Composites
by Meng He, Mengfan Xu, Xian Yang, Chao Liu and Binghua Yan
Polymers 2025, 17(17), 2270; https://doi.org/10.3390/polym17172270 - 22 Aug 2025
Viewed by 636
Abstract
To address the inherent challenge of poor interfacial compatibility in lignin/poly(butylene adipate-co-terephthalate) (PBAT) composites, lignin was extracted from Camellia oleifera shells and subjected to sequential solvent fractionation using ethanol, acetone, and tetrahydrofuran (THF). Two representative fractions—acetone-soluble (ACL) and THF-soluble (THFL)—were selected for composite [...] Read more.
To address the inherent challenge of poor interfacial compatibility in lignin/poly(butylene adipate-co-terephthalate) (PBAT) composites, lignin was extracted from Camellia oleifera shells and subjected to sequential solvent fractionation using ethanol, acetone, and tetrahydrofuran (THF). Two representative fractions—acetone-soluble (ACL) and THF-soluble (THFL)—were selected for composite preparation with PBAT via solvent casting. The influence of lignin fractionation on the structural and performance characteristics of the resulting composites was systematically evaluated through Fourier-transform infrared (FTIR) spectroscopy, the water contact angle (WCA), differential scanning calorimetry (DSC), tensile testing, and scanning electron microscopy (SEM). The results revealed that the abundant hydroxyl groups and benzene rings present in both ACL and THFL facilitated hydrogen bonding and conjugation interactions with the PBAT matrix, significantly improving interfacial adhesion. Notably, the ACL fraction effectively suppressed phase separation and increased the glass transition temperature (Tg) by 1.9 °C, leading to a 13.9% enhancement in tensile strength compared to neat PBAT. More strikingly, the incorporation of only 7 wt% THFL resulted in a remarkable 31% improvement in tensile strength. This substantial enhancement was primarily attributed to the favorable polarity match between THFL and PBAT, as well as the nucleating effect of THFL, which increased the crystallinity of PBAT by 25.3%. This study highlights the effectiveness of sequential lignin fractionation in tailoring the interfacial properties of biodegradable polymer composites. It also provides a promising strategy for the high-value utilization of lignin toward the development of high-performance, environmentally friendly materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

17 pages, 3908 KB  
Article
Structure, Mechanical Properties, and Rheological Characteristics of Poly(Butylene Adipate-co-Terephthalate)–Polylactic Acid Blends Modified via In Situ Maleic Anhydride Grafting
by Min Jin, Bei Qi, Kang Chen, Lijun Cao, Pengrui Chen, Ce Sun, Jianfeng Zhan, Zhuofeng Shao, Haiyan Tan and Yanhua Zhang
Polymers 2025, 17(16), 2264; https://doi.org/10.3390/polym17162264 - 21 Aug 2025
Viewed by 1050
Abstract
Polylactic acid (PLA) materials face inherent limitations in many applications due to their low toughness. To address this challenge, this study employed a reactive melt-grafting method to prepare maleic anhydride (MA)-grafted poly(butylene adipate-co-terephthalate) (PBAT–MA), providing an effective approach to improve the interfacial compatibility [...] Read more.
Polylactic acid (PLA) materials face inherent limitations in many applications due to their low toughness. To address this challenge, this study employed a reactive melt-grafting method to prepare maleic anhydride (MA)-grafted poly(butylene adipate-co-terephthalate) (PBAT–MA), providing an effective approach to improve the interfacial compatibility between PLA and PBAT, thereby significantly enhancing the toughness and impact resistance of PLA and expanding its application scope. The grafting reaction process of PBAT–MA was investigated, as well as its toughening mechanism and effect on PLA. The results showed that at a maleic anhydride concentration of 2 wt%, the obtained PLA–PBAT–MA composite material exhibited the best performance, with a fracture elongation of 358.1%, 450.4% higher than that of the unmodified composite material. The impact strength was 333.9 kJ/m2, 917.3% higher than that of the unmodified composite material. This enhanced effect is attributed to the optimal MA concentration preserving the tough structure of PBAT while effectively bridging the interface between PLA and PBAT, promoting efficient stress transfer between the two phases, and ultimately achieving exceptional toughness. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

