Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = polycystin 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 426 KB  
Case Report
A Case of Horseshoe Kidney and Autosomal Dominant Polycystic Kidney Disease with PKD1 Gene Mutation
by Hyeongwan Kim, Soo Jin Lee and Won Kim
J. Clin. Med. 2025, 14(11), 4008; https://doi.org/10.3390/jcm14114008 - 5 Jun 2025
Viewed by 837
Abstract
Background/Objectives: Horseshoe kidney is a congenital anomaly characterized by the fusion of the kidneys at the lower pole. Polycystic kidney disease with horseshoe kidney is called polycystic horseshoe kidney. Genetic testing is essential for the diagnosis of polycystic horseshoe kidney disease because [...] Read more.
Background/Objectives: Horseshoe kidney is a congenital anomaly characterized by the fusion of the kidneys at the lower pole. Polycystic kidney disease with horseshoe kidney is called polycystic horseshoe kidney. Genetic testing is essential for the diagnosis of polycystic horseshoe kidney disease because it can result from a number of genetic disorders. Fewer than 20 cases of polycystic horseshoe kidney have been reported to date. However, polycystic horseshoe kidney disease was mostly diagnosed via autopsy or radiologic imaging techniques including computed tomography, magnetic resonance imaging, and angiography. Because polycystic kidney disease has various causes, genetic testing is essential for the diagnosis of autosomal dominant polycystic kidney disease (ADPKD) in patients with polycystic horseshoe kidney disease. At present, the diagnosis of ADPKD is made using genetic approaches, including next-generation sequencing. We reported a potentially pathogenic polycystin 1 (PKD1) gene in a patient with ADPKD and horseshoe kidney. Methods: We performed the sequencing of the PKD1 gene and radiological examinations (computed abdominal tomography). Results: Computed abdominal tomography revealed enlarged kidneys with multiple cysts fused at the lower poles, indicating polycystic HSK. The sequencing of the PKD1 gene revealed a heterozygous pathogenic variant c.165_171del (p.Leu56ArgfsTer15), which genetically confirmed the diagnosis of ADPKD. The patient was treated with an angiotensin II receptor blocker. Conclusions: In this case report, we suggest that genetic testing becomes the key approach to the diagnosis of ADPKD with horseshoe kidney. Additionally, this approach offers the benefit of avoiding the possibility of the condition being mistakenly diagnosed or diagnosed late due to its uncommon occurrence and nonspecific symptoms. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

12 pages, 3354 KB  
Article
Polycystins Expression in Astrocytic Gliomas
by Martha Assimakopoulou, Konstantina Soufli and Maria Melachrinou
Biomedicines 2025, 13(4), 884; https://doi.org/10.3390/biomedicines13040884 - 5 Apr 2025
Viewed by 742
Abstract
Background: Polycystin 1 (PC1) and polycystin 2 (PC2) proteins are members of the transient receptor potential (TRP) channels family and are encoded from PKD1 and PKD2 genes, respectively. Until recently, the role of PKD1 and PKD2 has been associated with the pathogenesis of [...] Read more.
Background: Polycystin 1 (PC1) and polycystin 2 (PC2) proteins are members of the transient receptor potential (TRP) channels family and are encoded from PKD1 and PKD2 genes, respectively. Until recently, the role of PKD1 and PKD2 has been associated with the pathogenesis of the kidney since mutations in these genes cause autosomal dominant polycystic kidney disease (ADPKD). Recent data implicates polycystins in the pathogenesis of solid tumors. In this aspect, the expression of PKD1 and PKD2 in human astrocytomas is largely unknown. The aim of the present research study was to investigate the expression of PKD1 and PKD2 in astrocytic tumors and correlate it with clinicopathological characteristics such as the grade of malignancy, age, and gender of the patients. Methods: A total of 70 cases—corresponding to 8 grade II (diffuse fibrillary astrocytomas), 12 grade III (anaplastic astrocytomas), and 50 grade IV (glioblastomas multiforme)—were examined. The mRNA expression levels of PKD1 and PKD2 were determined through molecular qRT-PCR analysis using the relative quantification ΔΔCt method and the expression of PC1 and PC2 was detected through immunohistochemistry using the semi-quantitative H-score system. Results: Increased levels of PKD1 and PKD2 in astrocytomas were found compared with that of a normal brain (p < 0.05). Glioblastomas demonstrated the greatest increase in PKD1 and PKD2 expression compared to other grades of malignancy (p < 0.05). The same pattern of expression showed PC1 and PC2 proteins. A significant correlation between PKD1 and PKD2 as well as PC1 and PC2 expressions was found (p < 0.05). Although no association was detected between PC1 or PC2 and Ki67 expression (p > 0.05), a significant correlation between PC1 and p53 immunoexpressions, in grade III and between PC2 and p53 immunoexpressions, in grade II astrocytomas (p < 0.01) has emerged. PC1 expression was correlated with age of the patients (p < 0.05). PKD1 and PKD2 expression were negatively correlated with the prognosis of glioma patients. Conclusions: The results of this study indicate the potential involvement of polycystins in the pathogenesis of astrocytomas. However, further research is required to fully understand the mechanisms that these molecules are implicated. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

