Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (281)

Search Parameters:
Keywords = polyelectrolyte layer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1944 KB  
Proceeding Paper
Fabrication of Thin-Film Composite Nanofiltration Membrane Employing Polyelectrolyte and Metal–Organic Framework (MOF) via Spin-Spray-Assisted Layer-by-Layer Assembly
by Farid Fadhillah
Eng. Proc. 2025, 105(1), 3; https://doi.org/10.3390/engproc2025105003 - 11 Aug 2025
Viewed by 334
Abstract
Spin-spray-assisted layer-by-layer (LbL) assembly is an innovative method for producing nanostructured thin films due to its rapid assembly and extensive coverage of substrates. In this study, a nanofiltration (NF) membrane consisting of multilayers of polyethyleneimine (PEI) and poly(sodium-4-styrene sulfonate) (PSS) was fabricated on [...] Read more.
Spin-spray-assisted layer-by-layer (LbL) assembly is an innovative method for producing nanostructured thin films due to its rapid assembly and extensive coverage of substrates. In this study, a nanofiltration (NF) membrane consisting of multilayers of polyethyleneimine (PEI) and poly(sodium-4-styrene sulfonate) (PSS) was fabricated on a polysulfone (PSF) support. The resulting membrane was further coated with a metal–organic framework (MOF303). The resulting (PEI/PSS)5-MOF303 showed a rejection rate of 18.94 ± 1.58% and a permeability of 0.91 ± 0.13 L/(h·bar·m2)while also showing enhanced antifouling properties. This work explores the possibility of spin-spray-assisted LbL assembly as a promising method for fabricating membranes. Full article
Show Figures

Figure 1

25 pages, 2142 KB  
Article
Viscoelectric and Steric Effects on Electroosmotic Flow in a Soft Channel
by Edson M. Jimenez, Clara G. Hernández, David A. Torres, Nicolas Ratkovich, Juan P. Escandón, Juan R. Gómez and René O. Vargas
Mathematics 2025, 13(16), 2546; https://doi.org/10.3390/math13162546 - 8 Aug 2025
Viewed by 372
Abstract
The present work analyzes the combined viscoelectric and steric effects on electroosmotic flow in a soft channel with polyelectrolyte coating. The structured channel surface, which controls the electric potential, creates two different flow regions: the electrolyte flow within the permeable polyelectrolyte layer (PEL) [...] Read more.
The present work analyzes the combined viscoelectric and steric effects on electroosmotic flow in a soft channel with polyelectrolyte coating. The structured channel surface, which controls the electric potential, creates two different flow regions: the electrolyte flow within the permeable polyelectrolyte layer (PEL) and the bulk electrolyte. Thus, this study discusses the interaction of various electrostatic effects to predict the electroosmotic flow field. The nonlinear governing equations describing the fluid flow are the modified Poisson–Boltzmann equation for the electric potential distribution, the mass conservation equation, and the modified Navier–Stokes equations for the flow field, which are solved numerically using a one-dimensional (1D) scheme. The results indicate that the flow enhances when increasing the electric potential magnitude across the channel cross-section via the rise in different dimensionless parameters, such as the PEL thickness, the steric factor, and the ratio of the electrokinetic parameter of the PEL to that of the electrolyte layer. This research demonstrates that the PEL significantly enhances control over electroosmotic flow. However, it is crucial to consider that viscoelectric effects at high electric fields and the friction generated by the grafted polymer brushes of the PEL can reduce these benefits. Full article
(This article belongs to the Special Issue Advances and Applications in Computational Fluid Dynamics)
Show Figures

