Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = polyamide 6 composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5822 KB  
Article
Torsional Characteristics of Injection-Molded Hinges from Plastics and Glass Fiber-Reinforced Plastics
by Tran Minh The Uyen, Van-Thuc Nguyen, Xuan-Tien Vo, Pham Son Minh and Hai Nguyen Le Dang
Polymers 2025, 17(19), 2682; https://doi.org/10.3390/polym17192682 - 3 Oct 2025
Abstract
This study investigates the torsion characteristics of injection-molded flexural hinges manufactured from common polymers and plastic-based composites. The compliant mechanism provides a nearly constant torque over a specific rotational period. The flexural hinges are created via the injection molding technique, which has the [...] Read more.
This study investigates the torsion characteristics of injection-molded flexural hinges manufactured from common polymers and plastic-based composites. The compliant mechanism provides a nearly constant torque over a specific rotational period. The flexural hinges are created via the injection molding technique, which has the advantage of mass production and low price. The injection plastics are pure polypropylene (PP), acrylonitrile butadiene styrene (ABS), and polyamide 6 (PA6), and the injection composites are PA6 combined with glass fibers. The torsional moment of the ABS flexural hinge ranges from −0.2 to 0.94 N∙m. The torsional moment of the PP polymer typically ranges from −0.6 to 0.8 N∙m. The torsional moment of the PA6 polymer ranges from −0.2 to 1.0 N∙m. Interestingly, the torsional moment diagram for this polymer is comparable to that of ABS, with a stable pattern in both positive and negative ranges. Furthermore, in other words, the PP flexural range is greater than the ABS range. Both ABS and PA6 flexural hinges have a higher level of stability compared to the PP one due to the higher elastic modulus and higher strength of these polymers than the PP polymer. The PP flexural hinge has the lowest negative torsional moment (−0.6 N∙m) compared to ABS and PA hinges. PA6 flexural hinges also have the most stable torsional moment compared to pure polymer varieties. Adding 5% to 10% fiberglass (FG) significantly improves the torsional moment of composite flexural hinges. More flexural hinges from different polymer types should be investigated. Further research should conduct some statistical analysis to clarify the variations between the torques for the various materials. The findings improve our understanding of plastic flexure hinges and expand their applicability. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

21 pages, 5507 KB  
Article
Exploring the Effect of the Porogenic Agent on Flat Membranes Based on Polyamide 6 (PA6)/Carbon Nanotubes (MWCNT) Nanocomposites
by Clara Maria Marinho Serafim, Renê Anísio da Paz, Rafael Agra Dias, Vanessa da Nóbrega Medeiros, Pamela Thainara Vieira da Silva, Carlos Bruno Barreto Luna, Renate Maria Ramos Wellen and Edcleide Maria Araújo
Processes 2025, 13(10), 3155; https://doi.org/10.3390/pr13103155 - 2 Oct 2025
Abstract
Polymeric membranes are a highly viable technology for wastewater treatment, water purification, and other filtration operations. Accordingly, flat membranes were developed from extruded nanocomposites of polyamide 6 (PA6) and carbon nanotubes (MWCNT), varying the filler content to 1, 3, and 5 parts per [...] Read more.
Polymeric membranes are a highly viable technology for wastewater treatment, water purification, and other filtration operations. Accordingly, flat membranes were developed from extruded nanocomposites of polyamide 6 (PA6) and carbon nanotubes (MWCNT), varying the filler content to 1, 3, and 5 parts per hundred resin (phr). The membranes were produced using the phase inversion process through the immersion–precipitation technique. In total, eight membrane compositions were developed with solvent/polymer ratios of 80/20 (weight %). Calcium chloride (CaCl2) was used as a pore-forming agent at a content of 10 phr. Thus, the characterizations performed were: solution viscosity, FTIR, contact angle measurement, SEM, AFM, water permeability test, and water vapor permeation test. The results showed that the high viscosity of membranes, excessive gelation time, and higher MWCNT contents contributed to a decrease and/or absence of flow. Through SEM images and water flow measurements, the significant influence of CaCl2 was observed in modifying the membrane morphology (more interconnected porous structures), ensuring the presence of flow. The AFM images also confirm this phenomenon through the increase in roughness. Water vapor transmission increased with higher MWCNT content. These results demonstrate that PA6 and MWCNT membranes were effective for water filtration, only in those where CaCl2 was used, and for water vapor initially. Full article
(This article belongs to the Special Issue Processing and Applications of Polymer Composite Materials)
Show Figures

