Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = polypropylene sheet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
51 pages, 13853 KiB  
Article
Prospective Use and Assessment of Recycled Plastic in Construction Industry
by Aaroon Joshua Das and Majid Ali
Recycling 2025, 10(2), 41; https://doi.org/10.3390/recycling10020041 - 11 Mar 2025
Viewed by 2130
Abstract
The accumulation of plastic waste poses a significant environmental challenge, necessitating sustainable solutions. This study investigates the potential of recycling waste plastics for use in the construction industry, emphasizing their integration into building materials and components. Earlier waste plastic recycling was excessively studied [...] Read more.
The accumulation of plastic waste poses a significant environmental challenge, necessitating sustainable solutions. This study investigates the potential of recycling waste plastics for use in the construction industry, emphasizing their integration into building materials and components. Earlier waste plastic recycling was excessively studied as an ingredient in concrete composites, roads, and other use in research. However, in this study, recycled plastic is assessed for use as a sole material for structural products. Raw plastics, including high-density polyethylene, Low-Density Polyethylene, polypropylene, polyolefin, samicanite, and virgin polyethylene, were analyzed for recycling through mechanical extrusion, and their mechanical properties were analyzed to determine their feasibility for construction applications. In this study, the extrusion process, combined with engineered dyes, was investigated with comprehensive material testing as per the ASTM standards to obtain the properties desired for construction. Advanced characterization techniques, including SEM, FTIR, and TGA, were employed to evaluate the chemical composition, thermal stability, and impurities of these waste plastics collected from municipal waste. A gas emission analysis during extrusion confirmed a minimal environmental impact, validating the sustainability of the recycling process. Municipal waste plastic has a considerable quantum of HDPE, PP, and LDPE, which was considered in this research for recycling for construction products. A total of 140 samples were recycled through extrusion and tested across shear, flexural, tensile, and compression categories: 35 samples each. The results showed that rHDPE and PP had good tensile strength and shear resistance. The findings pave the way for developing cost-effective, durable, and eco-friendly building materials, such as rebars, corrugated sheet, blocks, and other products, contributing to environmental conservation and resource efficiency for the construction Industry. Full article
Show Figures

Graphical abstract

18 pages, 5889 KiB  
Article
Glass Fiber-Reinforced Polypropylene Composites with High Solar Reflectance for Thermal Insulation Applications
by Csenge Vámos and Tamás Bárány
Polymers 2025, 17(3), 274; https://doi.org/10.3390/polym17030274 - 22 Jan 2025
Viewed by 869
Abstract
Reflective thermal insulation layers can offer an energy-efficient strategy for preventing temperature rises by reflecting sunlight on surfaces. Our previous study presented a novel solvent-based method to prepare porous polypropylene (PP) with high solar reflectivity. However, the stiffness and strength of the neat [...] Read more.
Reflective thermal insulation layers can offer an energy-efficient strategy for preventing temperature rises by reflecting sunlight on surfaces. Our previous study presented a novel solvent-based method to prepare porous polypropylene (PP) with high solar reflectivity. However, the stiffness and strength of the neat porous PP were insufficient for thermal insulation applications, as mechanical loads from installation and environmental factors limit the applicability of such products. This paper addresses this gap by applying our solvent-based surface modification technology to glass fiber (GF)-reinforced PP composite sheets, creating a previously unexplored system. While the enhanced modulus and strength aligned with expectations, the micro- and nano-structured porous outer layers situated below the skin layer of the sheets, the refractive index mismatch between the PP matrix and the GF, and the size of the GF delivered a notable advancement in reflective thermal insulation performance. The combined effect of 30 wt% GF, nucleating agents, and surface modification resulted in a highly porous surface layer featuring spherulite sizes of 0.5–2.0 μm. With these combined effects, we achieved a modulus value of ~4 GPa, a tensile strength of 60 MPa, and an average solar reflectance of up to 94%. Thermal insulation performance measurements demonstrated that the registered inner temperature was lower by 24.1 °C compared to neat PP sheets. These combined effects demonstrate the potential of our solvent-based surface modification technology to develop cost-effective, porous PP composite sheets for efficient reflective thermal insulation. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