Figure 1

14 pages, 5990 KB  
Article
Distinctive Features of the Buffer Capacity of Polyelectrolyte Microcapsules Formed on MnCO3 Core
by Aleksandr L. Kim, Alexey V. Dubrovskii and Sergey A. Tikhonenko
Polymers 2025, 17(15), 2149; https://doi.org/10.3390/polym17152149 - 6 Aug 2025
Viewed by 367
Abstract
The development of layer-by-layer polyelectrolyte microcapsules (PMCs) with defined buffer capacity (BC) is a key task for creating stable systems in biomedicine and materials science. Manganese carbonate (MnCO3), which shares properties with CaCO3 and the ability to form hollow structures, [...] Read more.
The development of layer-by-layer polyelectrolyte microcapsules (PMCs) with defined buffer capacity (BC) is a key task for creating stable systems in biomedicine and materials science. Manganese carbonate (MnCO3), which shares properties with CaCO3 and the ability to form hollow structures, represents a promising alternative. However, its interaction with polyelectrolytes and its influence on BC remain insufficiently studied. This research focuses on determining the BC of PMCs templated on MnCO3 cores under varying ionic strength (0.22–3 M NaCl) and temperature (60–90 °C), as well as comparing the results with PMCs templated on CaCO3 and PS cores. It was found that MnCO3-based PMCs (PMCMn) exhibit hybrid behavior between CaCO3- and PS-based PMCs: the BC dynamics of PMCMn and CaCO3-based PMCs (PMCCa) in water are identical. At different ionic strength at pH < 5, the BC of PMCMn and PS-based PMCs (PMCPS) remains unchanged, while at pH > 8.5, the BC of PMCMn increases only at 3 M NaCl. The BC of PMCMn remains stable under heating, whereas the BC of PMCCa and PMCPS decreases. These results confirm that the choice of core material dictates PMC functionality, paving the way for adaptive systems in biosensing and controlled drug delivery. Full article
(This article belongs to the Special Issue Stimuli-Responsive Polymers: Advances and Prospects)
Show Figures

Graphical abstract

13 pages, 6483 KB  
Article
Polyelectrolyte Microcapsule-Assembled Colloidosomes: A Novel Strategy for the Encapsulation of Hydrophobic Substances
by Egor V. Musin, Alexey V. Dubrovskii, Yuri S. Chebykin, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2025, 17(14), 1975; https://doi.org/10.3390/polym17141975 - 18 Jul 2025
Viewed by 368
Abstract
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly [...] Read more.
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly on manganese carbonate (MnCO3) or calcium carbonate (CaCO3) cores, followed by core dissolution. A solvent gradient replacement method was employed to substitute the internal aqueous phase of PMCs with kerosene, enabling the formation of colloidosomes through self-assembly upon resuspension in water. Comparative analysis revealed that MnCO3-based PMCs with smaller diameters (2.5–3 µm vs. 4.5–5.5 µm for CaCO3) exhibited 3.5-fold greater stability, attributed to enhanced inter-capsule interactions via electrostatic and hydrophobic forces. Confocal microscopy confirmed the structural integrity of colloidosomes, featuring a liquid kerosene core encapsulated within a PMC shell. Temporal stability studies indicated structural degradation within 30 min, though 5% of colloidosomes retained integrity post-water evaporation. PMC-based colloidosomes exhibit significant application potential due to their integration of colloidosome functionality with PMC-derived structural features—semi-permeability, tunable shell thickness/composition, and stimuli-responsive behavior—enabling their adaptability to diverse technological and biomedical contexts. This innovation holds promise for applications in drug delivery, agrochemicals, and environmental technologies, where controlled release and stability are critical. The findings highlight the role of core material selection and solvent engineering in optimizing colloidosome performance, paving the way for advanced encapsulation systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

32 pages, 5511 KB  
Article
Development of Carbohydrate Polyelectrolyte Nanoparticles for Use in Drug Delivery Systems that Cross the Blood–Brain Barrier to Treat Brain Tumors
by Vladimir E. Silant’ev, Mikhail E. Shmelev, Andrei S. Belousov, Fedor O. Trukhin, Nadezhda E. Struppul, Aleksandra A. Patlay, Anna K. Kravchenko, Sergey P. Shchava and Vadim V. Kumeiko
Polymers 2025, 17(12), 1690; https://doi.org/10.3390/polym17121690 - 18 Jun 2025
Cited by 1 | Viewed by 595
Abstract
The low effectiveness of various brain cancer treatment methods is due to a number of significant challenges. Most of them are unable to penetrate the blood–brain barrier (BBB) when drugs are administered systemically through the bloodstream. Nanoscale particles play a special role among [...] Read more.
The low effectiveness of various brain cancer treatment methods is due to a number of significant challenges. Most of them are unable to penetrate the blood–brain barrier (BBB) when drugs are administered systemically through the bloodstream. Nanoscale particles play a special role among materials capable of binding drug molecules and successfully crossing the BBB. Biopolymeric nanoparticles (NPs) demonstrate excellent biocompatibility and have the remarkable ability to modify the environment surrounding tumor cells, thereby potentially improving cellular uptake of delivery agents. In our research, nanoscale polyelectrolyte complexes (PECs) ranging in size from 56 to 209 nm were synthesized by ionic interaction of the oppositely charged polysaccharides pectin and chitosan. The structural characteristics of these complexes were carefully characterized by infrared (FTIR) and Raman spectroscopy. The immobilization efficiency of antitumor drugs was comprehensively evaluated using UV spectrophotometry. The cytotoxicity of the NPs was evaluated in the U87-MG cell line. The preliminary data indicate a significant decrease in the metabolic activity of these tumor cells. Important details on the interaction of the NPs with an endothelial layer structurally similar to the BBB were obtained by simulating the BBB using a model based on human blood vessels. Our studies allowed us to establish a significant correlation between the kinetic parameters of drug immobilization and the ratio of biopolymer concentrations in the initial compositions, which provides valuable information for future optimization of drug delivery system design. Full article
(This article belongs to the Special Issue Advanced Polymeric Biomaterials for Drug Delivery Applications)
Show Figures

