Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (373,276)

Search Parameters:
Keywords = potential

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2116 KB  
Article
Predicting the Potential Suitable Habitat of Solanum rostratum in China Using the Biomod2 Ensemble Modeling Framework
by Jiajie Wang, Jingdong Zhao, Lina Jiang, Xuejiao Han and Yuanjun Zhu
Plants 2025, 14(17), 2779; https://doi.org/10.3390/plants14172779 (registering DOI) - 5 Sep 2025
Abstract
Solanum rostratum Dunal is a highly invasive species with strong environmental adaptability and reproductive capacity, posing serious threats to agroforestry ecosystems and human health. In this study, we compiled occurrence records of S. rostratum in China from online databases and sources in the [...] Read more.
Solanum rostratum Dunal is a highly invasive species with strong environmental adaptability and reproductive capacity, posing serious threats to agroforestry ecosystems and human health. In this study, we compiled occurrence records of S. rostratum in China from online databases and sources in the literature. We employed the Biomod2 ensemble modeling framework to predict the potential distribution of the species under current climatic conditions and four future climate scenarios (SSP126, SSP245, SSP370, and SSP585), and to identify the key environmental variables influencing its distribution. The ensemble model based on the committee averaging (EMca) approach achieved the highest predictive accuracy, with a true skill statistic (TSS) of 0.932 and an area under the curve (AUC) of 0.990. Under present climatic conditions, S. rostratum is predominantly distributed across northern China, particularly in Xinjiang, Inner Mongolia, and the northeastern provinces, covering a total suitable area of 1,191,586.55 km2, with highly suitable habitats accounting for 50.37% of this range. Under future climate scenarios, the species’ suitable range is projected to expand significantly, particularly under the high-emissions SSP585 scenario, with the distribution centroid expected to shift significantly toward high-altitude regions in Gansu Province. Precipitation and temperature emerged as the most influential environmental factors affecting habitat suitability. These findings indicate that ongoing global warming may facilitate the survival, reproduction, and rapid spread of S. rostratum across China in the coming decades. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

19 pages, 2859 KB  
Article
Cells Derived from Concentrated Growth Factor Exhibit a Multilineage Differentiation Capacity
by Laura Giannotti, Nadia Calabriso, Francesco Spedicato, Andrea Palermo, Benedetta Di Chiara Stanca, Christian Demitri, Maria Antonietta De Sangro, Maria Annunziata Carluccio, Fabrizio Damiano, Luisa Siculella and Eleonora Stanca
Int. J. Mol. Sci. 2025, 26(17), 8646; https://doi.org/10.3390/ijms26178646 (registering DOI) - 5 Sep 2025
Abstract
Concentrated growth factor (CGF) is an autologous blood-derived product widely used in regenerative medicine due to its high concentration of growth factors and platelets. In this study, the ability of primary stem cells isolated from human CGF to differentiate into adipocytes, endothelial cells, [...] Read more.
Concentrated growth factor (CGF) is an autologous blood-derived product widely used in regenerative medicine due to its high concentration of growth factors and platelets. In this study, the ability of primary stem cells isolated from human CGF to differentiate into adipocytes, endothelial cells, and neuronal-like cells was evaluated in vitro. CGF primary cells (CPCs) were obtained from CGF fragments and characterized after one month in culture. These cells were positive for the surface markers CD105, CD45, CD31, and CD14, and also expressed mRNA levels of the stemness markers Nanog and Oct3/4 comparable to human bone marrow mesenchymal stem cells (BMSCs). Results showed that, following appropriate differentiation protocols, CPCs, similarly to BMSCs, were able to differentiate into adipogenic, endothelial, and neuronal lineages, acquiring specific phenotypic and molecular markers. Adipogenic induction resulted in lipid accumulation and the upregulation of key genes, including PLIN2, FABP4, CD36, and FASN. Under pro-endothelial conditions, the cells exhibited increased expression of endothelial markers, eNOS, VEGFR-2, and CD31. Neuronal induction promoted the expression of β-tubulin III, Nestin, and Neurofilament. Overall, this work highlights the remarkable plasticity of CPCs and supports their potential application in multilineage regenerative therapies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 3813 KB  
Review
Resource Recycling and Ceramsite Utilization of Coal-Based Solid Waste: A Review
by Han Wang, Chunfu Liu, Chenyu Zhu and Zhipeng Gong
Minerals 2025, 15(9), 948; https://doi.org/10.3390/min15090948 (registering DOI) - 5 Sep 2025
Abstract
Coal-based solid waste refers to solid waste generated during coal mining and washing processes, and is one of the major types of industrial solid waste in China. Its resource utilization is a critical part of the clean and efficient use of coal, and [...] Read more.
Coal-based solid waste refers to solid waste generated during coal mining and washing processes, and is one of the major types of industrial solid waste in China. Its resource utilization is a critical part of the clean and efficient use of coal, and preparing ceramsite from coal-based solid waste is an important means to promote its “resourceful, large-scale, and high-value” utilization. This paper systematically summarizes the types and properties of coal-based solid waste, its resource utilization methods, and research progress in ceramsite preparation. The focus is on assessing the feasibility, process features, and application status of ceramsite made from coal-based solid waste in areas such as construction, heavy metal stabilization, and water treatment. Using coal-based solid waste to produce ceramsite offers cost reduction and pollution mitigation benefits while showcasing significant potential for resource recycling and sustainable development. This paper further outlines the development trends and technological innovation directions for coal-based solid waste ceramsite, providing theoretical support and practical guidance for advancing the resource utilization of industrial solid waste. Full article
(This article belongs to the Special Issue Recycling and Utilization of Metallurgical and Chemical Solid Waste)
Show Figures