21 pages, 6058 KiB  
Article
Determination of Compressive Stress Limits for Tightened Plastic Components up to 3 mm in Bolted Joints Applicable in the Automotive Industry
by Zuzana Murčinková, Rudolf Holíček, Petr Baron and Martin Onufer
Polymers 2025, 17(3), 268; https://doi.org/10.3390/polym17030268 - 21 Jan 2025
Viewed by 728
Abstract
This paper addresses the analysis of compressive stress limit values of plastic components with a thickness of no more than 3 mm used in bolted joints, especially in the automotive industry. The results of the compression tests show that the compressive stress limit [...] Read more.
This paper addresses the analysis of compressive stress limit values of plastic components with a thickness of no more than 3 mm used in bolted joints, especially in the automotive industry. The results of the compression tests show that the compressive stress limit values often exceed the tensile stress limit values specified in the material data sheets, which has a significant impact on the way in which reliable bolted joints are designed without the risk of plastic deformation. In addition to compression tests, stress tests involving axial force and torque (combined load typical for bolted joints) were also performed. Th results of both types of tests were compared in the final table, involving a comparison of yield strength under compression and yield strength under a combined load with yield strength and/or stress at break from material data sheets, estimated using tensile stress tests. Various plastic materials were tested, including Acrylonitrile Butadiene Styrene (ABS), Polyamide (PA), Polyoxymethylene (POM), Polypropylen (PP) and the glass fiber-reinforced materials. The tests showed that it is possible to exceed the tensile stress limit in material data sheets by 5 to 10% without plastic deformation and by approximately 50%, in some cases by 280%, when loading by pure compression. Considering the combined load, the compressive stress limit values are within the range of 95 to 224% of tensile stress limits. The results of the study contribute to the optimization of the plastic tightened components design and reduce the need for excessive testing in automotive production. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

15 pages, 8620 KiB  
Article
Fabrication of Low-Cost Porous Carbon Polypropylene Composite Sheets with High Photothermal Conversion Performance for Solar Steam Generation
by Shuqing Xu, Shiyun Wu, Bin Xu, Jiang Ma, Jianjun Du and Jianguo Lei
Polymers 2024, 16(19), 2813; https://doi.org/10.3390/polym16192813 - 4 Oct 2024
Viewed by 1344
Abstract
The development of absorber materials with strong light absorption properties and low-cost fabrication processes is highly significant for the application of photothermal conversion technology. In this work, a mixed powder consisting of NaCl, polypropylene (PP), and scale-like carbon flakes was ultrasonically pressed into [...] Read more.
The development of absorber materials with strong light absorption properties and low-cost fabrication processes is highly significant for the application of photothermal conversion technology. In this work, a mixed powder consisting of NaCl, polypropylene (PP), and scale-like carbon flakes was ultrasonically pressed into sheets, and the NaCl was then removed by salt dissolution to obtain porous carbon polypropylene composite sheets (P-CPCS). This process is simple, green, and suitable for the low-cost, large-area fabrication of P-CPCS. P-CPCS has a well-distributed porous structure containing internal and external connected water paths. Under the dual effects of the carbon flakes and porous structure, P-CPCS shows excellent photothermal conversion performance in a broad wavelength range. P-CPCS-40 achieves a high temperature of 128 °C and a rapid heating rate of 12.4 °C/s under laser irradiation (808 nm wavelength, 1.2 W/cm2 power). When utilized for solar steam generation under 1 sun irradiation, P-CPCS-40 achieves 98.2% evaporation efficiency and a 1.81 kg m−2 h−1 evaporation rate. This performance means that P-CPCS-40 outperforms most other previously reported absorbers in terms of evaporation efficiency. The combination of carbon flakes, which provide a photothermal effect, and a porous polymer structure, which provides light-capturing properties, opens up a new strategy for desalination, sewage treatment, and other related fields. Full article
Show Figures