Figure 1

12 pages, 3292 KB  
Article
The Charged Superhydrophilic Polyelectrolyte/TiO2 Nanofiltration Membrane for Self-Cleaning and Separation Performance
by Weiliang Gu, Lei Han, Ye Li, Jiayi Wang, Haihong Yan, Zhenping Qin and Hongxia Guo
Membranes 2025, 15(6), 179; https://doi.org/10.3390/membranes15060179 - 12 Jun 2025
Viewed by 778
Abstract
Nanofiltration (NF) technology has extensive application in the treatment of wastewater generated in the dyeing industry. However, NF membranes often encounter fouling issues during the operation process. In this work, the superhydrophilic and self-cleaning multilayer nanofiltration membrane was prepared by self-assembling polyelectrolyte incorporating [...] Read more.
Nanofiltration (NF) technology has extensive application in the treatment of wastewater generated in the dyeing industry. However, NF membranes often encounter fouling issues during the operation process. In this work, the superhydrophilic and self-cleaning multilayer nanofiltration membrane was prepared by self-assembling polyelectrolyte incorporating the anatase PSS-TiO2 nanoparticles. The negatively charged PSS-TiO2 nanoparticles were beneficial to the formation of the nanohybrid selective layers via electrostatic interforce. The prepared (PEI/PSS-TiO2)4.0 hybrid membrane showed favorable photoinduced superhydrophilicity. The water contact angle of the membrane decreased with the UV irradiation from 35.7° to 1.6°. The negatively charged (PEI/PSS-TiO2)4.0 membrane exhibited a 100% rejection rate to XO and EbT, with a permeance flux of 5.2 and 6.4 L/(m2·h·bar), respectively. After UV irradiation for 60 min, the permeance flux could be further increased to 13.4 and 14.0 L/(m2·h·bar), and the rejection remained at 97.8% and 96.7%. Owing to the low content of TiO2 NPs photocatalytic effect under UV irradiation, the fabricated hybrid membrane exhibited a compromised permeance recovery of about 80.6%. Full article
Show Figures

Figure 1

22 pages, 5224 KB  
Article
Impacts of Natural Organic Matter and Dissolved Solids on Fluoride Retention of Polyelectrolyte Multilayer-Based Hollow Fiber Nanofiltration Membranes
by Hussein Abuelgasim, Nada Nasri, Martin Futterlieb, Radhia Souissi, Fouad Souissi, Stefan Panglisch and Ibrahim M. A. ElSherbiny
Membranes 2025, 15(4), 110; https://doi.org/10.3390/membranes15040110 - 2 Apr 2025
Cited by 1 | Viewed by 1103
Abstract
This study examines the effects of natural organic matter (NOM) and dissolved solids on fluoride (F) retention in polyelectrolyte multilayer-based hollow-fiber nanofiltration membranes (dNF40). Lab-scale filtration experiments were conducted under varying operating conditions (initial salt concentration, NOM concentration, permeate flux, crossflow [...] Read more.
This study examines the effects of natural organic matter (NOM) and dissolved solids on fluoride (F) retention in polyelectrolyte multilayer-based hollow-fiber nanofiltration membranes (dNF40). Lab-scale filtration experiments were conducted under varying operating conditions (initial salt concentration, NOM concentration, permeate flux, crossflow velocity, and recovery rate). dNF40 membranes exhibited F retention above 70% ± 1.2 in the absence of NOM and competing ions. However, when filtering synthetic model water (SMW) designed to simulate groundwater contaminated with high total dissolved solids (TDSs) and NOM, F retention decreased to approximately 60% ± 0.7, which was generally attributed to ion competition. Furthermore, despite limited declines in normalized permeability, the addition of NOM to SMW notably deceased F retention in the steady state to~20% due to fouling effects. The facilitated transport of the divalent cations Ca2+ and Mg2+ could be observed, as they accumulated in the organic fouling layer. While SO42− retention remained relatively stable, the retention of monovalent anions (NO3, Cl, and F) decreased substantially due to drag effects. Na+ retention improved slightly to maintain electroneutrality. Feed salinity was shown to significantly affect separation efficiency, with PEC layers undergoing swelling and certain structural changes as the ionic strength increased. During batch filtration experiments at varying recovery rates, the retention of monovalent anions further decreased, with F retention reducing to just ~10% at a 90% recovery rate. This study provides valuable insights into better understanding and optimizing the performance of PEC-based NF membranes across diverse water treatment scenarios. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

