Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,037)

Search Parameters:
Keywords = polymer hydrogel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3671 KB  
Review
Composite Hydrogels with Embedded Electrospun Fibers as Drug Delivery Systems
by Paul Codrin Fuioaga, Delia Mihaela Rata, Tabinda Riaz, Guadalupe Rivero, Gustavo A. Abraham and Leonard Ionut Atanase
Gels 2025, 11(10), 826; https://doi.org/10.3390/gels11100826 (registering DOI) - 14 Oct 2025
Abstract
Hydrogel/electrospun polymer nanofiber composites (HENC) integrate the advantages of both components. Hydrogels provide high water content, biocompatibility, and tunable drug release, while electrospun nanofibers offer a high surface area, loading capacity, customizable morphology, and opportunities for functionalization. Nanofibers can also be incorporated into [...] Read more.
Hydrogel/electrospun polymer nanofiber composites (HENC) integrate the advantages of both components. Hydrogels provide high water content, biocompatibility, and tunable drug release, while electrospun nanofibers offer a high surface area, loading capacity, customizable morphology, and opportunities for functionalization. Nanofibers can also be incorporated into hydrogels as 3D-printable inks. Together, these features create biomimetic composites that modulate drug release and mimic native tissues. This article reviews electrospinning fundamentals, limitations, preparation methods for HENC, and their applications in drug delivery, as well as future perspectives for developing advanced functional materials with improved therapeutic efficacy, controlled release kinetics, and broad biomedical adaptability. Full article
(This article belongs to the Special Issue Designing Hydrogels for Sustained Delivery of Therapeutic Agents)
Show Figures

Figure 1

19 pages, 3539 KB  
Article
Biocompatible Interpenetrating Network Hydrogels with Dually Cross-Linked Polyol
by Ulygbek B. Tuleuov, Alexander L. Kwiatkowski, Akerke T. Kazhmuratova, Lyazzat Zh. Zhaparova, Yermauyt Nassikhatuly, Miroslav Šlouf, Andrey V. Shibaev, Viktor I. Petrenko, Senentxu Lanceros-Méndez and Yerkeblan M. Tazhbayev
Polymers 2025, 17(20), 2737; https://doi.org/10.3390/polym17202737 - 13 Oct 2025
Abstract
Modern tissue regeneration strategies rely on soft biocompatible materials with adequate mechanical properties to support the growing tissues. Polymer hydrogels have been shown to be available for this purpose, as their mechanical properties can be controllably tuned. In this work, we introduce interpenetrating [...] Read more.
Modern tissue regeneration strategies rely on soft biocompatible materials with adequate mechanical properties to support the growing tissues. Polymer hydrogels have been shown to be available for this purpose, as their mechanical properties can be controllably tuned. In this work, we introduce interpenetrating polymer networks (IPN) hydrogels with improved elasticity due to a dual cross-linking mechanism in one of the networks. The proposed hydrogels contain entangled polymer networks of covalently cross-linked poly(ethylene glycol) methacrylate/diacrylate (PEGMA/PEGDA) and poly(vinyl alcohol) (PVA) with two types of physical cross-links—microcrystallites and tannic acid (TA). Rheological measurements demonstrate the synergistic enhancement of the elastic modulus of the single PEGMA/PEGDA network just upon the addition of PVA, since the entanglements between the two components are formed. Moreover, the mechanical properties of IPNs can be independently tuned by varying the PEGMA/PEGDA ratio and the concentration of PVA. Subsequent freezing–thawing and immersion in the TA solution of IPN hydrogels further increase the elasticity because of the formation of the microcrystallites and OH-bonds with TA in the PVA network, as evidenced by X-ray diffraction and ATR FTIR-spectroscopy, respectively. Structural analysis by cryogenic scanning electron microscopy and light microscopy reveals a microphase-separated morphology of the hydrogels. It promotes extensive contact between PVA macromolecules, but nevertheless enables the formation of a 3D network. Such structural arrangement results in the enhanced mechanical performance of the proposed hydrogels, highlighting their potential use for tissue engineering. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