27 pages, 4903 KB  
Article
Biodegradation in Freshwater: Comparison Between Compostable Plastics and Their Biopolymer Matrices
by Valerio Bocci, Martina De Vivo, Sara Alfano, Simona Rossetti, Francesca Di Pippo, Loris Pietrelli and Andrea Martinelli
Polymers 2025, 17(16), 2236; https://doi.org/10.3390/polym17162236 - 17 Aug 2025
Cited by 1 | Viewed by 1027
Abstract
Plastic pollution in freshwater ecosystems is an increasing environmental concern, prompting the search for biodegradable polymer (BP) alternatives. However, their degradation in natural aquatic environments remains poorly investigated and understood. This four-month in situ study compared the degradation in a lentic freshwater ecosystem [...] Read more.
Plastic pollution in freshwater ecosystems is an increasing environmental concern, prompting the search for biodegradable polymer (BP) alternatives. However, their degradation in natural aquatic environments remains poorly investigated and understood. This four-month in situ study compared the degradation in a lentic freshwater ecosystem of two compostable items, Mater-Bi® shopping bag and disposable dish, with their respective pure polymer matrices, poly(butylene adipate-co-terephthalate) (PBAT) and polylactic acid (PLA). Additionally, biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and oil-based polypropylene (PP) were also tested. Changes in morphology, chemical composition and thermal and mechanical properties, as well as microbial colonization, were analyzed over time. A validated cleaning protocol was employed to ensure accurate surface analysis. Results showed detectable but limited degradation of pure polymers and their matrices in commercial products after 120 days of immersion with variations observed among polymer materials. Compostable materials exhibited significant leaching of fillers (starch, inorganic particles), leading to morphological changes and fragmentation. PHBV showed the fastest degradation among tested polyesters. PP exhibited only minor surface changes. Microbial colonization varied with polymer structure and degradability, but long-term degradation was limited by polymer properties and the gradual development of the plastisphere. This study highlights that standard laboratory tests may overestimate the environmental degradability of BPs and emphasizes the importance of in situ assessments, careful cleaning procedures and property characterizations to accurately assess polymer degradation in freshwater systems. Full article
(This article belongs to the Special Issue Natural Degradation of Polymers)
Show Figures

Graphical abstract

29 pages, 7510 KB  
Article
Stretchability and Melt Strength Enhancement of Biodegradable Polymer Blends for Packaging Solutions
by Katy D. Laevsky, Achiad Zilberfarb, Amos Ophir and Ana L. Dotan
Molecules 2025, 30(15), 3211; https://doi.org/10.3390/molecules30153211 - 31 Jul 2025
Viewed by 785
Abstract
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is [...] Read more.
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is to enhance the stretchability of biodegradable blends based on 80% poly(butylene adipate-co-terephthalate) (PBAT) and 20% poly(lactic acid) (PLA) through reactive extrusion. Radical initiator (dicumyl peroxide (DCP)) and chain extenders (maleic anhydride (MA), glycidyl methacrylate (GMA)) were employed to improve the melt strength and elasticity of the extruded films. The reactive blends were initially prepared using a batch mixer and subsequently compounded in a twin-screw extruder. Films were produced via cast extrusion. 0.1% wt. DCP led to a 200% increase in elongation at break and a 44% improvement in tensile strength. Differential scanning calorimetry and scanning electron microscopy revealed enhanced miscibility between components. Shear and complex viscosity increased by 38% and 85%, compared to the neat blend, respectively. Reactive extrusion led to a better dispersion and distribution of the phases. An improved interfacial adhesion between the phases, in addition to higher molecular weight, led to enhanced melt strength and improved stretchability. Full article
Show Figures

Figure 1

24 pages, 8559 KB  
Article
Development and Characterization of Wheat Flour Byproduct and Poly(butylene adipate-co-terephthalate) Biodegradable Films Enriched with Rosemary Extract via Blown Extrusion
by Bianca Peron-Schlosser, Fabíola Azanha de Carvalho, Luana Cristina Paludo, Rodolfo Mesquita de Oliveira, Luis Alberto Gallo-García, Bruno Matheus Simões, Samuel Camilo da Silva, Bruno Alexandro Bewzenko Cordova, Benjamim de Melo Carvalho, Fabio Yamashita and Michele Rigon Spier
Coatings 2025, 15(7), 743; https://doi.org/10.3390/coatings15070743 - 23 Jun 2025
Viewed by 673
Abstract
Developing sustainable packaging materials has become a global priority in response to environmental concerns associated with conventional plastics. This study used a wheat flour byproduct (glue flour, GF) and poly(butylene adipate-co-terephthalate) (PBAT) to produce films via blown extrusion, incorporating rosemary extract (RE) at [...] Read more.
Developing sustainable packaging materials has become a global priority in response to environmental concerns associated with conventional plastics. This study used a wheat flour byproduct (glue flour, GF) and poly(butylene adipate-co-terephthalate) (PBAT) to produce films via blown extrusion, incorporating rosemary extract (RE) at 2% (FRE2) and 4% (FRE4) (w/w). A control film (FCO) was formulated without RE. The physicochemical, thermal, mechanical, and biodegradation properties of the films were evaluated. FCO, FRE2, and FRE4 exhibited tensile strength (TS) values between 8.16 and 9.29 MPa and elongation at break (ELO) above 889%. Incorporating 4% RE decreased luminosity (91.38 to 80.89) and increased opacity (41.14 to 50.95%). A thermogravimetric analysis revealed a main degradation stage between 200 °C and 450 °C, with FRE2 showing the highest residual mass (~15% at 600 °C). Sorption isotherms indicated enhanced hydrophobicity with RE, thereby reducing the monolayer moisture content from 5.23% to 3.03%. Biodegradation tests revealed mass losses of 64%, 58%, and 66% for FCO, FRE2, and FRE4, respectively, after 180 days. These findings demonstrate that incorporating RE into GF/PBAT blends via blown extrusion is a promising strategy for developing biodegradable films with enhanced thermal behavior, mechanical integrity, and water resistance, contributing to the advancement of sustainable packaging materials. Full article
(This article belongs to the Special Issue Optical Thin Films: Preparation, Application and Development)
Show Figures