22 pages, 3286 KB  
Article
Background of New Measurement Electronic Devices with Polyelectrolyte Hydrogel Base
by Kaisarali Kadyrzhan, Ibragim Suleimenov, Lyazat Tolymbekova, Gaini Seitenova and Eldar Kopishev
Polymers 2025, 17(4), 539; https://doi.org/10.3390/polym17040539 - 19 Feb 2025
Cited by 2 | Viewed by 591
Abstract
It has been demonstrated that when a low-molecular-weight salt solution flows through a polyelectrolyte gel, an electromotive force is generated, and its polarity depends on the sign of the polyelectrolyte network’s charge. A mathematical model proving the possibility of developing a device for [...] Read more.
It has been demonstrated that when a low-molecular-weight salt solution flows through a polyelectrolyte gel, an electromotive force is generated, and its polarity depends on the sign of the polyelectrolyte network’s charge. A mathematical model proving the possibility of developing a device for separating a solution of low-molecular salt into enriched and depleted phases under the influence of gravitational forces has been developed. Such a device contains a system of parallel columns filled with different kinds of cross-linked polyelectrolyte networks. The proposed mathematical model is grounded in the theory of double electrical layers forming at the hydrogel/solution interface; these layers deform under non-equilibrium conditions, specifically during the flow of the solution through the cross-linked polyelectrolyte network. An analogous model is proposed describing the case of an analogous device based on an electric current passing through two oppositely charged contacting networks, which provides the possibility of separating the initial solution into enriched and the depleted phases too. The practical applications of the found effect are discussed. In particular, it is demonstrated that a wide number of measurement electronic devices can be created on such a base, including devices to be used within the investigation of polyelectrolyte hydrogels of different types. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

22 pages, 3684 KB  
Review
Multilayered Polyelectrolyte Structures Deposited on Corona-Charged Substrate Blends as Potential Drug Delivery Systems
by Asya Viraneva, Maria Marudova, Aleksandar Grigorov, Sofia Milenkova and Temenuzhka Yovcheva
Coatings 2025, 15(2), 240; https://doi.org/10.3390/coatings15020240 - 18 Feb 2025
Viewed by 748
Abstract
Polyelectrolyte multilayers (PEMs) deposited on non-porous and porous blend substrates were studied. Films, prepared from two biodegradable polymers poly (D-lactic acid) (PDLA) and poly(ε-caprolactone) (PCL) and their blends were used as substrates in the present paper. All films were initially charged in a [...] Read more.
Polyelectrolyte multilayers (PEMs) deposited on non-porous and porous blend substrates were studied. Films, prepared from two biodegradable polymers poly (D-lactic acid) (PDLA) and poly(ε-caprolactone) (PCL) and their blends were used as substrates in the present paper. All films were initially charged in a corona discharge (positive or negative corona). After charging, the initial surface potential of the samples V0 was measured and the normalized surface potential was calculated. The dependencies on time of the normalized surface potential for electrets, possessing either positive or negative charges, were studied. It was found that the steady-state values of the normalized surface potential for the porous substrates were higher than those of the non-porous ones, independently of material type and corona polarity. It was also shown that the values of the normalized surface potential for the PCL electrets were the highest and decreased when the content of PDLA increased. Scanning electron microscopy (SEM) was utilized for the determination of the substrates’ surface morphology. With the largest pore size, PCL substrates allowed for a greater capture of charges on their surface and facilitated the retention of said charges for prolonged periods of time. Differential scanning calorimetry (DSC) measurements were performed to determine the degree of crystallinity, which was very high for PCL substrates, when compared to the other investigated substrates. The wettability of the investigated substrates was measured using the static water contact angle method. The obtained results demonstrated that the created blends were more hydrophilic than the pure films. The two chosen polyelectrolytes were layered onto the surface of the substrates with the use of the layer-by-layer (LbL) technique and benzydamine hydrochloride was loaded in the multilayers as a model drug. Its loading efficiency and release profile were carried out spectrophotometrically. It was determined that for non-porous substrates, independently of the corona polarity, the best fitting model was Korsmeyer-Peppas, while for the porous substrates the best fitting model was Weibull. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