17 pages, 6435 KB  
Article
Hydrogel Soil Conditioner as an Input for Ornamental Sunflower Production Under Saline Water Irrigation: An Alternative Use for Low-Quality Water
by Patricia Angélica Alves Marques, Juliana Bezerra Martins, José Amilton Santos Júnior, Tamara Maria Gomes, Rubens Duarte Coelho, Roberto Fritsche-Neto and Vinícius Villa e Vila
AgriEngineering 2025, 7(10), 344; https://doi.org/10.3390/agriengineering7100344 - 11 Oct 2025
Viewed by 145
Abstract
The use of saline water (low-quality water) in irrigation is a reality in many regions, especially in areas where fresh water is scarce, like semi-arid regions. However, it is important to adopt strategies to minimize the damage caused by salt stress to plants. [...] Read more.
The use of saline water (low-quality water) in irrigation is a reality in many regions, especially in areas where fresh water is scarce, like semi-arid regions. However, it is important to adopt strategies to minimize the damage caused by salt stress to plants. The use of soil conditioners can help improve soil structure and water retention capacity, reducing salinity effects. The objective was to analyze the potential of a soil conditioner (hydrogel) as a mitigator of salty stress by irrigation with saline water in ornamental sunflower. Two sunflower cycles were carried out in a protected environment with a factorial 4 × 4 consisting of four doses of hydrogel polymer (0.0, 0.5, 1.0, and 1.5 g kg−1) and four different levels of irrigation with saline water (0.5, 2.0, 3.5, and 5.0 dS m−1). Plant biomass and physiological parameters, such as chlorophyll fluorescence measurements and gas exchange parameters, stomatal conductance, transpiration, and photosynthesis, were evaluated. Ornamental sunflower showed better performance with a saline water of 0.5 dS m−1 without the use of hydrogel. At higher salinity levels, with a hydrogel dose of 1.5 g kg−1, the sunflower achieved favorable performance, promoting gains in some gas exchange variables in plants irrigated with saline water at 3.5 dS m−1 and in fluorescence-related variables within the range of 2.0 to 3.5 dS m−1. This positive effect of hydrogel indicates its potential as a mitigating strategy against the adverse effects of salinity, contributing to the maintenance of plant vigor and physiological functionality in saline environments. Full article
(This article belongs to the Section Agricultural Irrigation Systems)
Show Figures

Figure 1

22 pages, 1041 KB  
Review
Cannabidiol Encapsulation in Polymeric Hydrogels and Its Controlled Release: A Review
by Víctor M. Ovando-Medina, Carlos A. García-Martínez, Lorena Farias-Cepeda, Iveth D. Antonio-Carmona, Andrés Dector, Juan M. Olivares-Ramírez, Alondra Anahí Ortiz-Verdin, Hugo Martínez-Gutiérrez and Erika Nohemi Rivas Martínez
Gels 2025, 11(10), 815; https://doi.org/10.3390/gels11100815 (registering DOI) - 11 Oct 2025
Viewed by 208
Abstract
Cannabidiol (CBD) and its derivatives show interesting therapeutic potential, including antioxidant, anti-inflammatory, and anticancer properties; however, their clinical translation remains a complex task due to physicochemical restrictions such as low water solubility, high lipophilicity, and instability under light, oxygen, and high temperatures. Polymeric [...] Read more.
Cannabidiol (CBD) and its derivatives show interesting therapeutic potential, including antioxidant, anti-inflammatory, and anticancer properties; however, their clinical translation remains a complex task due to physicochemical restrictions such as low water solubility, high lipophilicity, and instability under light, oxygen, and high temperatures. Polymeric encapsulation has emerged as a promising strategy to overcome these challenges, offering protection against environmental degradation, improved bioavailability, and controlled release. Natural and synthetic polymers, both biocompatible and biodegradable, provide versatile matrices for CBD delivery, enabling nanoparticle formation, targeted transport, and enhanced pharmacokinetics. This review highlights the structural characteristics of CBD, its interaction mechanisms with polymeric matrices such as hydrogels, electrospun nanofibers, biodegradable microparticles, thin films, and lipid-polymer hybrid systems, and the principal encapsulation techniques, such as emulsion solvent evaporation, electrospinning, and supercritical fluid technologies, that facilitate stability and scalability. Furthermore, material characterization approaches, including microscopy, thermal, and degradation analyses, are discussed as tools for optimizing encapsulation systems. While notable advances have been made, key challenges remain in achieving reproducible large-scale production, ensuring regulatory compliance, and designing smart polymeric carriers personalized for specific therapeutic contexts. By addressing these gaps, polymer-based encapsulation may unlock new opportunities for CBD in pharmaceutical, nutraceutical, and therapeutic applications, providing a guide for future innovation and translation into effective patient-centered products. Full article
(This article belongs to the Special Issue Composite Hydrogels for Biomedical Applications)
Show Figures