26 pages, 5445 KB  
Article
Myocardin-Related Transcription Factor Mediates Epithelial Fibrogenesis in Polycystic Kidney Disease
by Zsuzsanna Lichner, Mei Ding, Tarang Khare, Qinghong Dan, Raquel Benitez, Mercédesz Praszner, Xuewen Song, Rola Saleeb, Boris Hinz, York Pei, Katalin Szászi and András Kapus
Cells 2024, 13(11), 984; https://doi.org/10.3390/cells13110984 - 5 Jun 2024
Cited by 1 | Viewed by 2031
Abstract
Polycystic kidney disease (PKD) is characterized by extensive cyst formation and progressive fibrosis. However, the molecular mechanisms whereby the loss/loss-of-function of Polycystin 1 or 2 (PC1/2) provokes fibrosis are largely unknown. The small GTPase RhoA has been recently implicated in cystogenesis, and [...] Read more.
Polycystic kidney disease (PKD) is characterized by extensive cyst formation and progressive fibrosis. However, the molecular mechanisms whereby the loss/loss-of-function of Polycystin 1 or 2 (PC1/2) provokes fibrosis are largely unknown. The small GTPase RhoA has been recently implicated in cystogenesis, and we identified the RhoA/cytoskeleton/myocardin-related transcription factor (MRTF) pathway as an emerging mediator of epithelium-induced fibrogenesis. Therefore, we hypothesized that MRTF is activated by PC1/2 loss and plays a critical role in the fibrogenic reprogramming of the epithelium. The loss of PC1 or PC2, induced by siRNA in vitro, activated RhoA and caused cytoskeletal remodeling and robust nuclear MRTF translocation and overexpression. These phenomena were also manifested in PKD1 (RC/RC) and PKD2 (WS25/−) mice, with MRTF translocation and overexpression occurring predominantly in dilated tubules and the cyst-lining epithelium, respectively. In epithelial cells, a large cohort of PC1/PC2 downregulation-induced genes was MRTF-dependent, including cytoskeletal, integrin-related, and matricellular/fibrogenic proteins. Epithelial MRTF was necessary for the paracrine priming of the fibroblast–myofibroblast transition. Thus, MRTF acts as a prime inducer of epithelial fibrogenesis in PKD. We propose that RhoA is a common upstream inducer of both histological hallmarks of PKD: cystogenesis and fibrosis. Full article
Show Figures