Figure 1

20 pages, 4956 KB  
Article
Recycling Continuous Glass Fibre-Reinforced Polyamide 6 Laminates via Compression Moulding
by Aditya Prakash Shembekar, Jason Yu, Mingfu Zhang, Chris Griffin and Dipa Ray
Polymers 2025, 17(15), 2160; https://doi.org/10.3390/polym17152160 - 7 Aug 2025
Viewed by 583
Abstract
End-of-life (EoL) continuous glass fibre-reinforced polyamide 6 composites (cGF/PA6) are commonly recycled by shredding and milling, followed by injection moulding, often resulting in lower mechanical properties of second-generation products, primarily due to fibre length reduction. This study investigates the thermomechanical reprocessing of cGF/PA6 [...] Read more.
End-of-life (EoL) continuous glass fibre-reinforced polyamide 6 composites (cGF/PA6) are commonly recycled by shredding and milling, followed by injection moulding, often resulting in lower mechanical properties of second-generation products, primarily due to fibre length reduction. This study investigates the thermomechanical reprocessing of cGF/PA6 laminates via compression moulding, aiming to retain maximum mechanical performance by preserving the fibre length. Two types of 2/2 twill glass fibre-reinforced anionically polymerised polyamide 6 laminates (cGF/APA6), with either a reactive sizing agent (RS) or a non-reactive sizing agent (nRS), were reprocessed at two different temperatures, i.e., at 180 °C (between the glass transition temperature (Tg) and the melting temperature (Tm) of PA6) and 230 °C (above the melting temperature (Tm) of PA6). The influence of reprocessing on matrix crystallinity, thermomechanical properties, microstructure, and flexural performance was investigated. The results revealed that reprocessing at both temperatures led to an improvement in matrix crystallinity, retention of the desirable α-crystalline phases, and an elevated Tg (glass transition temperature) in both reprocessed laminates. Additionally, reprocessing at 180 °C maintained the flexural performance in both, whereas reprocessing at 230 °C led to nearly 20% improvement in flexural strength for the RS laminate. The microstructural analysis of the failed flexural specimens showed matrix-coated fibre surfaces, highlighting retained fibre–matrix adhesion. Overall, the results offer insights into the potential of compression moulding as a viable alternative for recycling cGF/APA6 laminates. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

12 pages, 6639 KB  
Article
Study of Space Micro Solid Thruster Using 3D-Printed Short Glass Fiber Reinforced Polyamide
by Haibo Yang, Zhongcan Chen, Xudong Yang, Chang Xu and Hanyu Deng
Aerospace 2025, 12(8), 663; https://doi.org/10.3390/aerospace12080663 - 26 Jul 2025
Viewed by 357
Abstract
To meet the rapid maneuverability and lightweight demands of micro-nano satellites, a space micro solid thruster using 3D-printed short glass fiber reinforced polyamide 6 (PA6GF) composites was developed. Thruster shells with wall thicknesses of 4, 3, and 2.5 mm were designed, and ground [...] Read more.
To meet the rapid maneuverability and lightweight demands of micro-nano satellites, a space micro solid thruster using 3D-printed short glass fiber reinforced polyamide 6 (PA6GF) composites was developed. Thruster shells with wall thicknesses of 4, 3, and 2.5 mm were designed, and ground ignition tests were conducted to monitor chamber pressure and shell temperature. Compared with conventional metallic thrusters, PA6GF composites have exhibited excellent thermal insulation and sufficient mechanical strength. Under 8 MPa and 2773 K ignition conditions, the shell thickness was reduced to 2.5 mm and could withstand pressures up to 10.37 MPa. These results indicate that PA6GF composites are well-suited for space micro solid thrusters with inner diameters of 15–70 mm, offering new possibilities for lightweight space propulsion system design. Full article
Show Figures