Graphical abstract

23 pages, 16371 KiB  
Article
Experimental Investigations on Shear Thickening Fluids as “Liquid Body Armors”: Non-Conventional Formulations for Ballistic Protection
by Florentina Alexe, Ciprian Sau, Ovidiu Iorga, Gabriela Toader, Aurel Diacon, Edina Rusen, Claudiu Lazaroaie, Raluca Elena Ginghina, Tudor Viorel Tiganescu, Mircea Teodorescu and Arcadie Sobetkii
Polymers 2024, 16(16), 2305; https://doi.org/10.3390/polym16162305 - 15 Aug 2024
Cited by 2 | Viewed by 3027
Abstract
Shear thickening fluids (STFs) have garnered attention as potential enhancers of protective capabilities and for the optimization of Kevlar® armor design. To assess the possible shear thickening properties and potential application in ballistic protection, ten formulations were developed by employing polyethylene glycol [...] Read more.
Shear thickening fluids (STFs) have garnered attention as potential enhancers of protective capabilities and for the optimization of Kevlar® armor design. To assess the possible shear thickening properties and potential application in ballistic protection, ten formulations were developed by employing polyethylene glycol (PEG) or polypropylene glycol (PPG), along with fumed silica or Aerosil HDK®. Rheological characterization facilitated the identification of formulations displaying shear thickening behavior. The potential integration of the selected shear thickening fluids (STFs) into Kevlar®-based composites was investigated by studying the impact resistance of Kevlar® soft armor structures. Also, high-velocity impact testing revealed that the distance between aramid layers plays a crucial role in the impact resistance effectiveness of Kevlar®–STF composite structures and that there is a very narrow domain between optimal and undesired scenarios in which STF could facilitate the penetration of Kevlar. The introduction of STF between the Kevlar sheets disrupted this packing and the energy absorption capacity of the material was not improved. Only one formulation (PEG400, Aerosil 27 wt.%) led to a less profound traumatic imprint and stopped the bullet when it was placed between layers no.1 and no.2 from a total of 11 layers of Kevlar XP. These experimental findings align with the modeling and simulation of Kevlar®–STF composites using Ansys simulation software (Ansys® AutoDyn 2022 R2). Full article
(This article belongs to the Special Issue Advanced Polymer Materials: Synthesis, Structure, and Properties)
Show Figures