Graphical abstract

16 pages, 1136 KB  
Review
Autosomal Dominant Polycystic Kidney Disease: Is There a Role for Autophagy?
by Claudio Ponticelli, Gabriella Moroni and Francesco Reggiani
Int. J. Mol. Sci. 2023, 24(19), 14666; https://doi.org/10.3390/ijms241914666 - 28 Sep 2023
Cited by 7 | Viewed by 4180
Abstract
Autosomal-Dominant Polycystic Kidney Disease (ADPKD) is a monogenic disorder initiated by mutations in either PKD1 or PKD2 genes, responsible for encoding polycystin 1 and polycystin 2, respectively. These proteins are primarily located within the primary cilia. The disease follows an inexorable progression, leading [...] Read more.
Autosomal-Dominant Polycystic Kidney Disease (ADPKD) is a monogenic disorder initiated by mutations in either PKD1 or PKD2 genes, responsible for encoding polycystin 1 and polycystin 2, respectively. These proteins are primarily located within the primary cilia. The disease follows an inexorable progression, leading most patients to severe renal failure around the age of 50, and extra-renal complications are frequent. A cure for ADPKD remains elusive, but some measures can be employed to manage symptoms and slow cyst growth. Tolvaptan, a vasopressin V2 receptor antagonist, is the only drug that has been proven to attenuate ADPKD progression. Recently, autophagy, a cellular recycling system that facilitates the breakdown and reuse of aged or damaged cellular components, has emerged as a potential contributor to the pathogenesis of ADPKD. However, the precise role of autophagy in ADPKD remains a subject of investigation, displaying a potentially twofold impact. On the one hand, impaired autophagy may promote cyst formation by inducing apoptosis, while on the other hand, excessive autophagy may lead to fibrosis through epithelial to mesenchymal transition. Promising results of autophagy inducers have been observed in preclinical studies. Clinical trials are warranted to thoroughly assess the long-term safety and efficacy of a combination of autophagy inducers with metabolic and/or aquaferetic drugs. This research aims to shed light on the complex involvement of autophagy in ADPKD, explore the regulation of autophagy in disease progression, and highlight the potential of combination therapies as a promising avenue for future investigations. Full article
(This article belongs to the Special Issue New Insights into Kidney Diseases)
Show Figures

Figure 1

15 pages, 2140 KB  
Article
Predicting Progression of Autosomal Dominant Polycystic Kidney Disease by Changes in the Telomeric Epigenome
by Ismail Kocyigit, Serpil Taheri, Cihan Uysal, Mehmet Memis, Salih Guntug Ozayturk, Gokmen Zararsiz and Minoo Rassoulzadegan
Cells 2022, 11(20), 3300; https://doi.org/10.3390/cells11203300 - 20 Oct 2022
Cited by 9 | Viewed by 2504
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of chronic kidney disease with Polycystin (PKD) 1 and 2 gene mutation. However, the intra-familial variability in symptoms further suggests a non-Mendelian contribution to the disease. Our goal was [...] Read more.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of chronic kidney disease with Polycystin (PKD) 1 and 2 gene mutation. However, the intra-familial variability in symptoms further suggests a non-Mendelian contribution to the disease. Our goal was to find a marker to track the epigenetic changes common to rapidly progressing forms of the disease. The risk of ADPKD increases with age, and aging shortens the telomere length (TL). Telomeres are a nucleoprotein structure composed mainly of three complexes, shelterin, CST and RNA-containing telomere repeat(TERRA), which protects the ends of chromosomes from degradation and fusion, and plays a role in maintaining cellular stability and in the repair of telomeric damage. TERRAs are transcribed from telomeric regions and a part of them is engaged in a DNA/RNA hybrid (R-loop) at each chromosome end. We tracked TL and TERRA levels in blood samples of 78 patients and 20 healthy control. Our study demonstrates that TL was shortened and TERRA expression levels in the DNA-attached fraction increased in autosomal dominant polycystic kidney patients with mutations in PKD1 and PKD2 compared to the control group. Moreover, it was observed that the expression of TERRA engaged in the R-loop was higher and the length of telomeres shorter in patients with ADPKD who showed rapid disease progression. Intrafamilial variation in TL and TERRA levels with the same mutation would indicate reliable epigenetic potential biomarkers in disease monitoring. Full article
(This article belongs to the Collection Feature Papers in Cell Nuclei: Function, Transport and Receptors)
Show Figures