Figure 1

19 pages, 718 KB  
Review
Hydrogel-Based Formulations to Deliver Analgesic Drugs: A Scoping Review of Applications and Efficacy
by Sveva Di Franco, Aniello Alfieri, Pasquale Sansone, Vincenzo Pota, Francesco Coppolino, Andrea Frangiosa, Vincenzo Maffei, Maria Caterina Pace, Maria Beatrice Passavanti and Marco Fiore
Biomedicines 2025, 13(10), 2465; https://doi.org/10.3390/biomedicines13102465 - 10 Oct 2025
Viewed by 128
Abstract
Background/Objectives:Hydrogels are highly hydrated, biocompatible polymer networks increasingly investigated as drug-delivery systems (DDS) for analgesics. Their ability to modulate local release, prolong drug residence time, and reduce systemic toxicity positions them as promising platforms in perioperative, chronic, and localized pain settings. This [...] Read more.
Background/Objectives:Hydrogels are highly hydrated, biocompatible polymer networks increasingly investigated as drug-delivery systems (DDS) for analgesics. Their ability to modulate local release, prolong drug residence time, and reduce systemic toxicity positions them as promising platforms in perioperative, chronic, and localized pain settings. This scoping review aimed to systematically map clinical applications, efficacy, and safety of hydrogel-based DDS for analgesics, while also documenting non-DDS uses where the matrix itself contributes to pain modulation through physical mechanisms. Methods: Following PRISMA-ScR guidance, PubMed, Embase, and Cochrane databases were searched without publication date restrictions. Only peer-reviewed clinical studies were included; preclinical studies and non-journal literature were excluded. Screening and selection were performed in duplicate. Data extracted included drug class, hydrogel technology, clinical setting, outcomes, and safety. Protocol was registered with Open Science Framework. Results: A total of 26 clinical studies evaluating hydrogel formulations as DDS for analgesics were included. Most were randomized controlled trials, spanning 1996–2024. Local anesthetics were the most frequent drug class, followed by opioids, corticosteroids, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), and neuromodulators. Application sites were predominantly topical/transdermal and perioperative/incisional. Across the DDS cohort, most of the studies reported improved analgesic outcomes, including reduced pain scores and lower rescue medication use; neutral or unclear results were rare. Safety reporting was limited, but tolerability was generally favorable. Additionally, 38 non-DDS studies demonstrated pain reduction through hydrogel-mediated cooling, lubrication, or barrier effects, particularly in burns, ocular surface disorders, and discogenic pain. Conclusions: Hydrogel-based DDS for analgesics show consistent clinical signals of benefit across diverse contexts, aligning with their mechanistic rationale. While current evidence supports their role as effective, well-tolerated platforms, translational gaps remain, particularly for hybrid nanotechnology systems and standardized safety reporting. Non-DDS applications confirm the intrinsic analgesic potential of hydrogel matrices, underscoring their relevance in multimodal pain management strategies. Full article
40 pages, 5739 KB  
Review
Sustainable Hydrogels in Water Treatment—A Short Review
by Anita Ioana Visan and Irina Negut
Gels 2025, 11(10), 812; https://doi.org/10.3390/gels11100812 - 10 Oct 2025
Viewed by 290
Abstract
The growing worldwide water shortage, intensified by pollution from industrial and human activities, highlights the urgent need for advanced, eco-friendly water treatment solutions. Hydrogels, which are three-dimensional polymer networks with exceptional water absorption capabilities, are gaining attention as effective materials for purification, thanks [...] Read more.
The growing worldwide water shortage, intensified by pollution from industrial and human activities, highlights the urgent need for advanced, eco-friendly water treatment solutions. Hydrogels, which are three-dimensional polymer networks with exceptional water absorption capabilities, are gaining attention as effective materials for purification, thanks to their remarkable absorption, selectivity, and reusability. This review offers a concise introduction to hydrogels, focusing on their sustainable aspects such as biodegradability, minimal toxicity, and sourcing from renewable materials. We emphasize their benefits compared to traditional treatment approaches and outline the key goals of this review: categorizing and analyzing the synthesis, modification, characteristics, and varied uses of sustainable hydrogels in eliminating inorganic and organic contaminants. Additionally, we explore their potential for regeneration, current limitations, and future prospects in alignment with environmental sustainability. Full article
Show Figures