Figure 1

19 pages, 3396 KB  
Article
Effect of Scale Inhibitors on the Nucleation and Crystallization of Calcium Carbonate
by Vanessa Pimentel Lages, Raquel Gonçalves, Fernanda Medeiros, Rubens Bisatto, André Linhares Rossi and Amaro Gomes Barreto Junior
Minerals 2025, 15(9), 947; https://doi.org/10.3390/min15090947 (registering DOI) - 5 Sep 2025
Abstract
Effective control of calcium carbonate (CaCO3) scale formation is crucial to improve the performance and economic efficiency of water systems. This study investigates the impact of various scale inhibitors on the nucleation and crystallization processes of CaCO3. Calcium carbonate [...] Read more.
Effective control of calcium carbonate (CaCO3) scale formation is crucial to improve the performance and economic efficiency of water systems. This study investigates the impact of various scale inhibitors on the nucleation and crystallization processes of CaCO3. Calcium carbonate particles were synthesized by mixing CaCl2·2H2O and NaHCO3 solutions, in the presence of various scale inhibitors that had not previously been investigated using the experimental techniques employed in this study. Particle size distribution and zeta potential were analyzed using dynamic light scattering (DLS), while Ca+2 consumption and pH changes were monitored with ion-selective electrodes. Crystal morphology was evaluated using scanning electron microscopy (SEM) and cryo-transmission electron microscopy (cryo-TEM). We demonstrated that, in all samples, approximately 98% of the CaCO3 particles (sized between 400 and 840 nm) are formed within the first 30 min of synthesis, and these particles then aggregate to form larger particles (840–1100 nm in size). Due to the solution’s high supersaturation, the inhibitors influence calcium consumption only after 5 min of synthesis. All inhibitors, especially DTPMP, decrease calcium consumption and particle size during synthesis. The zeta potential and morphology of the particles in the samples containing inhibitors differed from those in the control group. Cryo-TEM observations revealed distinct nanometric precursor phases in the calcite crystallization process without inhibitors and different nanostructures when scale inhibitors were used. Moreover, conchoidal fractures were observed in the nanoparticles formed in the presence of DTPMP. This study demonstrates the effectiveness of various inhibitors in reducing calcium consumption in solution and altering the morphology of CaCO3 crystals, thereby preventing calcium carbonate (CaCO3) scale formation. Full article
Show Figures