Figure 1

17 pages, 683 KB  
Review
Autosomal Dominant Polycystic Kidney Disease: From Pathophysiology of Cystogenesis to Advances in the Treatment
by Jana Reiterová and Vladimír Tesař
Int. J. Mol. Sci. 2022, 23(6), 3317; https://doi.org/10.3390/ijms23063317 - 19 Mar 2022
Cited by 44 | Viewed by 13362
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic renal disease, with an estimated prevalence between 1:1000 and 1:2500. It is mostly caused by mutations of the PKD1 and PKD2 genes encoding polycystin 1 (PC1) and polycystin 2 (PC2) that regulate [...] Read more.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic renal disease, with an estimated prevalence between 1:1000 and 1:2500. It is mostly caused by mutations of the PKD1 and PKD2 genes encoding polycystin 1 (PC1) and polycystin 2 (PC2) that regulate cellular processes such as fluid transport, differentiation, proliferation, apoptosis and cell adhesion. Reduction of calcium ions and induction of cyclic adenosine monophosphate (sAMP) promote cyst enlargement by transepithelial fluid secretion and cell proliferation. Abnormal activation of MAPK/ERK pathway, dysregulated signaling of heterotrimeric G proteins, mTOR, phosphoinositide 3-kinase, AMPK, JAK/STAT activator of transcription and nuclear factor kB (NF-kB) are involved in cystogenesis. Another feature of cystic tissue is increased extracellular production and recruitment of inflammatory cells and abnormal connections among cells. Moreover, metabolic alterations in cystic cells including defective glucose metabolism, impaired beta-oxidation and abnormal mitochondrial activity were shown to be associated with cyst expansion. Although tolvaptan has been recently approved as a drug that slows ADPKD progression, some patients do not tolerate tolvaptan because of frequent aquaretic. The advances in the knowledge of multiple molecular pathways involved in cystogenesis led to the development of animal and cellular studies, followed by the development of several ongoing randomized controlled trials with promising drugs. Our review is aimed at pathophysiological mechanisms in cystogenesis in connection with the most promising drugs in animal and clinical studies. Full article
(This article belongs to the Special Issue Molecular Pathology, Diagnostics, and Therapeutics of Nephropathy)
Show Figures

Figure 1

17 pages, 6123 KB  
Article
Gender-Dependent Phenotype in Polycystic Kidney Disease Is Determined by Differential Intracellular Ca2+ Signals
by Khaoula Talbi, Inês Cabrita, Rainer Schreiber and Karl Kunzelmann
Int. J. Mol. Sci. 2021, 22(11), 6019; https://doi.org/10.3390/ijms22116019 - 2 Jun 2021
Cited by 18 | Viewed by 4372
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by loss of function of PKD1 (polycystin 1) or PKD2 (polycystin 2). The Ca2+-activated Cl channel TMEM16A has a central role in ADPKD. Expression and function of TMEM16A is upregulated in ADPKD [...] Read more.
Autosomal dominant polycystic kidney disease (ADPKD) is caused by loss of function of PKD1 (polycystin 1) or PKD2 (polycystin 2). The Ca2+-activated Cl channel TMEM16A has a central role in ADPKD. Expression and function of TMEM16A is upregulated in ADPKD which causes enhanced intracellular Ca2+ signaling, cell proliferation, and ion secretion. We analyzed kidneys from Pkd1 knockout mice and found a more pronounced phenotype in males compared to females, despite similar levels of expression for renal tubular TMEM16A. Cell proliferation, which is known to be enhanced with loss of Pkd1−/−, was larger in male when compared to female Pkd1−/− cells. This was paralleled by higher basal intracellular Ca2+ concentrations in primary renal epithelial cells isolated from Pkd1−/− males. The results suggest enhanced intracellular Ca2+ levels contributing to augmented cell proliferation and cyst development in male kidneys. Enhanced resting Ca2+ also caused larger basal chloride currents in male primary cells, as detected in patch clamp recordings. Incubation of mouse primary cells, mCCDcl1 collecting duct cells or M1 collecting duct cells with dihydrotestosterone (DHT) enhanced basal Ca2+ levels and increased basal and ATP-stimulated TMEM16A chloride currents. Taken together, the more severe cystic phenotype in males is likely to be caused by enhanced cell proliferation, possibly due to enhanced basal and ATP-induced intracellular Ca2+ levels, leading to enhanced TMEM16A currents. Augmented Ca2+ signaling is possibly due to enhanced expression of Ca2+ transporting/regulating proteins. Full article
Show Figures