Graphical abstract

20 pages, 2030 KB  
Article
Characterization of Coffee Waste-Based Biopolymer Composite Blends for Packaging Development
by Gonzalo Hernández-López, Laura Leticia Barrera-Necha, Silvia Bautista-Baños, Mónica Hernández-López, Odilia Pérez-Camacho, José Jesús Benítez-Jiménez, José Luis Acosta-Rodríguez and Zormy Nacary Correa-Pacheco
Foods 2025, 14(11), 1991; https://doi.org/10.3390/foods14111991 - 5 Jun 2025
Viewed by 1744
Abstract
In recent years, coffee waste by-products have been incorporated into polymer blends to reduce environmental pollution. In this study, coffee parchment (CP) was incorporated into biodegradable polylactic acid (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) polymer blends to prepare ribbons through the extrusion process. [...] Read more.
In recent years, coffee waste by-products have been incorporated into polymer blends to reduce environmental pollution. In this study, coffee parchment (CP) was incorporated into biodegradable polylactic acid (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) polymer blends to prepare ribbons through the extrusion process. Extracted green coffee bean oil (CO) was used as a plasticizer, and CP was used as a filler with and without functionalization. A solution of chitosan nanoparticles (ChNp) as a coating was applied to the ribbons. For the raw material, proximal analysis of the CP showed cellulose and lignin contents of 53.09 ± 3.42% and 23.60 ± 1.74%, respectively. The morphology of the blends was observed via scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) showed an increase in the ribbons’ thermal stability with the functionalization. The results of differential scanning calorimetry (DSC) revealed better miscibility for the functionalized samples. The mechanical properties showed that with CP incorporation into the blends and with the ChNp coating, the Young’s modulus and the tensile strength decreased with no significant changes in the elongation at break. This work highlights the potential of reusing different by-products from the coffee industry, such as coffee oil from green beans and coffee parchment as a filler, and incorporating them into PLA PBAT biodegradable polymer blend ribbons with a nanostructured antimicrobial coating based on chitosan for future applications in food packaging. Full article
Show Figures

Figure 1

18 pages, 3417 KB  
Article
Design and Preparation of Inherently Photostable Poly(Butylene Adipate-Co-Terephthalate) by Chemically Bonding UV-Stabilizing Moieties in Molecular Chains
by Xinpeng Zhang, Yan Ye, Yaqiao Wang, Hongli Bian, Jing Yuan, Jianping Ding, Wanli Li, Jun Xu and Baohua Guo
Polymers 2025, 17(11), 1567; https://doi.org/10.3390/polym17111567 - 4 Jun 2025
Viewed by 723
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) is a promising biodegradable polymer with balanced mechanical properties and excellent degradability, making it an ideal material to reduce plastic pollution. However, its susceptibility to ultraviolet (UV) degradation, due to photosensitive aromatic rings and carbonyl groups in its structure, limits [...] Read more.
Poly(butylene adipate-co-terephthalate) (PBAT) is a promising biodegradable polymer with balanced mechanical properties and excellent degradability, making it an ideal material to reduce plastic pollution. However, its susceptibility to ultraviolet (UV) degradation, due to photosensitive aromatic rings and carbonyl groups in its structure, limits its use in outdoor settings like mulch films. Conventional methods of incorporating small-molecule UV stabilizers face challenges such as poor compatibility, uneven dispersion, and migration under environmental conditions, reducing their effectiveness over time. This study developed a novel strategy to enhance PBAT’s UV resistance by chemically bonding UV-stabilizing moieties directly into its molecular chains to address these limitations. A novel UV absorber containing a polymerizable group was synthesized and copolymerized with PBAT’s main chain, creating an intrinsically UV-stable PBAT. The UV-stable PBAT was evaluated for UV resistance, mechanical performance, and durability through accelerated aging and solvent extraction tests. The results demonstrated that UV-stable PBAT exhibited exceptional light stabilization effects, with no detectable UV absorber leaching in ethanol even after 114 h, whereas PBAT blends lost nearly 90% of UV-0 within 24 h. Furthermore, UV-stable PBAT maintained 67.1% tensile strength and 48.8% elongation at break after aging, which exhibited the best mechanical retention performance. Even when subjected to solvent extraction, the 42.6% tensile strength retention outperformed the PBAT blends. This innovative chemical modification overcomes the limitations of additive-based stabilization, offering improved durability, compatibility, and performance in outdoor applications. Our research provides key insights into the fundamental properties of PBAT films for UV resistance, demonstrating their potential for use in demanding fields such as agricultural films. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