Figure 1

14 pages, 3166 KiB  
Article
Microplastic Quantification in Aquatic Birds: Biomonitoring the Environmental Health of the Panjkora River Freshwater Ecosystem in Pakistan
by Muhammad Bilal, Atif Yaqub, Habib Ul Hassan, Sohail Akhtar, Naseem Rafiq, Muhammad Ishaq Ali Shah, Ibrar Hussain, Muhammad Salman Khan, Asad Nawaz, Salim Manoharadas, Mohammad Rizwan Khan, Takaomi Arai and Patricio De Los Ríos-Escalante
Toxics 2023, 11(12), 972; https://doi.org/10.3390/toxics11120972 - 30 Nov 2023
Cited by 15 | Viewed by 3087
Abstract
Microplastic pollution has become a global concern, with potential negative impacts on various ecosystems and wildlife species. Among these species, ducks (Anas platyrhynchos) are particularly vulnerable due to their feeding habits and proximity to aquatic environments contaminated with microplastics. The current [...] Read more.
Microplastic pollution has become a global concern, with potential negative impacts on various ecosystems and wildlife species. Among these species, ducks (Anas platyrhynchos) are particularly vulnerable due to their feeding habits and proximity to aquatic environments contaminated with microplastics. The current study was designed to monitor microplastic (MP) pollutants in the freshwater ecosystem of the Panjkora River, Lower Dir, Pakistan. A total of twenty (20) duck samples were brought up for four months and 13 days on the banks of the river, with no food intake outside the river. When they reached an average weight of 2.41 ± 0.53 kg, all samples were sacrificed, dissected, and transported in an ice box to the laboratory for further analysis. After sample preparation, such as digestion with 10% potassium hydroxide (KOH), density separation, filtration, and identification, the MP content was counted. A total of 2033 MP particles were recovered from 20 ducks with a mean value of 44.6 ± 15.8 MPs/crop and 57.05 ± 18.7 MPs/gizzard. MPs detected in surface water were 31.2 ± 15.5 MPs/L. The major shape types of MPs recovered were fragments in crop (67%) and gizzard (58%) samples and fibers in surface water (56%). Other types of particles recovered were fibers, sheets, and foams. The majority of these detected MP particles were in the size range of 300–500 µm (63%) in crops, and 50–150 µm (55%) in gizzards, while in water samples the most detected particles were in the range of 150–300 µm (61%). Chemical characterization by FTIR found six types of polymers. Low-density polyethylene (LDPE) had the greatest polymer detection rate (39.2%), followed by polyvinyl chloride (PVC) (28.3%), high-density polyethylene (HDPE) (22.7%), polystyrene (6.6%), co-polymerized polypropylene (2.5%), and polypropylene homopolymer (0.7%). This study investigated the presence of microplastics in the crops and gizzards of ducks, as well as in river surface water. The results revealed the significant and pervasive occurrence of microplastics in both the avian digestive systems and the surrounding water environment. These findings highlight the potential threat of microplastic pollution to wildlife and ecosystems, emphasizing the need for further research and effective mitigation strategies to address this pressing environmental concern. Full article
Show Figures

Figure 1

12 pages, 3276 KiB  
Article
Field Study of Activity of Antimicrobial Polypropylene Textiles
by Alena Balogová, Bibiána Bizubová, Michal Kleščík and Tomáš Zatroch
Fibers 2023, 11(11), 97; https://doi.org/10.3390/fib11110097 - 10 Nov 2023
Cited by 1 | Viewed by 2026
Abstract
In this work, an in situ study is presented of the impact of textile materials used in healthcare facilities on microbial colonization of textile surfaces. The available literature describes antimicrobial active textiles and their effectiveness in laboratory conditions. However, the quantification of the [...] Read more.
In this work, an in situ study is presented of the impact of textile materials used in healthcare facilities on microbial colonization of textile surfaces. The available literature describes antimicrobial active textiles and their effectiveness in laboratory conditions. However, the quantification of the impact on the microbiome of healthcare facilities has not been investigated so far. Polypropylene yarns doped with silver phosphate glass and zinc pyrithione were prepared and used for the production of bed sheets and clothing for healthcare personnel. Subsequently, measurements of airborne particles and viable microorganisms on given textiles were conducted in a private surgery clinic for 3 weeks, comparing the counts of viable microorganisms before and after replacing staff clothing and bedding on examination and the surgical bed with said polypropylene cloth. A significant reduction in airborne particles and viable microorganisms was expected based on previous studies on the use of polypropylene textiles in operating rooms. In this study, a significant reduction in viable airborne fungi and viable microorganisms on monitored textiles was observed by multiple methods. However, the effect on airborne microorganisms seems insignificant in areas with frequent patient traffic. The textile described here represents a new additional way of protecting patients and medical personnel from healthcare-associated infections while using a modification of proven production procedures and commercially usable materials without legislative restrictions. Full article
Show Figures