11 pages, 2190 KB  
Article
Transient Electroosmosis on a Soft Surface
by Hiroyuki Ohshima
Colloids Interfaces 2025, 9(1), 12; https://doi.org/10.3390/colloids9010012 - 4 Feb 2025
Cited by 1 | Viewed by 1204
Abstract
A general theory was developed for the time-dependent transient electroosmosis on a planar soft surface, i.e., a polyelectrolyte-coated solid surface in an electrolyte solution, when an electric field is suddenly applied. This serves as a simple model for the time-dependent electrokinetic phenomena occurring [...] Read more.
A general theory was developed for the time-dependent transient electroosmosis on a planar soft surface, i.e., a polyelectrolyte-coated solid surface in an electrolyte solution, when an electric field is suddenly applied. This serves as a simple model for the time-dependent electrokinetic phenomena occurring at biointerfaces. A closed-form approximate expression is derived for the electroosmotic velocity distribution within the polyelectrolyte layer as a function of both position and time. This analysis reveals that the temporal and spatial variations in the electroosmotic flow caused by the surface charges of the solid surface is confined to the region near the solid surface. In contrast, the variations due to the fixed charges within the polyelectrolyte layer extend over a wider region inside the polyelectrolyte layer. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces: 2nd Edition)
Show Figures

Figure 1

18 pages, 1206 KB  
Review
Recent Advancements in Chitosan-Based Biomaterials for Wound Healing
by Jahnavi Shah, Dhruv Patel, Dnyaneshwari Rananavare, Dev Hudson, Maxwell Tran, Rene Schloss, Noshir Langrana, Francois Berthiaume and Suneel Kumar
J. Funct. Biomater. 2025, 16(2), 45; https://doi.org/10.3390/jfb16020045 - 30 Jan 2025
Cited by 10 | Viewed by 5066
Abstract
Chitosan is a positively charged natural polymer with several properties conducive to wound-healing applications, such as biodegradability, structural integrity, hydrophilicity, adhesiveness to tissue, and bacteriostatic potential. Along with other mechanical properties, some of the properties discussed in this review are antibacterial properties, mucoadhesive [...] Read more.
Chitosan is a positively charged natural polymer with several properties conducive to wound-healing applications, such as biodegradability, structural integrity, hydrophilicity, adhesiveness to tissue, and bacteriostatic potential. Along with other mechanical properties, some of the properties discussed in this review are antibacterial properties, mucoadhesive properties, biocompatibility, high fluid absorption capacity, and anti-inflammatory response. Chitosan forms stable complexes with oppositely charged polymers, arising from electrostatic interactions between (+) amino groups of chitosan and (−) groups of other polymers. These polyelectrolyte complexes (PECs) can be manufactured using various materials and methods, which brings a diversity of formulations and properties that can be optimized for specific wound healing as well as other applications. For example, chitosan-based PEC can be made into dressings/films, hydrogels, and membranes. There are various pros and cons associated with manufacturing the dressings; for instance, a layer-by-layer casting technique can optimize the nanoparticle release and affect the mechanical strength due to the formation of a heterostructure. Furthermore, chitosan’s molecular weight and degree of deacetylation, as well as the nature of the negatively charged biomaterial with which it is cross-linked, are major factors that govern the mechanical properties and biodegradation kinetics of the PEC dressing. The use of chitosan in wound care products is forecasted to drive the growth of the global chitosan market, which is expected to increase by approximately 14.3% within the next decade. This growth is driven by products such as chitoderm-containing ointments, which provide scaffolding for skin cell regeneration. Despite significant advancements, there remains a critical gap in translating chitosan-based biomaterials from research to clinical applications. Full article
(This article belongs to the Special Issue Functional Biomaterials for Skin Wound Healing)
Show Figures

