Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = polymetallic globules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 12342 KB  
Article
Structural Changes in Copper Slags During Slow Cooling
by Bulat Sukurov, Sergey Kvyatkovskiy, Sultanbek Kozhakhmetov, Anastassiya Semenova, Maral Dyussebekova and Marina Kvyatkovskaya
Metals 2024, 14(10), 1187; https://doi.org/10.3390/met14101187 - 18 Oct 2024
Viewed by 1918
Abstract
The objects of the study were converter slags from the Balkhash copper plant in their initial state and after heat treatment. Using mineralogical and X-ray phase analysis, scanning electron microscopy (SEM), and electron probe microanalysis (EPMA), it was found that the initial converter [...] Read more.
The objects of the study were converter slags from the Balkhash copper plant in their initial state and after heat treatment. Using mineralogical and X-ray phase analysis, scanning electron microscopy (SEM), and electron probe microanalysis (EPMA), it was found that the initial converter slag and its thermally treated samples have identical matrices with almost complete coincidence in mineral and phase compositions. The distinguishing feature is the quantitative ratio of mineral components in the slag mass. Almost all of the iron is oxidized and present in the form of fayalite, magnetite, and magnetite, with other elements (silicon, copper, zinc, and aluminum) incorporated into its lattice. The structure of all slag samples indicates an association of sulfur exclusively with copper. Copper in the slags was identified in both metallic and sulfide forms. Slow cooling of the converter slag after its remelting contributes to the reduction in the sulfide–metal suspension in the volume of the melt and its coarsening. During slow cooling, structural changes occur not only in the main oxide part of the slag but also in the polymetallic globules. Full article
Show Figures

Figure 1

15 pages, 4167 KB  
Article
Slag after Smelting of Anode Mud: Role of Sulphiding Sintering
by Lyudmila Sokolovskaya, Sergey Kvyatkovskiy, Sultanbek Kozhakhmetov, Anastassiya Semenova, Bulat Sukurov, Maral Dyussebekova and Alexander Shakhalov
Minerals 2024, 14(8), 781; https://doi.org/10.3390/min14080781 - 30 Jul 2024
Viewed by 1097
Abstract
The study object was slag from the Balkhash copper smelter, obtained by re-melting anode mud containing nonferrous metals. The process flow for processing these slags includes sintering with Na2SO4, Na2CO3, and coal, followed by soda-alkaline [...] Read more.
The study object was slag from the Balkhash copper smelter, obtained by re-melting anode mud containing nonferrous metals. The process flow for processing these slags includes sintering with Na2SO4, Na2CO3, and coal, followed by soda-alkaline leaching of the sinter and extraction of metals from the solution into marketable products. Since sintering is the main operation providing high selectivity, the composition of the products of this process was studied. The main transformations during sintering were determined, and the optimal parameters were identified. The structures of slags and sintered materials obtained during the experiments were studied by electron-probe microanalysis. Sintering was performed at 600–800 °C. The best results for sulphidization of slag components were obtained at 800 °C; a further increase in temperature leads to the smelting of sinter particles and slows down sulphidization. The optimal quantities of additives, based on the weight of the slag, are Na2SO4—45%, Na2CO3—15%, and reducing agent—41%, with a sintering time of 2 h. These conditions enable the sulphidization of non-ferrous metals in the slag to the entire depth of the polymetallic globules. The distinct concentration of harmful impurities (Ni, As, and Sb) was observed in the fine structure of the polymetallic globules. Full article
(This article belongs to the Special Issue Advances in Pyrometallurgy of Minerals and Ores)
Show Figures

Figure 1

Back to TopTop