Graphical abstract

23 pages, 1399 KB  
Article
Permutation-Based Analysis of Clinical Variables in Necrotizing Fasciitis Using NPC and Bootstrap
by Gianfranco Piscopo, Sai Teja Bandaru, Massimiliano Giacalone and Maria Longobardi
Mathematics 2025, 13(17), 2869; https://doi.org/10.3390/math13172869 (registering DOI) - 5 Sep 2025
Abstract
Necrotizing fasciitis (NF) is a rare but aggressive soft tissue infection with high rates of mortality and amputation, making early identification of key prognostic biomarkers essential for clinical management. However, the rarity and heterogeneity of NF mean clinical datasets are often small and [...] Read more.
Necrotizing fasciitis (NF) is a rare but aggressive soft tissue infection with high rates of mortality and amputation, making early identification of key prognostic biomarkers essential for clinical management. However, the rarity and heterogeneity of NF mean clinical datasets are often small and non-normally distributed, limiting the effectiveness of standard parametric statistical approaches. To address this, we retrospectively analyzed 66 NF patients using a robust, distribution-free framework that combines the Nonparametric Combination (NPC) methodology and bootstrap resampling. We specifically assessed glycated hemoglobin (HBA1C) and serum albumin (ALBUMINA) as potential predictors of two outcomes: mortality (MORTO) and major amputation (AMPUTAZIONE). NPC enabled exact multivariate hypothesis testing while rigorously controlling the family-wise error rate (FWER), and bootstrap resampling generated 95% confidence intervals (CI) for critical biomarkers. HBA1C was an exceptionally significant predictor compared to the 7.0% clinical threshold (p = 1.04 × 10−154, CI: 0.0830–0.0957), while ALBUMINA showed greater biological variability but no significant association with outcomes (2.8 g/dL; p = 0.267, CI: 2.551–2.866). We also developed a global severity ranking, integrating multiple variables to improve clinical risk stratification. Our results demonstrate that permutation-based and resampling methods provide reliable, actionable insights from challenging small-sample clinical datasets. Based on a small-sample dataset from necrotizing fasciitis patients, this framework provides a replicable model for robust, nonparametric statistical analysis in similarly rare and high-risk medical conditions. This study introduces a Nonparametric Combination (NPC) framework for risk scoring in necrotizing fasciitis using bootstrap resampling and permutation tests. Key predictors like HBA1C and Albumin were assessed, achieving an AUC of 0.89 and a Youden Index of 0.71. The model offers a robust, interpretable tool for clinical risk stratification in small-sample rare disease settings. Full article
(This article belongs to the Special Issue Statistical Analysis: Theory, Methods and Applications)
Show Figures

Figure 1

19 pages, 5697 KB  
Article
Biomechanical and Morphological Analyses of Enamel White Spot Lesions Treated by Different Therapeutic Approaches (In Vitro Comparative Study)
by Lamis Abdul Hammed Al-Taee, Mohammad Talal Al-Hyazaie, Rabeia J. Khalil and Avijit Banerjee
Dent. J. 2025, 13(9), 408; https://doi.org/10.3390/dj13090408 (registering DOI) - 5 Sep 2025
Abstract
Background/Objectives: Within the minimum intervention oral care (MIOC) delivery framework, the management and improvement in the esthetics of enamel white spot lesions (WSLs) are recommended. This study evaluated the chemomechanical and morphological characteristics of WSLs treated by four therapeutic approaches using Raman [...] Read more.
Background/Objectives: Within the minimum intervention oral care (MIOC) delivery framework, the management and improvement in the esthetics of enamel white spot lesions (WSLs) are recommended. This study evaluated the chemomechanical and morphological characteristics of WSLs treated by four therapeutic approaches using Raman spectroscopy, Knoop microhardness (KH), and field-emission scanning electron microscopy (FESEM). Methods: Sixty human enamel slabs were divided into six groups: non-treated (baseline), WSLs (8% methylcellulose gel with 0.1 M lactic acid, pH 4.6 at 37 °C for 21 days), and four treated groups, namely bovine collagen supplement (Nutravita Ltd., Maidenhead, Berkshire, UK), Regenerate system (NR-5, Bordeaux, France), Sylc air abrasion (AquaCare, Denfotex Research Ltd., Edinburgh, UK), and CO2 laser (JHC1180, Jinan, China). Treatment lasted 28 days, followed by four weeks of storage in artificial saliva (pH = 7.0, 37 °C). Bovine collagen was analyzed using Fourier-Transform Infrared Spectroscopy (FTIR). The mineral content, including the phosphate peak intensities (PO4 ν1, ν2, and ν4) and carbonate (CO3), as well as tissue microhardness, were assessed at varying depths (50–200 µm), followed by morphological assessment. Results: The FTIR spectrum of bovine collagen powder confirms the presence of amide I, II, and III. It produced a statistically significant enhancement in the phosphate content and KHN compared to WSLs of up to 150 µm in depth (p < 0.001). Regenerate-treated surfaces recorded the highest phosphate content among groups at the superficial layer. All treatment interventions enhanced the morphology of lesions by covering the exposed prisms and inter-prismatic structure. Conclusions: Bovine collagen supplements can enhance the phosphate content and surface properties of enamel white spot lesions (WSLs) and could be considered a potential modality comparable to other micro-invasive approaches for addressing incipient enamel lesions. This could significantly impact dental care management. Full article
(This article belongs to the Special Issue Updates and Highlights in Cariology)
Show Figures