Graphical abstract

23 pages, 3529 KB  
Article
Synthesis, Characterization, and Evaluation of Folic Acid Release Ability of Acrylamide–Acrylic Acid Hydrogels and Acrylamide–Acrylic Acid/Functionalized Carbon Nanotube Nanocomposite Hydrogels
by Karina Sandoval-García, Jorge A. Cortés-Ortega, Edgar B. Figueroa-Ochoa, Víctor H. Antolín-Cerón and Sergio M. Nuño-Donlucas
Int. J. Mol. Sci. 2025, 26(20), 9847; https://doi.org/10.3390/ijms26209847 - 10 Oct 2025
Viewed by 104
Abstract
Hydrogels of acrylamide (AM)–acrylic acid (AA) and nanocomposite hydrogels of AM–AA and carbon nanotubes (CNTs) functionalized with acyl chloride groups (CNTsOxCl) were synthesized and characterized, and their ability to release folic acid was analyzed. Both hydrogel types were synthesized via redox [...] Read more.
Hydrogels of acrylamide (AM)–acrylic acid (AA) and nanocomposite hydrogels of AM–AA and carbon nanotubes (CNTs) functionalized with acyl chloride groups (CNTsOxCl) were synthesized and characterized, and their ability to release folic acid was analyzed. Both hydrogel types were synthesized via redox polymerization. CNTs were prepared via chemical vapor deposition. The prepared samples were analyzed via transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, differential scanning calorimetry, and field-emission scanning electron microscopy. Their swelling ability and their mechanical properties (compression tests) were determined at room temperature ~298.15 K, whereas their ability to release folic acid was studied using UV–VIS spectroscopy. The equilibrium swelling of the AM–AA hydrogels was greater than that of the AM–AA/CNTsOxCl nanocomposite hydrogels prepared at the same monomeric relation (wt%), whereas the Young moduli of these nanocomposite hydrogels were higher than that of AM–AA hydrogels. For the AM–AA/CNTsOxCl nanocomposite hydrogels, polymer chains containing AM and AA units were grafted to CNTsOxCl. The glass–transition temperatures of AM–AA nanocomposite hydrogels were higher than that of AM–AA hydrogels. Folic acid release from the AM–AA hydrogels and AM–AA/CNTsOxCl nanocomposite hydrogels was successfully adjusted using the Weibull model. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Graphical abstract

31 pages, 1024 KB  
Review
Polymer-Based Scaffolds Incorporating Selected Essential Oil Components for Wound Healing: A Review
by Vuyolwethu Khwaza and Opeoluwa O. Oyedeji
Pharmaceutics 2025, 17(10), 1313; https://doi.org/10.3390/pharmaceutics17101313 - 9 Oct 2025
Viewed by 235
Abstract
Background: The treatment of wounds remains a significant clinical challenge, particularly in chronic and infected wounds, where delayed healing often results in complications. Recent advances in biomaterials have highlighted the potential of polymer-based scaffolds as promising platforms for wound management due to their [...] Read more.
Background: The treatment of wounds remains a significant clinical challenge, particularly in chronic and infected wounds, where delayed healing often results in complications. Recent advances in biomaterials have highlighted the potential of polymer-based scaffolds as promising platforms for wound management due to their ability to mimic the extracellular matrix, support tissue regeneration, and provide a moist environment conducive to healing. Objectives: This review aims to provide a comprehensive overview of the recent progress in the design and application of polymer-based scaffolds loaded with essential oil (EO) components, emphasizing their role in promoting effective wound healing. Methods: Relevant literature on polymeric scaffolds and EO-based bioactive agents was systematically reviewed, focusing on studies that investigated the biological activities, fabrication techniques, and therapeutic performance of EO-loaded scaffolds in wound management. Results: Findings from recent studies indicate that EO components, particularly monoterpenoids such as thymol, carvacrol, and eugenol, exhibit remarkable antimicrobial, anti-inflammatory, antioxidant, and analgesic properties that accelerate wound healing. When incorporated into polymer matrices, these components enhance scaffold biocompatibility, antimicrobial efficacy, and tissue regeneration capacity through synergistic interactions. Conclusions: The integration of essential oil components into polymeric scaffolds represents a promising strategy for developing multifunctional wound dressings. Such systems combine the structural advantages of polymers with the therapeutic benefits of EOs, offering an effective platform for accelerating healing and preventing wound infections. Full article
Show Figures

