Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = polyphyllin II

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3601 KB  
Article
Response Surface Optimization for Water-Assisted Extraction of Two Saponins from Paris polyphylla var. yunnanensis Leaves
by Yutian Jin, Qing Qiao, Linmei Dong, Mokun Cao, Ping Li, Aizhong Liu and Rui Sun
Molecules 2024, 29(7), 1652; https://doi.org/10.3390/molecules29071652 - 6 Apr 2024
Cited by 4 | Viewed by 2263
Abstract
The process of extracting polyphyllin II and polyphyllin VII by water-assisted extraction was established and optimized in this study. Response surface methodology was used to establish a prediction model to optimize the extraction conditions. Based on the one-way test, the Box–Behnken design with [...] Read more.
The process of extracting polyphyllin II and polyphyllin VII by water-assisted extraction was established and optimized in this study. Response surface methodology was used to establish a prediction model to optimize the extraction conditions. Based on the one-way test, the Box–Behnken design with three factors and three levels was used for the experimental program, and the composition analysis was carried out by high-performance liquid chromatography (HPLC). The optimal extraction conditions for polyphyllin II and polyphyllin VII were as follows: extraction time of 57 and 21 min, extraction temperature of 36 and 32 °C, solid-to-liquid ratio of 1:10 and 1:5 g/mL, respectively, and the yields of polyphyllin II and polyphyllin VII were 1.895 and 5.010%, which was similar to the predicted value of 1.835 and 4.979%. The results of the ANOVA showed that the model fit was good, and the Box–Behnken response surface method could optimize the water-assisted extraction of saponins from the leaves of Paris polyphylla var. yunnanensis. This study provides a theoretical basis for the application of polyphyllin II and polyphyllin VII in pharmaceutical production. Full article
Show Figures

Graphical abstract

16 pages, 8223 KB  
Article
Polyphyllin II Induces Protective Autophagy and Apoptosis via Inhibiting PI3K/AKT/mTOR and STAT3 Signaling in Colorectal Cancer Cells
by Jun-Kui Li, Hai-Tao Sun, Xiao-Li Jiang, Yi-Fei Chen, Zhu Zhang, Ying Wang, Wen-Qing Chen, Zhang Zhang, Stephen Cho Wing Sze, Pei-Li Zhu and Ken Kin Lam Yung
Int. J. Mol. Sci. 2022, 23(19), 11890; https://doi.org/10.3390/ijms231911890 - 6 Oct 2022
Cited by 32 | Viewed by 3735
Abstract
Polyphyllin II (PPII) is a natural steroidal saponin occurring in Rhizoma Paridis. It has been demonstrated to exhibit anti-cancer activity against a variety of cancer cells. However, the anti-colorectal cancer (CRC) effects and mechanism of action of PPII are rarely reported. In [...] Read more.
Polyphyllin II (PPII) is a natural steroidal saponin occurring in Rhizoma Paridis. It has been demonstrated to exhibit anti-cancer activity against a variety of cancer cells. However, the anti-colorectal cancer (CRC) effects and mechanism of action of PPII are rarely reported. In the present study, we showed that PPII inhibited the proliferation of HCT116 and SW620 cells. Moreover, PPII induced G2/M-phase cell cycle arrest and apoptosis, as well as protective autophagy, in CRC cells. We found that PPII-induced autophagy was associated with the inhibition of PI3K/AKT/mTOR signaling. Western blotting results further revealed that PPII lowered the protein levels of phospho-Src (Tyr416), phospho-JAK2 (Tyr1007/1008), phospho-STAT3 (Tyr705), and STAT3-targeted molecules in CRC cells. The overactivation of STAT3 attenuated the cytotoxicity of PPII against HCT116 cells, indicating the involvement of STAT3 inhibition in the anti-CRC effects of PPII. PPII (0.5 mg/kg or 1 mg/kg, i.p. once every 3 days) suppressed HCT116 tumor growth in nude mice. In alignment with the in vitro results, PPII inhibited proliferation, induced apoptosis, and lowered the protein levels of phospho-STAT3, phospho-AKT, and phospho-mTOR in xenografts. These data suggest that PPII could be a potent therapeutic agent for the treatment of CRC. Full article
(This article belongs to the Special Issue New Insights in Natural Bioactive Compounds)
Show Figures

