Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = polychlorinated n-alkanes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 13462 KB  
Article
Solvent Swelling-Induced Halogenation of Butyl Rubber Using Polychlorinated N-Alkanes: Structure and Properties
by Ksenia Valeriyevna Sukhareva, Nikita Romanovich Sukharev, Irina Ivanovna Levina, Peter Ogbuna Offor and Anatoly Anatolyevich Popov
Polymers 2023, 15(20), 4137; https://doi.org/10.3390/polym15204137 - 18 Oct 2023
Cited by 4 | Viewed by 3312
Abstract
Traditional butyl rubber halogenation technology involves the halogenation of IIR using molecular chlorine or bromine in a solution. However, this method is technologically complex. This study investigated a novel method for the halogenation of butyl rubber to enhance its stability and resistance to [...] Read more.
Traditional butyl rubber halogenation technology involves the halogenation of IIR using molecular chlorine or bromine in a solution. However, this method is technologically complex. This study investigated a novel method for the halogenation of butyl rubber to enhance its stability and resistance to thermal oxidation and aggressive media. The butyl rubber was modified through mechanochemical modification, induced by solvent swelling in a polychlorinated n-alkane solution. During the modification, samples were obtained with chlorine content ranging from 3 to 15%. After extraction, the halogen content was quantitatively determined with the oxygen flask combustion method and X-ray photoelectron spectroscopy. It was shown that for samples with total chlorine content of up to 6%, there was almost no leaching of chlorine from the samples. The chemical structure of the extracted rubbers was ascertained using FT-IR and 1H NMR spectroscopy, and it was demonstrated that all samples showed absorption peaks and signals typical for chlorobutyl rubbers. It was observed that modification with polychlorinated n-alkanes improved the thermal and oxidative stability (the oxygen absorption rate decreased by 40%) and chemical resistance, estimated by the degree of swelling, which decreased with the increase in the chlorine content. This technology allows the production of a chlorinated rubber solution that can be directly used by rubber goods manufacturers and suppliers. Full article
(This article belongs to the Special Issue Biopolymer Composites for Biomedicine Applications)
Show Figures

Graphical abstract

9 pages, 1244 KB  
Article
Short- and Medium-Chain Chlorinated Paraffins in the Sediment of the East China Sea and Yellow Sea: Distribution, Composition, and Ecological Risks
by Xiaoying Li, Haiqiang Guo, Jianyao Hong, Yuan Gao, Xindong Ma and Jiping Chen
Toxics 2023, 11(7), 558; https://doi.org/10.3390/toxics11070558 - 26 Jun 2023
Cited by 3 | Viewed by 2190
Abstract
Chlorinated paraffins (CPs), a class of complex mixtures synthesized from polychlorinated n-alkanes, are widely used as flame retardants, plasticizers, lubricant additives, coolants, metalworking cutting fluids, and sealants. This study investigated the spatial distribution, the potential pollution sources, and ecological risk of 24 short-chain [...] Read more.
Chlorinated paraffins (CPs), a class of complex mixtures synthesized from polychlorinated n-alkanes, are widely used as flame retardants, plasticizers, lubricant additives, coolants, metalworking cutting fluids, and sealants. This study investigated the spatial distribution, the potential pollution sources, and ecological risk of 24 short-chain CPs (SCCPs) and 24 medium-chain CPs (MCCPs) from 29 surface marine sediment samples from the East China Sea and Yellow Sea in September 2019. All of the 48 CPs were detected. The concentrations of SCCPs and MCCPs ranged from 0.703 to 13.4 ng/g dw and 0.0936 to 4.19 ng/g dw, respectively. C10 congeners showed the highest abundancy. The median concentrations of the SCCPs and MCCPs declined gradually with carbon atoms and chlorine atoms, except for Cl5 congeners. Spatial variations showed that all CP congeners in the East China Sea were larger than in the Yellow Sea and displayed a point-source-type distribution, which is consistent with the industrial park distribution. Although the potential ecological risk was at a relatively low level, bioaccumulation and trophic magnification could amplify the risk to marine organisms. Our results provide data support and theoretical assistance for SCCP and MCCP pollution control and sewage outlets in the East China Sea and Yellow Sea. Full article
Show Figures

Figure 1

Back to TopTop