Graphical abstract

22 pages, 3370 KB  
Article
Preparation and Characterization of Chemically Cross-Linked Xanthan/Poly(Vinylalcohol) Hydrogel Films Containing Cerium Oxide Nanoparticles for Potential Application in Removal of Methylene Blue and Crystal Violet Dyes
by Nicusor Fifere, Maria Marinela Lazar, Irina Elena Raschip, Anton Airinei, Cristian-Dragos Varganici and Maria Valentina Dinu
Gels 2025, 11(10), 809; https://doi.org/10.3390/gels11100809 - 9 Oct 2025
Viewed by 116
Abstract
In this work, hydrogel nanocomposites, as films, were prepared by embedding cerium oxide nanoparticles (CeO2NPs) within xanthan gum (Xn)/poly(vinylalcohol) (PVA) matrices. Their physicochemical properties were tuned by adjusting the ratio between components and thermal treatment conditions. The cross-linking of the polymer [...] Read more.
In this work, hydrogel nanocomposites, as films, were prepared by embedding cerium oxide nanoparticles (CeO2NPs) within xanthan gum (Xn)/poly(vinylalcohol) (PVA) matrices. Their physicochemical properties were tuned by adjusting the ratio between components and thermal treatment conditions. The cross-linking of the polymer network was confirmed by attenuated total reflectance–Fourier transform infrared (ATR-FTIR), thermal analysis, and swelling behavior. Morphological features were evaluated by atomic force microscopy (AFM), scanning electron microscopy (SEM), while optical properties were investigated by UV–Vis spectroscopy. Undoped films displayed high transparency (~80% transmittance at 400 nm), with thermal cross-linking determined only slight yellowing and negligible changes in absorption edge (300 ± 2 nm). In contrast, CeO2NPs incorporation increased reflectance and introduced a new absorption threshold around 400 ± 2 nm, indicating nanoparticle–matrix interactions that modify optical behavior. Sorption studies with Methylene Blue (MB) and Crystal Violet (CV) dyes highlighted the influence of nanoparticle content and cross-linking on functional performance, with thermally treated samples showing the highest efficiency (~97–98% MB and 71–83% CV removal). Overall, the results demonstrate how structural tailoring and cross-linking control the characteristics of Xn/PVA/CeO2 nanocomposites, providing insight into their design as multifunctional hydrogel materials for environmental applications. Full article
Show Figures

Figure 1

13 pages, 2650 KB  
Article
High-Porosity Hydrogel Microneedles for Rapid and Efficient Extraction of Imidacloprid Residues in Peach Fruits
by Chi Zhang, Xin Liu, Tailong Cai, Jianfeng Ping and Yibin Ying
Foods 2025, 14(19), 3423; https://doi.org/10.3390/foods14193423 - 4 Oct 2025
Viewed by 222
Abstract
Accurate and rapid extraction of pesticide residues in fruits is crucial for timely food safety monitoring. However, conventional extraction methods remain labor-intensive and time-consuming, often requiring hours for sample preparation. Here, we present a porous hydrogel microneedle (HMN) patch integrated with an automated [...] Read more.
Accurate and rapid extraction of pesticide residues in fruits is crucial for timely food safety monitoring. However, conventional extraction methods remain labor-intensive and time-consuming, often requiring hours for sample preparation. Here, we present a porous hydrogel microneedle (HMN) patch integrated with an automated insertion applicator as a highly efficient platform for the rapid extraction of peach juice for imidacloprid residue detection. The HMN patch, composed of polymethyl vinyl ether/maleic anhydride (PMVE/MA) polymer, was fabricated with high porosity by adjusting the porogen content. Under optimized porogen content of 3% NaHCO3, the developed HMN patch exhibited ultrahigh extraction efficiency, achieving a 40-fold water absorption capacity and extracting 0.6% (w/w) peach solids of its weight within 5 min. The extracted juice could be readily recovered through a simple elution process and was directly compatible with both high-performance liquid chromatography (HPLC) analysis and lateral flow assays. Compared with conventional destructive methods, the HMN platform offers a scalable, high-efficiency, and user-friendly solution for high-throughput pesticide extraction. The integration of the automated applicator further enhances consistency, minimizes user variability, and facilitates on-site monitoring of pesticide residues, providing a practical pathway for field-deployable food safety monitoring. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