Graphical abstract

22 pages, 7449 KiB  
Article
Challenges in Manufacturing of Hemp Fiber-Reinforced Organo Sheets with a Recycled PLA Matrix
by Maximilian Salmins, Florian Gortner and Peter Mitschang
Polymers 2023, 15(22), 4357; https://doi.org/10.3390/polym15224357 - 8 Nov 2023
Cited by 1 | Viewed by 2041
Abstract
This study investigates the influence of a hot press process on the properties of hemp fiber-reinforced organo sheets. Plain-woven fabric made from hemp staple fiber yarns is used as textile reinforcement, together with a recycled poly-lactic acid (PLA) matrix. Process pressure and temperature [...] Read more.
This study investigates the influence of a hot press process on the properties of hemp fiber-reinforced organo sheets. Plain-woven fabric made from hemp staple fiber yarns is used as textile reinforcement, together with a recycled poly-lactic acid (PLA) matrix. Process pressure and temperature are considered with three factor levels for each parameter. The parameter influence is examined based on the B-factor model, which considers the temperature-dependent viscosity of the polymer, as well as the process pressure for the calculation of a dimensionless value. Increasing these parameters theoretically promotes improvements in impregnation. This study found that the considered recycled polymer only allows a narrow corridor to achieve adequate impregnation quality alongside optimal bending properties. Temperatures below 170 °C impede impregnation due to the high melt viscosity, while temperature increases to 185 °C show the first signs of thermal degradation, with reduced bending modulus and strength. A comparison with hemp fiber-reinforced virgin polypropylene, manufactured with identical process parameters, showed that this reduction can be mainly attributed to polymer degradation rather than reduction in fiber properties. The process pressure should be at least 1.5 MPa to allow for sufficient compaction of the textile stack, thus reducing theoretical pore volume content to a minimum. Full article
(This article belongs to the Special Issue Manufacturing of Polymer-Matrix Composites)
Show Figures

Graphical abstract

19 pages, 6423 KiB  
Article
An Experimental Approach to Determining the Average Diffusion Coefficient of Volatile Components in Polymer Waste Materials
by Chi Nghia Chung, Christian Marschik, Jakub Klimosek, Juraj Kosek, Mohamad Hassan Akhras and Georg Steinbichler
Recycling 2023, 8(5), 72; https://doi.org/10.3390/recycling8050072 - 21 Sep 2023
Cited by 2 | Viewed by 2718
Abstract
One of the major challenges in recycling plastics is the removal of undesired volatile components from the polymeric phase, which may reduce process efficiency and negatively affect product quality. Accordingly, the recycling industry employs a broad range of degassing techniques, the efficiency of [...] Read more.
One of the major challenges in recycling plastics is the removal of undesired volatile components from the polymeric phase, which may reduce process efficiency and negatively affect product quality. Accordingly, the recycling industry employs a broad range of degassing techniques, the efficiency of which often depends on the diffusion coefficient—a measure of the mass transport of volatile components in polymeric phases. The aim of this study was to develop a practically feasible experimental approach using thermogravimetric analysis (TGA) to determine the average diffusion coefficient of volatile components in polymer waste materials. First, the TGA method was validated with a pressure decay apparatus (PDA) using predefined binary material mixtures: Thin sheets were pressed from virgin high-density polyethylene (HDPE) and polypropylene (PP) and deliberately saturated with toluene in a sorption experiment. These saturated samples were then used in TGA and PDA desorption experiments at 60 °C, 80 °C and 100 °C, which yielded similar results with an average difference of 7.4% for the HDPE-toluene system and 14.7% for the PP-toluene system. When validated, TGA was employed to determine the diffusion coefficient of volatile components in post-industrial plastic waste melt at a temperature of 220 °C. The proposed method contributes to the understanding of diffusion-based mass transport in polymer waste materials and provides a key parameter for model-based process control and optimization. In practice, the diffusion coefficient results can be used to predict the degassing performance of an extrusion process in the mechanical recycling of plastic waste. Full article
(This article belongs to the Special Issue Advances in the Recycling, Processing and Use of Plastic Waste II)
Show Figures