Figure 1

13 pages, 3932 KB  
Article
Zero-Order Kinetics Release of Lamivudine from Layer-by-Layer Coated Macromolecular Prodrug Particles
by Tomasz Urbaniak, Yauheni Milasheuski and Witold Musiał
Int. J. Mol. Sci. 2024, 25(23), 12921; https://doi.org/10.3390/ijms252312921 - 1 Dec 2024
Cited by 2 | Viewed by 1160
Abstract
To reduce the risk of side effects and enhance therapeutic efficiency, drug delivery systems that offer precise control over active ingredient release while minimizing burst effects are considered advantageous. In this study, a novel approach for the controlled release of lamivudine (LV) was [...] Read more.
To reduce the risk of side effects and enhance therapeutic efficiency, drug delivery systems that offer precise control over active ingredient release while minimizing burst effects are considered advantageous. In this study, a novel approach for the controlled release of lamivudine (LV) was explored through the fabrication of polyelectrolyte-coated microparticles. LV was covalently attached to poly(ε-caprolactone) via ring-opening polymerization, resulting in a macromolecular prodrug (LV-PCL) with a hydrolytic release mechanism. The LV-PCL particles were subsequently coated using the layer-by-layer (LbL) technique, with polyelectrolyte multilayers assembled to potentially modify the carrier’s properties. The LbL assembly process was comprehensively analyzed, including assessments of shell thickness, changes in ζ-potential, and thermodynamic properties, to provide insights into the multilayer structure and interactions. The sustained LV release over 7 weeks was observed, following zero-order kinetics (R2 > 0.99), indicating a controlled and predictable release mechanism. Carriers coated with polyethylene imine/heparin and chitosan/heparin tetralayers exhibited a distinct increase in the release rate after 6 weeks and 10 weeks, respectively, suggesting that this coating can facilitate the autocatalytic degradation of the polyester microparticles. These findings indicate the potential of this system for long-term, localized drug delivery applications, requiring sustained release with minimal burst effects. Full article
Show Figures

Figure 1

15 pages, 4366 KB  
Article
Separation of Magnesium and Lithium Ions Utilizing Layer-by-Layer Polyelectrolyte Modification of Polyacrylonitrile Hollow Fiber Porous Membranes
by Danai Koukoufilippou, Ioannis L. Liakos, George I. Pilatos, Niki Plakantonaki, Alexandros Banis and Nikolaos K. Kanellopoulos
Materials 2024, 17(23), 5878; https://doi.org/10.3390/ma17235878 - 30 Nov 2024
Cited by 3 | Viewed by 1265
Abstract
This study explores the layer-by-layer (LBL) modification of polyacrylonitrile (PAN) hollow fibers for effective Mg2+/Li+ separation. It employs an LBL method of surface modification using polyelectrolytes, specifically aiming to enhance ion selectivity and improve the efficiency of lithium extraction from [...] Read more.
This study explores the layer-by-layer (LBL) modification of polyacrylonitrile (PAN) hollow fibers for effective Mg2+/Li+ separation. It employs an LBL method of surface modification using polyelectrolytes, specifically aiming to enhance ion selectivity and improve the efficiency of lithium extraction from brines or lithium battery wastes, which is critical for battery recycling and other industrial applications. The modification process involves coating the hydrolyzed PAN fibers with alternating layers of positively charged polyelectrolytes, such as poly(allylamine hydrochloride) (PAH), polyethyleneimine (PEI), or poly(diallyldimethylammonium chloride) (PDADMAC) and negatively charged polyelectrolytes, such as poly(styrene sulfonate) (PSS), to form polyelectrolyte multilayers (PEMs). This study evaluates the modified membranes in Mg2+ and Li+ salt solutions, demonstrating significant improvements in selectivity for Mg2+/Li+ separation. PAH was identified as the optimal positively charged polyelectrolyte. PAN hollow fibers modified with ten bilayers of PAH/PSS achieved rejection rates of 95.4% for Mg2+ ions and 34.8% for Li+ ions, and a permeance of 0.39 LMH/bar. This highlights the potential of LBL techniques for effectively addressing the challenges of ion separation across a variety of applications. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