31 pages, 5792 KB  
Article
Development, Characterization, and Biological Evaluation of a Self-Healing Hydrogel Patch Loaded with Ciprofloxacin for Wound Dressings
by Wasan Al-Farhan, Osama H. Abusara, Mohammad Abu-Sini, Suhair Hikmat, Ola Tarawneh, Sameer Al-Kouz and Rania Hamed
Polymers 2025, 17(19), 2686; https://doi.org/10.3390/polym17192686 - 4 Oct 2025
Viewed by 550
Abstract
Hydrogels are crosslinked polymer chains that form a three-dimensional network, widely used for wound dressing due to their ability to absorb significant amounts of fluid. This study aimed to develop a hydrogel patch for wound dressing with self-healing properties, particularly for joints and [...] Read more.
Hydrogels are crosslinked polymer chains that form a three-dimensional network, widely used for wound dressing due to their ability to absorb significant amounts of fluid. This study aimed to develop a hydrogel patch for wound dressing with self-healing properties, particularly for joints and stretchable body parts, providing a physical barrier while maintaining an optimal environment for wound healing. Polyvinyl alcohol (PVA) and sodium carboxymethyl cellulose (Na CMC) were crosslinked with borax, which reacts with the active hydroxyl groups in both polymers to form a hydrogel. The patches were loaded with ciprofloxacin HCl (CIP), a broad-spectrum antibiotic used to prevent and treat various types of wound infections. Hydrogels were subjected to rheological, morphological, antimicrobial, self-healing, ex vivo release, swelling, cytotoxicity, wound healing, and stability studies. The hydrogels exhibited shear-thinning, thixotropic, and viscoelastic properties. Microscopic images of the CIP hydrogel patch showed a porous, crosslinked matrix. The antimicrobial activity of the patch revealed antibacterial effectiveness against five types of Gram-positive and Gram-negative bacteria, demonstrating a minimum inhibitory concentration of 0.05 μg/mL against E. coli. The swelling percentage was found to be 337.4 ± 12.7%. The cumulative CIP release percentage reached 103.7 ± 3.7% after 3 h, followed by zero-order release kinetics. The stability studies revealed that the crossover point shifted toward higher frequencies after 3 months of storage at room temperature, suggesting a relaxation in the hydrogel bonds. The cytotoxicity study revealed that the CIP hydrogel patch is non-cytotoxic. Additionally, the in vivo study demonstrated that the CIP hydrogel patch possesses wound-healing ability. Therefore, the CIP PVA/Na CMC/Borax patch could be used in wound dressing. Full article
(This article belongs to the Special Issue Biopolymers for Wound Management: Translation for Clinical Practice)
Show Figures