Graphical abstract

13 pages, 4726 KiB  
Article
Non-Wettable Microporous Sheets Using Mixed Polyolefin Waste for Oil–Water Separation
by Junaid Saleem, Zubair Khalid Baig Moghal, Rana A. Shakoor, Adriaan S. Luyt and Gordon McKay
Polymers 2023, 15(14), 3072; https://doi.org/10.3390/polym15143072 - 17 Jul 2023
Cited by 5 | Viewed by 1675
Abstract
Mixed polyolefin-based waste needs urgent attention to mitigate its negative impact on the environment. The separation of these plastics requires energy-intensive processes due to their similar densities. Additionally, these materials cannot be blended without compatibilizers, as they are inherently incompatible and immiscible. Herein, [...] Read more.
Mixed polyolefin-based waste needs urgent attention to mitigate its negative impact on the environment. The separation of these plastics requires energy-intensive processes due to their similar densities. Additionally, these materials cannot be blended without compatibilizers, as they are inherently incompatible and immiscible. Herein, non-wettable microporous sheets from recycled polyethylene (PE) and polypropylene (PP) are presented. The methodology involves the application of phase separation and spin-casting techniques to obtain a bimodal porous structure, facilitating efficient oil–water separation. The resulting sheets have an immediate and equilibrium sorption uptake of 100 and 55 g/g, respectively, due to the presence of micro- and macro-pores, as revealed by SEM. Moreover, sheets possess enhanced crystallinity, as evidenced by XRD; hence, they retain their structure during sorption and desorption and are reusable with 98% efficiency. The anti-wetting properties of the sheets are enhanced by applying a silane coating, ensuring waterless sorption and a contact angle of 140°. These results highlight the importance of implementing sustainable solutions to recycle plastics and mitigate the oil spill problem. Full article
(This article belongs to the Special Issue Polymeric Materials for Water/Wastewater Treatment Applications)
Show Figures

Figure 1

14 pages, 12027 KiB  
Article
Development and Characterization of Polymeric Composites Reinforced with Lignocellulosic Wastes for Packaging Applications
by Muhammad Sulaiman, Fahad Ali Rabbani, Tanveer Iqbal, Fahid Riaz, Muhammad Raashid, Nehar Ullah, Saima Yasin, Yasser Fouad, Muhammad Mujtaba Abbas and M. A. Kalam
Sustainability 2023, 15(13), 10161; https://doi.org/10.3390/su151310161 - 27 Jun 2023
Cited by 7 | Viewed by 2199
Abstract
In this work, the effects of different fiber loadings on the mechanical properties of the composites at the sub-micron scale were studied through nanoindentation followed by physical characterization. The composites were prepared by incorporating different loadings of wheat straw, corn stalk, and rice [...] Read more.
In this work, the effects of different fiber loadings on the mechanical properties of the composites at the sub-micron scale were studied through nanoindentation followed by physical characterization. The composites were prepared by incorporating different loadings of wheat straw, corn stalk, and rice husk in polypropylene copolymer using a melt processing method followed by thermal–hydraulic compression technique. Nanoindentation experiments in quasi-continuous stiffness mode were performed on the surfaces of produced composites to study the composites’ elastic modulus, hardness, and creep properties. The obtained results expressed the in-depth study of the micro- and macro-level structure and behavior of particle interactions. The findings demonstrated that observable shifts in composites’ hardness, elastic modulus, and creep rate had occurred. The WS-reinforced biocomposite sheet showed the highest elastic modulus of 1.09 and hardness of 0.11 GPa at 40 wt% loading in comparison to other loadings. An impact strength of 7.55 kJ/m2 was noted for the biocomposite at 40 wt% RH loading. In addition, optical microscopy, Fourier transform infrared spectroscopy, water absorption, thickness swelling, and Vicat softening point studies were conducted on biocomposite sheets to evaluate differences in physical, mechanical, and thermal properties. The outstanding mechanical performance of the newly developed composites makes them suitable for use as a biodegradable packaging material. Full article
Show Figures