Figure 1

15 pages, 1456 KB  
Review
Reciprocal Regulation between Primary Cilia and mTORC1
by Yandong Lai and Yu Jiang
Genes 2020, 11(6), 711; https://doi.org/10.3390/genes11060711 - 26 Jun 2020
Cited by 27 | Viewed by 8127
Abstract
In quiescent cells, primary cilia function as a mechanosensor that converts mechanic signals into chemical activities. This unique organelle plays a critical role in restricting mechanistic target of rapamycin complex 1 (mTORC1) signaling, which is essential for quiescent cells to maintain their quiescence. [...] Read more.
In quiescent cells, primary cilia function as a mechanosensor that converts mechanic signals into chemical activities. This unique organelle plays a critical role in restricting mechanistic target of rapamycin complex 1 (mTORC1) signaling, which is essential for quiescent cells to maintain their quiescence. Multiple mechanisms have been identified that mediate the inhibitory effect of primary cilia on mTORC1 signaling. These mechanisms depend on several tumor suppressor proteins localized within the ciliary compartment, including liver kinase B1 (LKB1), AMP-activated protein kinase (AMPK), polycystin-1, and polycystin-2. Conversely, changes in mTORC1 activity are able to affect ciliogenesis and stability indirectly through autophagy. In this review, we summarize recent advances in our understanding of the reciprocal regulation of mTORC1 and primary cilia. Full article
(This article belongs to the Special Issue Cellular Growth Control by TOR Signaling)
Show Figures

Figure 1

27 pages, 1685 KB  
Review
Ciliary Genes in Renal Cystic Diseases
by Anna Adamiok-Ostrowska and Agnieszka Piekiełko-Witkowska
Cells 2020, 9(4), 907; https://doi.org/10.3390/cells9040907 - 8 Apr 2020
Cited by 31 | Viewed by 10863
Abstract
Cilia are microtubule-based organelles, protruding from the apical cell surface and anchoring to the cytoskeleton. Primary (nonmotile) cilia of the kidney act as mechanosensors of nephron cells, responding to fluid movements by triggering signal transduction. The impaired functioning of primary cilia leads to [...] Read more.
Cilia are microtubule-based organelles, protruding from the apical cell surface and anchoring to the cytoskeleton. Primary (nonmotile) cilia of the kidney act as mechanosensors of nephron cells, responding to fluid movements by triggering signal transduction. The impaired functioning of primary cilia leads to formation of cysts which in turn contribute to development of diverse renal diseases, including kidney ciliopathies and renal cancer. Here, we review current knowledge on the role of ciliary genes in kidney ciliopathies and renal cell carcinoma (RCC). Special focus is given on the impact of mutations and altered expression of ciliary genes (e.g., encoding polycystins, nephrocystins, Bardet-Biedl syndrome (BBS) proteins, ALS1, Oral-facial-digital syndrome 1 (OFD1) and others) in polycystic kidney disease and nephronophthisis, as well as rare genetic disorders, including syndromes of Joubert, Meckel-Gruber, Bardet-Biedl, Senior-Loken, Alström, Orofaciodigital syndrome type I and cranioectodermal dysplasia. We also show that RCC and classic kidney ciliopathies share commonly disturbed genes affecting cilia function, including VHL (von Hippel-Lindau tumor suppressor), PKD1 (polycystin 1, transient receptor potential channel interacting) and PKD2 (polycystin 2, transient receptor potential cation channel). Finally, we discuss the significance of ciliary genes as diagnostic and prognostic markers, as well as therapeutic targets in ciliopathies and cancer. Full article
(This article belongs to the Special Issue Epithelial Cell Mechanics: From Physiology to Pathology)
Show Figures

Graphical abstract

Back to TopTop