34 pages, 2461 KB  
Review
Formulations, Processing, and Application of Poly(butylene adipate-co-terephthalate)/Thermoplastic Starch Blends: A Review
by Aline N. Küster, Cidalia Paula, Juliana Azevedo, Arménio C. Serra and Jorge F. J. Coelho
Polymers 2025, 17(11), 1457; https://doi.org/10.3390/polym17111457 - 23 May 2025
Cited by 1 | Viewed by 2463
Abstract
The concern for the environment and sustainability has intensified the search for alternative materials to replace non-degradable plastics. Poly(butylene adipate-co-terephthalate) (PBAT) is a bioplastic that has been extensively studied due to its excellent mechanical properties, which are similar to those of low-density poly(ethylene) [...] Read more.
The concern for the environment and sustainability has intensified the search for alternative materials to replace non-degradable plastics. Poly(butylene adipate-co-terephthalate) (PBAT) is a bioplastic that has been extensively studied due to its excellent mechanical properties, which are similar to those of low-density poly(ethylene) (LDPE). However, the high cost of this polymer still hinders its wider application. Among the different approaches that have been studied, blending PBAT with thermoplastic starch (TPS) could be an interesting solution to reduce the cost of the material and increase the degradability of the blends. This review covers most of the work reported in recent years on PBAT/TPS blends, including the effects of starch plasticizers, starch modifications, processing methods, use of chain extenders, various compatibilizers, and additives used for different applications. Full article
(This article belongs to the Special Issue Biobased and Biodegradable Polymer Blends and Composites II)
Show Figures

Graphical abstract

34 pages, 2745 KB  
Review
Sustainable Netting Materials for Marine and Agricultural Applications: A Perspective on Polymeric and Composite Developments
by Leonardo Pagnotta
Polymers 2025, 17(11), 1454; https://doi.org/10.3390/polym17111454 - 23 May 2025
Cited by 2 | Viewed by 1664
Abstract
This review addresses the growing demand for sustainable alternatives to conventional synthetic nets used in marine and agricultural applications, which are often persistent, poorly degradable, and difficult to manage at end of life. It examines recent developments in biodegradable polymers—particularly polylactic acid (PLA), [...] Read more.
This review addresses the growing demand for sustainable alternatives to conventional synthetic nets used in marine and agricultural applications, which are often persistent, poorly degradable, and difficult to manage at end of life. It examines recent developments in biodegradable polymers—particularly polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and poly(butylene adipate-co-terephthalate) (PBAT)—alongside reinforced blends and nanocomposites designed to improve mechanical performance and degradation behavior under real-world conditions. Strategies based on the regeneration of discarded nets, especially those made from polyamide 6 (PA6), are also considered for their potential to close material loops and reduce environmental leakage. A critical analysis of current testing protocols and regulatory frameworks is provided to assess their suitability for novel materials. In addition, this study highlights the emergence of multifunctional nets capable of providing environmental sensing or biological support, marking a transition toward adaptive and ecosystem-responsive designs. Finally, a survey of ongoing European and international projects illustrates scalable pathways for implementing biodegradable and recyclable netting systems, integrating material innovation with circular economy strategies. These findings emphasize the need for harmonized standards, targeted environmental testing, and cross-sectoral collaboration to enable the large-scale adoption of sustainable net technologies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