Figure 1

22 pages, 6500 KB  
Article
The Effect of Bio-Based Polyamide 10.10 and Treated Fly Ash on Glass-Fiber-Reinforced Polyamide 6 Properties
by George-Mihail Teodorescu, Zina Vuluga, Toma Fistoș, Sofia Slămnoiu-Teodorescu, Jenica Paceagiu, Cristian-Andi Nicolae, Augusta Raluca Gabor, Marius Ghiurea, Cătălina Gîfu and Rodica Mariana Ion
Polymers 2025, 17(14), 1950; https://doi.org/10.3390/polym17141950 - 16 Jul 2025
Viewed by 497
Abstract
Increased concern for human health and the environment has pushed various industries to adopt new approaches towards satisfying modern regulations. Strategies to achieve these approaches include utilizing lightweight materials, repurposing waste materials, and substituting synthetic polymers with bio-based counterparts. This study investigates the [...] Read more.
Increased concern for human health and the environment has pushed various industries to adopt new approaches towards satisfying modern regulations. Strategies to achieve these approaches include utilizing lightweight materials, repurposing waste materials, and substituting synthetic polymers with bio-based counterparts. This study investigates the effects of treated fly ash (C) and bio-based polyamide 10.10 (PA10) on the thermal, morphological, and mechanical properties of glass fiber (GF)-reinforced polyamide 6 (PA6). Our main objective was to develop a composite that would allow for the partial replacement of glass fiber in reinforced polyamide 6 composites (PA6-30G) while maintaining a favorable balance of mechanical properties. Composites processed via melt processing demonstrated enhanced mechanical properties compared to PA6-30G. Notably, significant improvements were observed in impact strength and tensile strain at break. The addition of PA10 resulted in increases of 18% in impact strength and 35% in tensile strain relative to PA6-30G. Complementary, structural and morphological analyses confirmed strong interfacial interactions within the composite matrix. These findings indicate that a PA6/PA10 hybrid composite may represent a viable alternative material for potential automotive applications. Full article
Show Figures

Figure 1

16 pages, 4299 KB  
Article
Gas Barrier Properties of Organoclay-Reinforced Polyamide 6 Nanocomposite Liners for Type IV Hydrogen Storage Vessels
by Dávid István Kis, Pál Hansághy, Attila Bata, Nándor Nemestóthy, Péter Gerse, Ferenc Tajti and Eszter Kókai
Nanomaterials 2025, 15(14), 1101; https://doi.org/10.3390/nano15141101 - 16 Jul 2025
Viewed by 511
Abstract
This study investigates the hydrogen permeability of injection-molded polyamide 6 (PA6) nanocomposites reinforced with organo-modified montmorillonite (OMMT) at varying concentrations (1, 2.5, 5, and 10 wt. %) for potential use as Type IV composite-overwrapped pressure vessel (COPV) liners. While previous work examined their [...] Read more.
This study investigates the hydrogen permeability of injection-molded polyamide 6 (PA6) nanocomposites reinforced with organo-modified montmorillonite (OMMT) at varying concentrations (1, 2.5, 5, and 10 wt. %) for potential use as Type IV composite-overwrapped pressure vessel (COPV) liners. While previous work examined their mechanical properties, this study focuses on their crystallinity, morphology, and gas barrier performance. The precise inorganic content was determined using thermal gravimetry analysis (TGA), while differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and scanning electron microscopy (SEM) were used to characterize the structural and morphological changes induced by varying filler content. The results showed that generally higher OMMT concentrations promoted γ-phase formation but also led to increased agglomeration and reduced crystallinity. The PA6/OMMT-1 wt. % sample stood out with higher crystallinity, well-dispersed clay, and low hydrogen permeability. In contrast, the PA6/OMMT-2.5 and -5 wt. % samples showed increased permeability, which corresponded to WAXD and SEM evidence of agglomeration and DSC results indicating a lower degree of crystallinity. PA6/OMMT-10 wt. % showed the most-reduced hydrogen permeability compared to all other samples. This improvement, however, is attributed to a tortuous path effect created by the high filler loading rather than optimal crystallinity or dispersion. SEM images revealed significant OMMT agglomeration, and DSC analysis confirmed reduced crystallinity, indicating that despite the excellent barrier performance, the compromised microstructure may negatively impact mechanical reliability, showing PA6/OMMT-1 wt. % to be the most balanced candidate combining both mechanical integrity and hydrogen impermeability for Type IV COPV liners. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