Figure 1

34 pages, 3132 KB  
Review
Innovative Applications of Hydrogels in Contemporary Medicine
by Maciej Rybicki, Karolina Czajkowska, Agata Grochowska, Bartłomiej Białas, Michał Dziatosz, Igor Karolczak, Julia Kot, Radosław Aleksander Wach and Karol Kamil Kłosiński
Gels 2025, 11(10), 798; https://doi.org/10.3390/gels11100798 - 3 Oct 2025
Viewed by 744
Abstract
Hydrogels are hydrophilic, soft polymer networks with high water content and mechanical properties that are tunable; they are also biocompatible. Therefore, as biomaterials, they are of interest to modern medicine. In this review, the main applications of hydrogels in essential clinical applications are [...] Read more.
Hydrogels are hydrophilic, soft polymer networks with high water content and mechanical properties that are tunable; they are also biocompatible. Therefore, as biomaterials, they are of interest to modern medicine. In this review, the main applications of hydrogels in essential clinical applications are discussed. Chemical, physical, or hybrid crosslinking of either synthetic or natural polymers allow for the precise control of hydrogels’ physicochemical properties and their specific characteristics for certain applications, such as stimuli-responsiveness, drug retention and release, and biodegradability. Hydrogels are employed in gynecology to regenerate the endometrium, treat infections, and prevent pregnancy. They show promise in cardiology in myocardial infarction therapy through injectable scaffolds, patches in the heart, and medication delivery. In rheumatoid arthritis, hydrogels act as drug delivery systems, lubricants, scaffolds, and immunomodulators, ensuring effective local treatment. They are being developed, among other applications, as antimicrobial coatings for stents and radiotherapy barriers for urology. Ophthalmology benefits from the use of hydrogels in contact lenses, corneal bandages, and vitreous implants. They are used as materials for chemoembolization, tumor models, and drug delivery devices in cancer therapy, with wafers of Gliadel presently used in clinics. Applications in abdominal surgery include hydrogel-coated meshes for hernia repair or Janus-type hydrogels to prevent adhesions and aid tissue repair. Results from clinical and preclinical studies illustrate hydrogels’ diversity, though problems remain with mechanical stability, long-term safety, and mass production. Hydrogels are, in general, next-generation biomaterials for regenerative medicine, individualized treatment, and new treatment protocols. Full article
(This article belongs to the Special Issue Polymer Hydrogels and Networks)
Show Figures

Figure 1

18 pages, 2457 KB  
Article
The Potential for Reusing Superabsorbent Polymer from Baby Diapers for Water Retention in Agriculture
by Kamilla B. Shishkhanova, Vyacheslav S. Molchanov, Ilya V. Prokopiv, Alexei R. Khokhlov and Olga E. Philippova
Gels 2025, 11(10), 795; https://doi.org/10.3390/gels11100795 - 2 Oct 2025
Viewed by 364
Abstract
Annually, about 2.4 million tons of superabsorbent polymers (SAPs) used in disposable diapers are thrown away, polluting our planet. This study aims to explore the potential for reusing SAPs removed from diapers to enhance soil water retention. To this end, the swelling and [...] Read more.
Annually, about 2.4 million tons of superabsorbent polymers (SAPs) used in disposable diapers are thrown away, polluting our planet. This study aims to explore the potential for reusing SAPs removed from diapers to enhance soil water retention. To this end, the swelling and water retention properties of SAP gels from three different types of diapers were compared to those of an agricultural gel, Aquasorb. Sand was used as a model for soil. When mixed with sand, diaper gels have a swelling degree of ca. 100 g per gram of dried polymer, and a swelling pressure of 12–26 kPa, which are similar to those of Aquasorb gel. Using a synthesized poly(acrylamide-co-sodium acrylate) gel as an example, the correlation between the swelling pressure and the compression modulus of the swollen gel was demonstrated. Soil-hydrological constants were estimated from water retention curves obtained by equilibrium centrifugation of gel/sand mixtures. It was observed that adding 0.3 vol% of diaper gels to sand leads to a 3–4-fold increase in water range available to plants, which is close to that provided by agricultural gel Aquasorb. The water-holding properties were shown to be maintained during several swelling/deswelling cycles in the sand medium. The addition of diaper gels to soil had a significant positive impact on mustard (Brassica juncea L.) seed germination and seedling growth, similar to the agricultural gel Aquasorb. This suggests high potential for the reuse of SAPs from diaper waste to improve soil water retention and water accessibility to plants. This would provide both economic and environmental benefits, conserving energy and raw materials to produce new agricultural gels and limiting the amount of waste. Full article
(This article belongs to the Special Issue Polymer Hydrogels and Networks)
Show Figures