Graphical abstract

19 pages, 1720 KB  
Article
Analytical Formulation of New Mode Selection Criteria in the Reconstruction of Static Deformation of Structures Through Modal Superposition
by Gabriele Liuzzo, Miriam Parisi and Pierluigi Fanelli
Appl. Mech. 2025, 6(3), 67; https://doi.org/10.3390/applmech6030067 (registering DOI) - 5 Sep 2025
Abstract
The accuracy of modal superposition methods for determining displacement or strain field of structures largely depends on the selection of modes relevant to its deformation. Analytical methods for modal selection have been developed to minimise errors in reconstructing deformation through a linear combination [...] Read more.
The accuracy of modal superposition methods for determining displacement or strain field of structures largely depends on the selection of modes relevant to its deformation. Analytical methods for modal selection have been developed to minimise errors in reconstructing deformation through a linear combination of modal shapes. This study constitutes an initial step towards the development of structural health-monitoring algorithms for large engineering machines, where continuous monitoring of strain and stress, assuming a linear elastic field, is critical. The focus is on selecting modes that significantly contribute to the reconstruction of static deformation of structures. A detailed analytical approach, derived from established structural dynamics principles, leads to the formulation of modal selection criteria. These criteria are based on two fundamental quantities from dynamic and elastic theory: the modal participation factor and internal strain potential energy. Three criteria are introduced: the directional participation factor criterion (DPFC), the global participation factor criterion (GPFC), and the internal strain potential energy criterion (ISPEC). While DPFC and GPFC rely on displacements, ISPEC uses strains. The methods are validated through a case study involving a rectangular plate subjected to various loads, demonstrating their applicability to complex deformation scenarios, which require the combination of multiple modes to fully describe the static deformation. The proposed criteria are formulated for linear elastic systems and are therefore applicable, in principle, to plate-like components, machine casings, thin structural panels, and certain civil and aerospace panels, under the assumptions of small strains, linear constitutive behaviour, and validity of modal superposition. The approach also represents a first step towards the integration of modal selection with machine learning for structural health-monitoring applications and presents a computational cost significantly lower than that of full finite element analyses. Full article
Show Figures