17 pages, 3907 KB  
Review
Polyamide 6 as a Liner Material for Type IV Hydrogen Storage Cylinders: Performance Challenges and Modification Strategies
by Wenyan Wang, Guanxi Zhao, Xiao Ma, Dengxun Ren, Min Nie and Rui Han
Polymers 2025, 17(13), 1848; https://doi.org/10.3390/polym17131848 - 1 Jul 2025
Cited by 1 | Viewed by 840
Abstract
Type IV hydrogen storage cylinders are pivotal for high-pressure hydrogen storage and transportation, offering advantages such as lightweight design, high hydrogen storage density, and cost efficiency. Polyamide 6 (PA6) has emerged as a promising liner material due to its excellent mechanical strength, chemical [...] Read more.
Type IV hydrogen storage cylinders are pivotal for high-pressure hydrogen storage and transportation, offering advantages such as lightweight design, high hydrogen storage density, and cost efficiency. Polyamide 6 (PA6) has emerged as a promising liner material due to its excellent mechanical strength, chemical resistance, and gas barrier properties. However, challenges remain, including high hydrogen permeability and insufficient mechanical performance under extreme temperature and pressure conditions. This review systematically summarizes recent advances in modification strategies to enhance PA6’s suitability for Type IV hydrogen storage cylinders. Incorporating nanofillers (e.g., graphene, montmorillonite, and carbon nanotubes) significantly reduces hydrogen permeability. In situ polymerization and polymer blending techniques improve toughness and interfacial adhesion (e.g., ternary blends achieve a special increase in impact strength). Multiscale structural design (e.g., biaxial stretching) and process optimization further enhance PA6’s overall performance. Future research should focus on interdisciplinary innovation, standardized testing protocols, and industry–academia collaboration to accelerate the commercialization of PA6-based composites for hydrogen storage applications. This review provides theoretical insights and engineering guidelines for developing high-performance liner materials. Full article
Show Figures