Figure 1

19 pages, 3101 KB  
Article
Structural and Dynamic Properties of Chemically Crosslinked Mammalian and Fish Gelatin Hydrogels
by Vladislav Abramov, Ivan V. Lunev, Ilnaz T. Rakipov, Alena A. Nikiforova, Mariia A. Kazantseva, Olga S. Zueva and Yuriy F. Zuev
Appl. Biosci. 2025, 4(4), 45; https://doi.org/10.3390/applbiosci4040045 - 2 Oct 2025
Viewed by 281
Abstract
Gelatin is a collagen-derived biopolymer widely used in food, pharmaceutical and biomedical applications due to its biocompatibility and gelling ability. However, gelatin hydrogels suffer from unstable mechanical strength, limited thermal resistance and susceptibility to microbial contamination. The main aim of the present study [...] Read more.
Gelatin is a collagen-derived biopolymer widely used in food, pharmaceutical and biomedical applications due to its biocompatibility and gelling ability. However, gelatin hydrogels suffer from unstable mechanical strength, limited thermal resistance and susceptibility to microbial contamination. The main aim of the present study is to investigate the influence of gelatin cryostructuring followed by photo-induced menadione sodium bisulfite (MSB) chemical crosslinking on the structural and functional characteristics of mammalian and fish gelatin hydrogels. The integration of scanning electron microscopy, dielectric spectroscopy and rheological experiments provides a comprehensive view of the of molecular, morphological and mechanical properties of gelatin hydrogels under photo-induced chemical crosslinking. The SEM results revealed that crosslinked hydrogels are characterized by enlarged pores compared to non-crosslinked systems. For mammalian gelatin, multiple pores with thin partitions are formed, giving a dense and stable polymer network. For fish gelatin, large oval pores with thickened partitions are formed, preserving a less stable ordered architecture. Rheological data show strong reinforcement of the elastic and thermal stability of mammalian gelatin. The crosslinked mammalian system maintains the gel state at higher temperatures. Fish gelatin exhibits reduced elasticity retention even after crosslinking because of a different amino acid composition. Dielectric results show that crosslinking increases the portion of bound water in hydrogels considerably, but for fish gelatin, bound water is more mobile, which may explain weaker mechanical properties. Full article
Show Figures

Figure 1

22 pages, 3800 KB  
Article
Study on Carboxymethylation Modification of Konjac Gum and Its Effect in Drilling Fluid and Fracturing Fluid
by Yongfei Li, Pengli Guo, Kun Qu, Weichao Du, Yanling Wang and Gang Chen
Gels 2025, 11(10), 792; https://doi.org/10.3390/gels11100792 - 2 Oct 2025
Viewed by 302
Abstract
With the continuous progress and innovation of petroleum engineering technology, the development of new oilfield additives with superior environmental benefits has attracted widespread attention. Konjac glucomannan (KGM) is a natural resource characterized by abundant availability, low cost, biodegradability, and environmental compatibility. Konjac gum [...] Read more.
With the continuous progress and innovation of petroleum engineering technology, the development of new oilfield additives with superior environmental benefits has attracted widespread attention. Konjac glucomannan (KGM) is a natural resource characterized by abundant availability, low cost, biodegradability, and environmental compatibility. Konjac gum easily forms a weak gel network in water, but its water solubility and thermal stability are poor, and it is easily degraded at high temperatures. Therefore, its application in drilling fluid and fracturing fluid is limited. In this paper, a method of carboxymethyl modification of KGM was developed, and a carboxymethyl group was introduced to adjust KGM’s hydrogel forming ability and stability. Carboxymethylated Konjac glucomannan (CMKG) is a water-soluble anionic polysaccharide derived from natural Konjac glucomannan. By introducing carboxymethyl groups, CMKG overcomes the limitations of the native polymer, such as poor solubility and instability, while retaining its safe and biocompatible nature, making it an effective natural polymer additive for oilfield applications. The results show that when used as a drilling fluid additive, CMKG can form a stable three-dimensional gel network through molecular chain cross-linking, significantly improving the rheological properties of the mud. Its unique gel structure can enhance the encapsulation of clay particles and inhibit clay hydration expansion. When used as a fracturing fluid thickener, the viscosity of the gel system formed by CMKG at 0.6% (w/v) is superior to that of the weak gel system of KGM. The heat resistance/shear resistance tests confirm that the gel structure remains intact under high-temperature and high-shear conditions, meeting the sand-carrying capacity requirements for fracturing operations. The gel-breaking experiment shows that the system can achieve controlled degradation within 300 min, in line with on-site gel-breaking specifications. This modification process not only improves the rheological properties and water solubility of the CMKG gel but also optimizes the gel stability and controlled degradation through molecular structure adjustment. Full article
Show Figures

Graphical abstract

Back to TopTop