Figure 1

19 pages, 6156 KiB  
Article
Ferrocement, Carbon, and Polypropylene Fibers for Strengthening Masonry Shear Walls
by Enea Mustafaraj, Marco Corradi, Yavuz Yardim, Erion Luga and Muhammed Yasin Codur
Materials 2023, 16(13), 4597; https://doi.org/10.3390/ma16134597 - 26 Jun 2023
Cited by 5 | Viewed by 1973
Abstract
This paper describes an experimental investigation into the feasibility of using ferrocement jacketing, polypropylene fibers, and carbon fiber reinforced polymer sheets (CFRP) to enhance the shear resistance of unreinforced brick masonry. The study involved testing 12 wall panels in diagonal compression, three of [...] Read more.
This paper describes an experimental investigation into the feasibility of using ferrocement jacketing, polypropylene fibers, and carbon fiber reinforced polymer sheets (CFRP) to enhance the shear resistance of unreinforced brick masonry. The study involved testing 12 wall panels in diagonal compression, three of which were strengthened using each of the above-mentioned techniques. The results showed that all three strengthening techniques led to a significant improvement in the shear resistance and deformation capacity of the unreinforced walls. Furthermore, the results showed that the strengthened walls exhibited a significant improvement in shear resistance and deformation capacity by a factor of 3.3–4.7 and 3.7–6.8, respectively. These findings suggest that ferrocement jacketing is a viable and highly effective method for strengthening masonry structures. Test results can assist in the decision-making process to identify the most suitable design and retrofitting solution, which could indicate that not only new materials, but also traditional methods and materials (ferrocement) could be interesting and effective, also considering their lower initial cost. Full article
Show Figures

Figure 1

17 pages, 5412 KiB  
Article
Cooperative Effect of Ni-Decorated Monolayer WS2, NiO, and AC on Improving the Flame Retardancy and Mechanical Property of Polypropylene Blends
by Mingqiang Shao, Yiran Shi, Jiangtao Liu, Baoxia Xue and Mei Niu
Polymers 2023, 15(13), 2791; https://doi.org/10.3390/polym15132791 - 23 Jun 2023
Viewed by 1109
Abstract
Improving the residual char of polypropylene (PP) is difficult due to the preferential complete combustion. Here, we designed a combination catalyst that not only provides physical barrier effects, but also dramatically promotes catalytic charring activity. We successfully synthesized WS2 monolayer sheets decorated [...] Read more.
Improving the residual char of polypropylene (PP) is difficult due to the preferential complete combustion. Here, we designed a combination catalyst that not only provides physical barrier effects, but also dramatically promotes catalytic charring activity. We successfully synthesized WS2 monolayer sheets decorated with isolated Ni atoms that bond covalently to sulfur vacancies on the basal planes via thiourea. Subsequently, PP blends composed of 8 wt.% Ni-decorated WS2, NiO, and activated carbon (AC) were obtained (ENi-SWS2-AC-PP). Combining the physical barrier effects of WS2 monolayer sheets with the excellent catalytic carbonization ability of the ENi-SWS2-AC combination catalyst, the PP blends showed a remarkable improvement in flame retardancy, with the yield of residual char reaching as high as 41.6 wt.%. According to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations, it was revealed that the microstructure of residual char contained a large number of carbon nanotubes. The production of a large amount of residual char not only reduced the release of pyrolytic products, but also formed a thermal shield preventing oxygen and heat transport. Compared to pure PP, the peak heat release rate (pHRR) and total heat release rate (THR) of ENi-SWS2-AC-PP were reduced by 46.32% and 26.03%, respectively. Furthermore, benefiting from the highly dispersed WS2, the tensile strength and Young’s modulus of ENi-SWS2-AC-PP showed similar values to pure PP, without sacrificing the toughness. Full article
Show Figures