Figure 1

19 pages, 8320 KB  
Article
Optimization of Produced Parameters for PA6/PA6GF30 Composite Produced by 3D Printing with Novel Knitting Method
by Selim Hartomacıoğlu, Mustafa Oksuz, Aysun Ekinci and Murat Ates
Polymers 2025, 17(12), 1590; https://doi.org/10.3390/polym17121590 - 6 Jun 2025
Cited by 3 | Viewed by 1055
Abstract
The additive manufacturing sector is rapidly developing, providing alternatives for mass production in the polymer composite industry. Due to the direction-dependent mechanical properties and high cost of fiber-reinforced polymeric materials, it is necessary to take advantage of alternative multi-materials and production technologies. In [...] Read more.
The additive manufacturing sector is rapidly developing, providing alternatives for mass production in the polymer composite industry. Due to the direction-dependent mechanical properties and high cost of fiber-reinforced polymeric materials, it is necessary to take advantage of alternative multi-materials and production technologies. In this study, a special geometric-shaped knitting technique was investigated using two different materials. The main material was polyamide 6 (PA6), and the inner or second material was PA6 with a 30 wt.% glass fiber addition by weight (PA6GF30). The special geometric shape, layer thickness, nozzle temperature, and post-heat treatment time were measured as process parameters in the production of the PA6/PA6GF30 composites with the fused deposition modeling (FDM) technique. The Taguchi design method and L9 fractional experiment were used in the experimental study. The mechanical behaviors of the PA6/PA6GF30 samples were obtained using tensile and impact tests. In addition, scanning electron microscopy (SEM) analyses were performed on the fracture lines of the PA6/PA6GF30 samples, and damage analyses were carried out in more detail. The experimental results were sorted using grey relational analysis (GRA). Moreover, the optimal experimental conditions and their related plots were obtained. As a result, the highest tensile strength of the PA6GF30 composite was 89.89 MPa with the addition of a special geometric shape. In addition, the maximum impact resistance value of the PA6/PA6GF30 composite was 83 kJ/m2. Hence, the developed knitting method presented many advantages when using the FDM technique, and both were successfully used to produce the PA6/PA6GF30 composites. Full article
(This article belongs to the Special Issue 3D Printing of Polymer Composite Materials)
Show Figures

Graphical abstract

19 pages, 6592 KB  
Article
Tribological Performance of EPDM and TPV Elastomers Against Glass Fiber-Reinforced Polyamide 66 Composites
by Daniel Foltuț, Ion-Dragoș Uțu and Viorel-Aurel Șerban
Materials 2025, 18(11), 2515; https://doi.org/10.3390/ma18112515 - 27 May 2025
Viewed by 2565
Abstract
This study evaluates the tribological behavior of two elastomeric sealing materials—EPDM and TPV—sliding against 30 wt.% glass fiber-reinforced polyamide 66 (PA66GF30), a composite widely used in structural and guiding components. The application context is low-leakage valve systems in polymer electrolyte membrane fuel cells [...] Read more.
This study evaluates the tribological behavior of two elastomeric sealing materials—EPDM and TPV—sliding against 30 wt.% glass fiber-reinforced polyamide 66 (PA66GF30), a composite widely used in structural and guiding components. The application context is low-leakage valve systems in polymer electrolyte membrane fuel cells (PEMFCs), particularly on the cathodic (air) side, where dry contact and low-friction sealing are critical. Pin-on-disk tests were conducted under three normal loads (1, 3, and 6 N) and sliding speeds of approximately 0.05, 0.10, and 0.15 m/s (92, 183, and 286 RPM). The coefficient of friction (CoF), mass loss, and wear morphology were analyzed. TPV generally exhibited lower and more stable friction than EPDM, with CoF values exceeding 1.0 at 1 N but falling within 0.32–0.52 under typical operating conditions (≥3 N). EPDM reached a maximum mass loss of 0.060%, while TPV remained below 0.022%. Microscopy revealed more severe wear features in EPDM, including tearing and abrasive deformation, whereas TPV surfaces displayed smoother, more uniform wear consistent with its dual-phase morphology. These findings support the selection of TPV over EPDM in dry-contact sealing interfaces involving composite counterfaces in PEMFC systems. Full article
(This article belongs to the Special Issue Mechanical Behavior of Advanced Engineering Materials (2nd Edition))
Show Figures