Figure 1

18 pages, 267 KB  
Article
‘Making the System Work’: A Multi-Site Qualitative Study of Dietitians’ Use of iEMR to Support Nutrition Care Transitions for Older Adults with Malnutrition
by Kristin Gomes, Shelley Roberts, Ben Desbrow and Jack Bell
Healthcare 2025, 13(17), 2227; https://doi.org/10.3390/healthcare13172227 (registering DOI) - 5 Sep 2025
Abstract
Background: Older adults with malnutrition (≥65 years) require coordinated nutrition care during hospital-to-home transitions. A key purpose of integrated electronic medical record (iEMR) systems is to support clinicians in ensuring continuity of care across settings, yet little is known about their use in [...] Read more.
Background: Older adults with malnutrition (≥65 years) require coordinated nutrition care during hospital-to-home transitions. A key purpose of integrated electronic medical record (iEMR) systems is to support clinicians in ensuring continuity of care across settings, yet little is known about their use in nutrition care discharge practices. This study explored how clinical dietitians use the iEMR to support nutrition care discharge practices for older adults with malnutrition and identified opportunities for optimisation to enhance care continuity. Methods: Semi-structured interviews were conducted with 16 clinical dietitians (11 frontline clinicians, 5 senior leaders) from 10 public hospitals across Queensland, Australia. Analysis combined deductive coding using the Consolidated Framework for Implementation Research 2.0 with inductive thematic analysis to identify system-level, organisational and behavioural influences on iEMR use and optimisation opportunities. Results: Four themes and ten subthemes were identified. System fragmentation, policy constraints and documentation burden limited dietitians’ ability to coordinate discharge care. Workarounds were common and reflected both practical adaptation and conditional trust in iEMR. Discharge practices were also shaped by local culture, professional norms and variable expectations for iEMR use. Despite these constraints, participants expressed aspirations for an optimised iEMR with embedded referral tools, real-time alerts and analytics to support improved service delivery. Conclusions: This study identified key factors influencing iEMR use by clinical dietitians to support nutrition care transitions for older adults with malnutrition. While current systems present significant challenges, optimising iEMR alongside organisational and policy enablers holds potential to strengthen nutrition care discharge practices and care continuity. Full article
(This article belongs to the Special Issue Nutrition in Patient Care)
19 pages, 2895 KB  
Article
Sea Urchin Pigment Ethylspinazarin (U-573): A Novel P2X7 Receptor Antagonist with Neuroprotective and Antiparkinsonian Effects
by Evgeny Pislyagin, Sergey Kozlovskiy, Irina Agafonova, Ekaterina Menchinskaya, Ekaterina Chingizova, Tatiana Gorpenchenko, Anatolii Mirochnik, Elena Fedorenko, Yuri Sabutski, Sergei Polonik and Dmitry Aminin
Int. J. Mol. Sci. 2025, 26(17), 8639; https://doi.org/10.3390/ijms26178639 (registering DOI) - 5 Sep 2025
Abstract
The ability of the quinonoid sea urchin pigment ethylspinazarin (U-573) to protect mouse Neuro-2a neuronal cells from the neurotoxic effect of one of the Parkinson’s disease inducers, MPP+, was studied. This compound blocked Ca2+ influx and inhibited macropore formation through the P2X7 [...] Read more.
The ability of the quinonoid sea urchin pigment ethylspinazarin (U-573) to protect mouse Neuro-2a neuronal cells from the neurotoxic effect of one of the Parkinson’s disease inducers, MPP+, was studied. This compound blocked Ca2+ influx and inhibited macropore formation through the P2X7 receptor induced by high concentrations of ATP. Ethylspinazarin at a concentration of 10 μM increased the viability of neuronal cells treated with the neurotoxin by approximately 15% and reduced the level of NO and ROS to control values. Further, U-573 prevented the MPP+-induced formation of amyloid-like protein aggregates in neuronal cells by approximately 50%. This compound at a dosage of 1 mg/kg exerted an anti-inflammatory effect in a mouse model of inflammation, reducing ATP-induced paw edema to values of intact animals. Moreover, the potential of ethylspinazarin in providing an antiparkinsonian effect was shown using a mouse model of MPTP-induced Parkinson’s disease. It is likely that the antiparkinsonian activity in in vivo experiments may be mediated by the ability of U-573 to cross the blood–brain barrier. Finally, we found that U-573 effectively inhibits the functioning of ATP-dependent purinergic P2X7 receptors in neuronal cells. This property may be of key importance in the manifestation of the antiparkinsonian activity of this 1,4-naphthoquinone. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

14 pages, 2477 KB  
Article
Potential Linkage Between Zebra Mussel Establishment, Cyanobacterial Community Composition, and Microcystin Levels in United States Lakes
by Feng Zhang, Jayun Kim, Ozeas S. Costa, Jr., Song Liang and Jiyoung Lee
Toxins 2025, 17(9), 447; https://doi.org/10.3390/toxins17090447 (registering DOI) - 5 Sep 2025
Abstract
Zebra mussel invasion of North American lakes during the last century may play an important role in the occurrence of toxic cyanobacterial blooms. However, empirical evidence quantifying their influence on cyanobacterial community dynamics at broad spatial scales remains limited. Here, we analyzed data [...] Read more.
Zebra mussel invasion of North American lakes during the last century may play an important role in the occurrence of toxic cyanobacterial blooms. However, empirical evidence quantifying their influence on cyanobacterial community dynamics at broad spatial scales remains limited. Here, we analyzed data from the U.S. EPA National Lakes Assessment (>1000 lakes) to examine potential linkages among zebra mussels, cyanobacterial community composition, and cyanotoxin levels. The analysis results showed significant differences in cyanobacterial communities between lakes located in areas with and without established zebra mussel populations. The lakes with established zebra mussels exhibited significantly higher microcystin levels and cyanobacterial abundance, but lower phosphorus concentrations. Structural equation modeling was used to confirm and estimate the effect of zebra mussels on microcystin concentrations via different pathways. The results suggest three potential pathways whereby zebra mussels influence microcystin production: (1) altering phosphorus concentration; (2) increasing cyanobacterial abundance; and (3) shifting cyanobacteria community structure. The total effect of zebra mussel establishment resulted in an overall 1.40-fold net increase in microcystin level, which presumably resulted from three contributing factors: (1) a 1.06-fold increase through an increased cyanobacterial abundance; (2) a 1.53-fold increase through a selective force, resulting in increased cyanobacteria toxicity; and (3) a 0.86-fold decrease in microcystin level through total phosphorus decrease. The study highlights the potential role of zebra mussel invasion in altering cyanobacterial composition and influencing microcystin levels in U.S. lakes. Full article
Show Figures