19 pages, 6091 KB  
Article
Foaming of Bio-Based PLA/PBS/PBAT Ternary Blends with Added Nanohydroxyapatite Using Supercritical CO2: Effect of Operating Strategies on Cell Structure
by Pei-Hua Chen, Chin-Wen Chen, Tzu-Hsien Chan, Hsin-Ying Lin, Ke-Ling Tuan, Chie-Shaan Su, Jung-Chin Tsai and Feng-Huei Lin
Molecules 2025, 30(9), 2056; https://doi.org/10.3390/molecules30092056 - 5 May 2025
Viewed by 978
Abstract
This study explored the innovative foaming behavior of a novel biodegradable polymer blend consisting of polylactic acid/poly(butylene succinate)/poly(butylene adipate-co-terephthalate) (PLA/PBS/PBAT) enhanced with nanohydroxyapatite (nHA), using supercritical carbon dioxide (SCCO2) as an environmentally friendly physical foaming agent. The aim was to investigate [...] Read more.
This study explored the innovative foaming behavior of a novel biodegradable polymer blend consisting of polylactic acid/poly(butylene succinate)/poly(butylene adipate-co-terephthalate) (PLA/PBS/PBAT) enhanced with nanohydroxyapatite (nHA), using supercritical carbon dioxide (SCCO2) as an environmentally friendly physical foaming agent. The aim was to investigate the effects of various foaming strategies on the resulting cell structure, aiming for potential applications in tissue engineering. Eight foaming strategies were examined, starting with a basic saturation process at high temperature and pressure, followed by rapid decompression to ambient conditions, referred to as the (1T-1P) strategy. Intermediate temperature and pressure variations were introduced before the final decompression to evaluate the impact of operating parameters further. These strategies included intermediate-temperature cooling (2T-1P), intermediate-temperature cooling with rapid intermediate decompression (2T-2P), and intermediate-temperature cooling with gradual intermediate decompression (2T-2P, stepwise ΔP). SEM imaging revealed that the (2T-2P, stepwise ΔP) strategy produced a bimodal cell structure featuring small cells ranging from 105 to 164 μm and large cells between 476 and 889 μm. This study demonstrated that cell size was influenced by the regulation of intermediate pressure reduction and the change in intermediate temperature. The results were interpreted based on classical nucleation theory, the gas solubility principle, and the effect of polymer melt strength. Foaming results of average cell size, cell density, expansion ratio, porosity, and opening cell content are reported. The hydrophilicity of various foamed polymer blends was evaluated by measuring the water contact angle. Typical compressive stress–strain curves obtained using DMA showed a consistent trend reflecting the effect of foam stiffness. Full article
Show Figures

Graphical abstract

29 pages, 8105 KB  
Article
UV-C and UV-C/H₂O-Induced Abiotic Degradation of Films of Commercial PBAT/TPS Blends
by K. Gutiérrez-Silva, Antonio J. Capezza, O. Gil-Castell and J. D. Badia-Valiente
Polymers 2025, 17(9), 1173; https://doi.org/10.3390/polym17091173 - 25 Apr 2025
Viewed by 881
Abstract
The environmental impact of conventional plastics has spurred interest in biopolymers as sustainable alternatives, yet their performance under abiotic degradation conditions still remain unclear. This study investigated the effects of ultraviolet C (UV-C) irradiation and its combination with water immersion (UV-C/H2O) [...] Read more.
The environmental impact of conventional plastics has spurred interest in biopolymers as sustainable alternatives, yet their performance under abiotic degradation conditions still remain unclear. This study investigated the effects of ultraviolet C (UV-C) irradiation and its combination with water immersion (UV-C/H2O) on films of commercial poly(butylene adipate-co-terephthalate)-thermoplastic starch (PBAT/TPS) blends. Changes in structural, chemical, morphological, and thermal properties, as well as molar mass, were analyzed. The results showed distinct degradation mechanisms during exposure to UV-C irradiation either in dry or during water-immersion conditions. UV-C irradiation disrupted PBAT ester linkages, inducing photodegradation and chain scission, leading to a more pronounced molar mass decrease compared to that under water immersion, where a more restrained impact on the molar mass was ascribed to diffuse attenuation coefficient of irradiation. Nevertheless, under UV-C/H2O conditions, erosion and disintegration were enhanced by dissolving and leaching of mainly the TPS fraction, creating a porous structure that facilitated the degradation of the film. Blends with higher TPS content exhibited greater susceptibility, with pronounced reductions in PBAT molar mass. In conclusion, exposure of films of PBAT/TPS blends to ultraviolet/water-assisted environments effectively initiated abiotic degradation, in which fragmentation was accentuated by the contribution of water immersion. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

Back to TopTop