Figure 1

25 pages, 7210 KB  
Article
Determination of Interface Fracture Parameters in Thermoplastic Fiber Metal Laminates Under Mixed-Mode I+II
by Michał Smolnicki and Szymon Duda
Polymers 2025, 17(11), 1462; https://doi.org/10.3390/polym17111462 - 24 May 2025
Cited by 1 | Viewed by 755
Abstract
Thermoplastic fiber metal laminates (FMLs) are hybrid material systems that consist of a thin aluminum alloy sheet bonded to plies of fiber-reinforced adhesive. They provide excellent properties like fatigue strength, damage-tolerant properties, and inherent resistance to corrosion. However, they are still challenging materials [...] Read more.
Thermoplastic fiber metal laminates (FMLs) are hybrid material systems that consist of a thin aluminum alloy sheet bonded to plies of fiber-reinforced adhesive. They provide excellent properties like fatigue strength, damage-tolerant properties, and inherent resistance to corrosion. However, they are still challenging materials in terms of the metal–composite interface, which is the weakest link in this material system. In this paper, an experimental–numerical method for the determination of the fracture stress and energy for metal–composite interlayer is presented and verified. The proposed method utilizes four different experimental tests: DCB test (interface opening—mode I), ENF test (interface shearing—mode II), MMB test (mixed-mode I+II—opening with the shearing of the interface) and three-point bending test (3PB). For each test, digital twin in the form of a numerical model is prepared. The established numerical models for DCB and ENF allowed us to determine fracture stress and energy for mode I and mode II, respectively. On the basis of the numerical and experimental (from the MMB test) data, the B-K exponent is determined. Finally, the developed material model is verified in a three-point bending test, which results in mixed-mode conditions. The research is conducted on the thermoplastic FML made of aluminum alloy sheet and glass fiber reinforced polyamide 6. The research presented is complemented by fundamental mechanical tests, image processing and Scanning Electron Microscopy (SEM) analysis. As an effect, for the tested material, fracture parameters are determined using the described method. Full article
(This article belongs to the Special Issue Advances in Fatigue and Fracture of Fiber-Reinforced Polymers)
Show Figures

Graphical abstract

54 pages, 38719 KB  
Review
Recent Advances in the Hydrogen Gas Barrier Performance of Polymer Liners and Composites for Type IV Hydrogen Storage Tanks: Fabrication, Properties, and Molecular Modeling
by Omar Dagdag and Hansang Kim
Polymers 2025, 17(9), 1231; https://doi.org/10.3390/polym17091231 - 30 Apr 2025
Cited by 2 | Viewed by 2366
Abstract
Developing high-performance polymer liners and their composites is essential for ensuring the safety and efficiency of type IV high-pressure hydrogen storage tanks. This review provides a thorough analysis of recent innovations in hydrogen gas barrier materials, fabrication techniques, and molecular modeling approaches to [...] Read more.
Developing high-performance polymer liners and their composites is essential for ensuring the safety and efficiency of type IV high-pressure hydrogen storage tanks. This review provides a thorough analysis of recent innovations in hydrogen gas barrier materials, fabrication techniques, and molecular modeling approaches to minimize hydrogen gas permeation. It examines key polymeric materials, such as polyamide 6 (PA6) and high-density polyethylene (HDPE), and emerging nanofiller reinforcements, such as graphene and montmorillonite clay. Additionally, it discusses manufacturing methods in relation to their effects on liner integrity and permeability. Molecular modeling techniques, especially molecular dynamics simulations, are emphasized as powerful tools for understanding hydrogen transport mechanisms and optimizing the interactions between polymers and fillers. Despite these notable advancements, challenges remain in achieving ultra-low hydrogen gas permeability, long-term stability, and scalable production methods. Future research should focus on developing multifunctional hybrid fillers, enhancing computational modeling frameworks, and designing novel polymer architectures specifically tailored for hydrogen storage applications. Full article
Show Figures