13 pages, 3087 KB  
Article
Mixed Adsorption Mono- and Multilayers of ß-Lactoglobulin Fibrils and Sodium Polystyrene Sulfonate
by A. G. Bykov, G. Loglio, R. Miller, E. A. Tsyganov, Z. Wan and B. A. Noskov
Colloids Interfaces 2024, 8(6), 61; https://doi.org/10.3390/colloids8060061 - 11 Nov 2024
Cited by 1 | Viewed by 1582
Abstract
The formation of beta-lactoglobulin (BLG)/sodium polystyrene sulfonate (PSS) complexes decelerates the change in the surface properties of the mixed solutions with the surface age and increases the steady-state dilational surface elasticity in a narrow PSS concentration range. At the same time, the changes [...] Read more.
The formation of beta-lactoglobulin (BLG)/sodium polystyrene sulfonate (PSS) complexes decelerates the change in the surface properties of the mixed solutions with the surface age and increases the steady-state dilational surface elasticity in a narrow PSS concentration range. At the same time, the changes in the surface properties are accelerated in the dispersions of BLG fibrils with and without PSS due to the influence of small peptides coexisting with fibrils. A decrease in the peptide concentration as a result of the dispersion purification leads to slower changes in the surface properties at low PSS concentrations. The increase in the polyelectrolyte concentration results in an increase in the steady-state surface elasticity due to the fibril/PSS complex formation and in very slow changes in the surface properties if the polyelectrolyte exceeds a certain critical value. The latter effect is a consequence of the formation of large aggregates and of an increase in the electrostatic adsorption barrier. The consecutive adsorption of BLG fibrils and PSS leads to the formation of regular multilayers at the liquid–gas interface. The multilayer properties change noticeably with an increase in the number of layers from four to six in agreement with previous results on the multilayers of PSS with an oppositely charged synthetic polyelectrolyte, presumably due to the heterogeneity of the first PSS layer. The dynamic elasticity of the multilayers approaches 250 mN/m, indicating that they can effectively stabilize foams and emulsions. Full article
Show Figures

Figure 1

12 pages, 3102 KB  
Article
Encapsulation of β-Galactosidase into Polyallylamine/Polystyrene Sulphonate Polyelectrolyte Microcapsules
by Yuri S. Chebykin, Egor V. Musin, Aleksandr L. Kim and Sergey A. Tikhonenko
Int. J. Mol. Sci. 2024, 25(20), 10978; https://doi.org/10.3390/ijms252010978 - 12 Oct 2024
Cited by 2 | Viewed by 1163
Abstract
More than half of the global population is unable to consume dairy products due to lactose intolerance (hypolactasia). Current enzyme replacement therapy methods are insufficiently effective as a therapeutic approach to treating lactose intolerance. The encapsulation of β-galactosidase in polyelectrolyte microcapsules by using [...] Read more.
More than half of the global population is unable to consume dairy products due to lactose intolerance (hypolactasia). Current enzyme replacement therapy methods are insufficiently effective as a therapeutic approach to treating lactose intolerance. The encapsulation of β-galactosidase in polyelectrolyte microcapsules by using the layer-by-layer method could be a possible solution to this problem. In this study, adsorption and co-precipitation methods were employed for encapsulating β-galactosidase in polyelectrolyte microcapsules composed of (polyallylamine /polystyrene sulphonate)₃. As a result, the co-precipitation method was chosen for β-galactosidase encapsulation. The adsorption method permits to encapsulate six times less enzyme compared with the co-precipitation method; the β-galactosidase encapsulated via the co-precipitation method released no more than 20% of the initially encapsulated enzyme in pH 2 or 1 M NaCl solutions. In contrast, when using the sorption method, about 100% of the initially encapsulated enzyme was released from the microcapsules under the conditions described above. The co-precipitation method effectively prevents the complete loss of enzyme activity after 2 h of incubation in a solution with pH 2 while also alleviating the adverse effects of ionic strength. Consequently, the encapsulated form of β-galactosidase shows promise as a potential therapeutic agent for enzyme replacement therapy in the treatment of hypolactasia. Full article
(This article belongs to the Special Issue Nano & Micro Materials in Healthcare 3.0)
Show Figures

Figure 1

Back to TopTop