Figure 1

18 pages, 2935 KB  
Article
Separation and Purification of Two Saponins from Paris polyphylla var. yunnanensis by a Macroporous Resin
by Xiaoya Zhang, Junli Wu, Long Qin, Guangxi Wang, Ping Li, Anmin Yu, Aizhong Liu and Rui Sun
Molecules 2022, 27(19), 6626; https://doi.org/10.3390/molecules27196626 - 6 Oct 2022
Cited by 25 | Viewed by 3491
Abstract
An effective method for separating and purifying critical saponins (polyphyllin II and polyphyllin VII) from a Paris polyphylla var. yunnanensis extract was developed in this study which was environmentally friendly and economical. Static adsorption kinetics, thermodynamics, and the dynamic adsorption-desorption of macroporous resins [...] Read more.
An effective method for separating and purifying critical saponins (polyphyllin II and polyphyllin VII) from a Paris polyphylla var. yunnanensis extract was developed in this study which was environmentally friendly and economical. Static adsorption kinetics, thermodynamics, and the dynamic adsorption-desorption of macroporous resins were investigated, and then the conditions of purification and separation were optimized by fitting with an adsorption thermodynamics equation and a kinetic equation. Effective NKA-9 resin from seven macroporous resins was screened out to separate and purify the two saponins. The static adsorption and dynamic adsorption were chemical and physical adsorption dual-processes on the NKA-9 resin. Under the optimum parameters, the contents of polyphyllin II and polyphyllin VII in the product were 17.3-fold and 28.6-fold those in plant extracts, respectively. The total yields of the two saponins were 93.16%. This research thus provides a theoretical foundation for the large-scale industrial production of the natural drugs polyphyllin II and polyphyllin VII. Full article
Show Figures

Figure 1

14 pages, 2846 KB  
Article
Disruption of Colorectal Cancer Network by Polyphyllins Reveals Pivotal Entities with Implications for Chemoimmunotherapy
by Ram Siripuram, Zinka Bartolek, Ketki Patil, Saj S. Gill and S. Balakrishna Pai
Biomedicines 2022, 10(3), 583; https://doi.org/10.3390/biomedicines10030583 - 2 Mar 2022
Cited by 5 | Viewed by 3151
Abstract
The prevalence of colorectal cancer has increased world-wide with high rates of mortality and morbidity. In the absence of efficacious drugs to treat this neoplasia, there is an imminent need to discover molecules with multifaceted effects. To this end, we opted to study [...] Read more.
The prevalence of colorectal cancer has increased world-wide with high rates of mortality and morbidity. In the absence of efficacious drugs to treat this neoplasia, there is an imminent need to discover molecules with multifaceted effects. To this end, we opted to study the effect of steroidal saponins such as Polyphyllins. We performed anticancer activity studies with three analogs of Polyphyllins: Polyphyllin D (PD), Polyphyllin II (PII) and Polyphyllin G (PG). Here we show the potent effect of PD, PII (IC50 of 0.5−1 µM) and PG (IC50 of 3 µM) in inhibiting the viability of colorectal adenocarcinoma cells (DLD-1) and colorectal carcinoma cells (HCT116). PD and PII also showed inhibition of cell proliferation and sustained response upon withdrawal of the compounds when assessed by clonogenic assays in both the cell lines. Elucidation of the molecular mode of action revealed impact on the programmed cell death pathway. Additionally, proteomic profiling of DLD-1 revealed pivotal proteins differentially regulated by PD and PII, including a downregulated peroxiredoxin-1 which is considered as one of the novel targets to combat colorectal cancers and an upregulated elongation factor 2 (EF2), one of the key molecules considered as a tumor associated antigen (TAA) in colon cancer. Entities of cell metabolic pathways including downregulation of the key enzyme Phosphoglycerate kinase 1 of the glycolytic pathway was also observed. Importantly, the fold changes per se of the key components has led to the loss of viability of the colorectal cancer cells. We envision that the multifaceted function of PD and PII against the proliferation of colorectal carcinoma cells could have potential for novel treatments such as chemoimmunotherapy for colorectal adenocarcinomas. Future studies to develop these compounds as potent anti-colorectal cancer agents are warranted. Full article
(This article belongs to the Special Issue Anticancer Activity and Metabolic Pathways of Natural Products)
Show Figures

Figure 1

Back to TopTop