Figure 1

14 pages, 13149 KiB  
Article
Design and Preparation of Flexible Graphene/Nonwoven Composites with Simultaneous Broadband Absorption and Stable Properties
by Song Bi, Yongzhi Song, Genliang Hou, Hao Li, Nengjun Yang and Zhaohui Liu
Nanomaterials 2023, 13(4), 634; https://doi.org/10.3390/nano13040634 - 5 Feb 2023
Cited by 5 | Viewed by 1991
Abstract
As the world moves into the 21st century, the complex electromagnetic wave environment is receiving widespread attention due to its impact on human health, suggesting the critical importance of wearable absorbing materials. In this paper, graphene nonwoven (RGO/NW) composites were prepared by diffusely [...] Read more.
As the world moves into the 21st century, the complex electromagnetic wave environment is receiving widespread attention due to its impact on human health, suggesting the critical importance of wearable absorbing materials. In this paper, graphene nonwoven (RGO/NW) composites were prepared by diffusely distributing graphene sheets in a polypropylene three-dimensional framework through Hummers’ method. Moreover, based on the Jaumann structural material design concept, the RGO/NW composite was designed as a multilayer microwave absorber, with self-recovery capability. It achieves effective absorption (reflection loss of −10 dB) in the 2~18 GHz electromagnetic wave frequency domain, exhibiting a larger bandwidth than that reported in the literature for absorbers of equivalent thickness. In addition, the rationally designed three-layer sample has an electromagnetic wave absorption of over 97% (reflection loss of −15 dB) of the bandwidth over 14 GHz. In addition, due to the physical and chemical stability of graphene and the deformation recovery ability of nonwoven fabric, the absorber also shows good deformation recovery ability and stable absorption performance. This broadband absorption and extreme environmental adaptability make this flexible absorber promising for various applications, especially for personnel wearable devices. Full article
(This article belongs to the Special Issue Advanced Nanomaterials in Terahertz and Microwave Technology)
Show Figures

Figure 1

16 pages, 3872 KiB  
Article
Key Parameters Impacting the Crystal Formation in Antisolvent Membrane-Assisted Crystallization
by Sara Chergaoui, Damien P. Debecker, Tom Leyssens and Patricia Luis
Membranes 2023, 13(2), 140; https://doi.org/10.3390/membranes13020140 - 21 Jan 2023
Cited by 9 | Viewed by 3338
Abstract
Antisolvent crystallization is commonly used in the formation of heat-sensitive compounds as it is the case for most active pharmaceutical ingredients. Membranes have the ability to control the antisolvent mass transfer to the reaction medium, providing excellent mixing that inhibits the formation of [...] Read more.
Antisolvent crystallization is commonly used in the formation of heat-sensitive compounds as it is the case for most active pharmaceutical ingredients. Membranes have the ability to control the antisolvent mass transfer to the reaction medium, providing excellent mixing that inhibits the formation of local supersaturations responsible for the undesired properties of the resulting crystals. Still, optimization of the operating conditions is required. This work investigates the impact of solution velocity, the effect of antisolvent composition, the temperature and gravity, using glycine-water-ethanol as a model crystallization system, and polypropylene flat sheet membranes. Results proved that in any condition, membranes were consistent in providing a narrow crystal size distribution (CSD) with coefficient of variation (CV) in the range of 0.5–0.6 as opposed to 0.7 obtained by batch and drop-by-drop crystallization. The prism-like shape of glycine crystals was maintained as well, but slightly altered when operating at a temperature of 35 °C with the appearance of smoother crystal edges. Finally, the mean crystal size was within 23 to 40 µm and did not necessarily follow a clear correlation with the solution velocities or antisolvent composition, but increased with the application of higher temperature or gravity resistance. Besides, the monoclinic form of α-glycine was perfectly maintained in all conditions. The results at each condition correlated directly with the antisolvent transmembrane flux that ranged between 0.0002 and 0.001 kg/m2. s. In conclusion, membrane antisolvent crystallization is a robust solution offering consistent crystal properties under optimal operating conditions. Full article
(This article belongs to the Special Issue Honorary Issue for Prof João G. Crespo)
Show Figures

Graphical abstract

Back to TopTop