Graphical abstract

19 pages, 7778 KB  
Article
Mechanical and Thermal Properties of Recycled Fishing Net-Derived Polyamide 6/Switchgrass Fiber Composites for Automotive Applications
by Zakariae Belmokhtar, Patrice Cousin, Saïd Elkoun and Mathieu Robert
Recycling 2025, 10(2), 59; https://doi.org/10.3390/recycling10020059 - 1 Apr 2025
Viewed by 1872
Abstract
The increasing demand for sustainable materials in automotive applications, coupled with the critical need to address marine plastic pollution, presents an opportunity for innovative material development. This study explores composites made from recycled polyamide 6 (PA6) fishing nets reinforced with switchgrass fibers (0–30 [...] Read more.
The increasing demand for sustainable materials in automotive applications, coupled with the critical need to address marine plastic pollution, presents an opportunity for innovative material development. This study explores composites made from recycled polyamide 6 (PA6) fishing nets reinforced with switchgrass fibers (0–30 wt%). The composite with 30 wt% switchgrass fibers increased tensile strength by 23% and Young’s modulus by 126% compared to unreinforced recycled PA6, achieving 93% of the tensile strength of commercial automotive-grade neat PA6 and surpassing another grade by 22%. However, higher fiber loading hindered processability, as evidenced by incomplete mold filling and reflected by a decrease in melt flow rate from 19.35 to 8.63 g/10 min. Thermal analysis revealed reduced crystallinity and crystallization temperatures with fiber addition, attributed to restricted polymer chain mobility. While dynamic mechanical analysis demonstrated improved stiffness below the glass transition temperature, scanning electron microscopy indicated optimal fiber-matrix adhesion at up to 20 wt% fiber loading, with aggregation at higher concentrations. These findings establish recycled fishing net-derived PA6/switchgrass fiber composites as a viable alternative to virgin materials in automotive applications, with mechanical properties comparable to commercial grades. Although the composites demonstrate enhanced mechanical strength and modulus, the significant reduction in ductility restricts their use to rigid, semi-structural components where flexibility is not critical. Future research should address processing challenges to enhance fiber dispersion and interfacial adhesion at higher loadings. Full article
Show Figures

Figure 1

17 pages, 5938 KB  
Article
Carbon Fiber-Reinforced Polyamide 6 Composites: Impact of Fiber Type and Concentration on the Mechanical Properties
by Weiping Dong, Zhaozhu Yu, Xingxiang Sun, Zhonglue Hu, Shiju E, Fangqiang Tong, Sisi Wang and Xiping Li
Materials 2025, 18(7), 1413; https://doi.org/10.3390/ma18071413 - 22 Mar 2025
Cited by 2 | Viewed by 1037
Abstract
To investigate the influence of varying concentrations and types of carbon fiber (CF) on the mechanical properties of polyamide 6 (PA6) composites, this study explores the mechanical properties of PA6 composites with various CF types and quantities. The micro-morphology of the composites and [...] Read more.
To investigate the influence of varying concentrations and types of carbon fiber (CF) on the mechanical properties of polyamide 6 (PA6) composites, this study explores the mechanical properties of PA6 composites with various CF types and quantities. The micro-morphology of the composites and the CF length distribution were characterized. The results indicate that the inclusion of carbon fibers significantly enhances the tensile, flexural, and notched impact strengths of PA6. Specifically, when about 30 wt% of CF T300 was added, the tensile and flexural strength of the composite reached a maximum of 166 MPa and 224 MPa, respectively, representing increases of 236.6% and 229.6%, respectively, compared to pure PA6. The maximum flexural modulus achieved 14.6 GPa, which was six times as large as that of pure PA6. Moreover, the CF length in the PA6 matrix follows a near-Gaussian distribution. A proper CF length and orientation, along with strong interfacial bonding between CF and the PA6 matrix, contribute to improved mechanical properties. The overall performance of T700-reinforced composites is better than that of T300-reinforced ones due to T700’s higher precursor strength and better fiber-length retention. This study provides guidance for fabricating high-performance PA6 composites. Full article
Show Figures

Figure 1

14 pages, 4804 KB  
Article
Enhancement of Fracture Toughness of Inner Liner Material for Type IV Hydrogen Storage Cylinders Based on Molecular Dynamics Method
by Bingyu Yang, Jinqi Luo, Yuan Wu, Zhenhan Yang and Jianping Zhao
Materials 2025, 18(6), 1363; https://doi.org/10.3390/ma18061363 - 19 Mar 2025
Viewed by 580
Abstract
To develop liner materials with improved toughness, this study combines molecular dynamics simulations and experimental testing to investigate the effect of different mass ratios (10/0, 7/3, 6/4, 4/6, 3/7, and 0/10) of high-density polyethylene (HDPE)/polyamide 6 (PA6) on their fracture toughness of the [...] Read more.
To develop liner materials with improved toughness, this study combines molecular dynamics simulations and experimental testing to investigate the effect of different mass ratios (10/0, 7/3, 6/4, 4/6, 3/7, and 0/10) of high-density polyethylene (HDPE)/polyamide 6 (PA6) on their fracture toughness of the composites. The fracture toughness was quantitatively assessed using the J-integral method, while the material’s behavior in terms of crack propagation during tensile deformation was examined at the molecular level. The results reveal that as the HDPE mass ratio increases, the fracture toughness of the composites also gradually improves. Furthermore, the fracture toughness of four materials (PA6, 4HDPE/6PA6, 7HDPE/3PA6, and HDPE) was tested using the essential work of the fracture method. The trend observed in the simulation results was in agreement with the experimental results, validating the reliability of the molecular dynamics simulation. Full article
Show Figures

Graphical abstract

25 pages, 4688 KB  
Article
Enhancing Mechanical and Thermal Performance of Recycled PA6/PP Blends: Chain Extension and Carbon Fiber Reinforcement Synergy
by Neslihan Ergun, Mustafa Oksuz and Aysun Ekinci
Materials 2025, 18(5), 1027; https://doi.org/10.3390/ma18051027 - 26 Feb 2025
Cited by 2 | Viewed by 1144
Abstract
To develop novel materials through the recycling of waste polymers and to enhance their mechanical and thermal properties, composites were synthesized using chain extenders (CEs), compatibilizers (PP-g-MA), and short carbon fiber (CF) reinforcements within recycled polyamide 6 (rPA6) and polypropylene (rPP) blends. The [...] Read more.
To develop novel materials through the recycling of waste polymers and to enhance their mechanical and thermal properties, composites were synthesized using chain extenders (CEs), compatibilizers (PP-g-MA), and short carbon fiber (CF) reinforcements within recycled polyamide 6 (rPA6) and polypropylene (rPP) blends. The recycling of waste polymers holds paramount importance in the context of environmental sustainability. This study investigates the role of additives in effectively improving the properties of recycled polymers. The composites were fabricated using the twin-screw extrusion method and subjected to a comprehensive range of characterizations, including Fourier Transform Infrared Spectroscopy (FTIR), differential scanning calorimetry (DSC), molecular weight analysis, melt flow index (MFI), heat deflection temperature (HDT), tensile testing, impact testing, and Scanning Electron Microscopy (SEM). Additionally, ANOVA statistical methods were applied to analyze HDT, tensile, and impact test results. The findings of this research demonstrate that chain extenders and compatibilizers significantly enhance the mechanical properties of rPA6/rPP blends, while carbon fiber reinforcements markedly improve both tensile strength and impact resistance. Furthermore, the incorporation of rPP led to an approximately 4% reduction in hardness values; however, this loss was effectively compensated by the addition of chain extenders and CF reinforcements, resulting in an overall increase in hardness. It was observed that chain extenders enhanced the elastic modulus and tensile strength by reinforcing interphase bonding, whereas CF reinforcements strengthened the polymer matrix, leading to improved impact resistance. These findings emphasize the synergistic role of chain extenders, compatibilizers, and CF reinforcements in enhancing the mechanical properties of rPA6/rPP blends. The study underscores recycling as both an environmentally beneficial and effective strategy for developing durable, high-performance composites for industrial use. Consequently, the utilization of recycled polymers contributes substantially to the circular and sustainable materials economy, demonstrating the potential for the widespread industrial adoption of such composites. Full article
Show Figures

Figure 1

Back to TopTop