Graphical abstract

23 pages, 1544 KB  
Article
Isolation and Molecular Characterization of Potential Plant Growth-Promoting Bacteria from Groundnut and Maize
by Bartholomew Saanu Adeleke and Soji Fakoya
Int. J. Plant Biol. 2025, 16(3), 102; https://doi.org/10.3390/ijpb16030102 (registering DOI) - 5 Sep 2025
Abstract
Exploring microbial resources from coastal environments is crucial for enhancing food security; however, current knowledge remains limited. This study aimed to isolate and molecularly characterize bacteria associated with maize and groundnut, and to evaluate their potential as plant growth-promoting (PGP) agents. Rhizobacteria were [...] Read more.
Exploring microbial resources from coastal environments is crucial for enhancing food security; however, current knowledge remains limited. This study aimed to isolate and molecularly characterize bacteria associated with maize and groundnut, and to evaluate their potential as plant growth-promoting (PGP) agents. Rhizobacteria were isolated from rhizospheric soil, and endophytic bacteria were obtained from surface-sterilized and macerated plant roots. One gram of each sample was suspended in sterile distilled water in test tubes, serially diluted, and plated on nutrient agar. After incubation, distinct colonies were sub-cultured to obtain pure cultures for biochemical tests, screening for PGP traits, assessment of pH and salt tolerance, optimal growth conditions, bioinoculation potential, and molecular analysis. Out of sixty isolated bacteria, five potent strains, BS1-BS5, were identified. BS3 showed the highest mannanase activity, with a 2.3 cm zone of clearance, while BS2 exhibited high indole-3-acetic acid (IAA) and phosphate solubilization activities of 10.92 µg/mL and 10.78 mg/L. BS1 and BS4 demonstrated high drought tolerance, 0.94 and 0.98 at 10% PEG, with BS1 also showing maximum salt tolerance of 0.76. At 6.0 g and 2.0 g supplementation, BS1 and BS2 utilized 100% lactose and fructose. BS3 exhibited the highest percentage of antifungal activity, with a 30.12% inhibition rate. BS4 and BS5 promoted shoot lengths of 55.00 cm and 49.80 cm, respectively. Although the bacterial species isolated are generally considered pathogenic, their positive effects contributed significantly to maize growth. Full article
(This article belongs to the Topic New Challenges on Plant–Microbe Interactions)
Show Figures

Figure 1

14 pages, 1199 KB  
Article
Biotransformation of Antibiotics by Coriolopsis gallica: Degradation of Compounds Does Not Always Eliminate Their Toxicity
by Bouthaina Ghariani, Héla Zouari-Mechichi, Abdulrahman H. Alessa, Hussain Alqahtani, Ahmad A. Alsaigh and Tahar Mechichi
Antibiotics 2025, 14(9), 897; https://doi.org/10.3390/antibiotics14090897 (registering DOI) - 5 Sep 2025
Abstract
Background/Objectives: Wastewaters containing antibiotics pose risks to human health and soil ecosystems. In this study, the white-rot fungus Coriolopsis gallica (a basidiomycete exhibiting high laccase production) was used for the biotransformation of three antibiotics (50 mg L−1): tetracycline, chloramphenicol, and sulfanilamide. [...] Read more.
Background/Objectives: Wastewaters containing antibiotics pose risks to human health and soil ecosystems. In this study, the white-rot fungus Coriolopsis gallica (a basidiomycete exhibiting high laccase production) was used for the biotransformation of three antibiotics (50 mg L−1): tetracycline, chloramphenicol, and sulfanilamide. Methods: The biotransformation process was investigated in liquid and solid media using high-performance liquid chromatography (HPLC) and the bacterial growth inhibition agar well diffusion method, respectively. Results: Among the three antibiotics tested, tetracycline showed the highest biotransformation efficiency, achieving a 100% removal rate in the liquid medium and a 100% decrease in the growth inhibition of Escherichia coli in the solid medium. Chloramphenicol and sulfanilamide were partially removed (20% and 16%, respectively) after 12 days of treatment in more than one step without the loss of their antibacterial activities. The presence of these antibiotics in the culture medium of C. gallica enhanced laccase activity, indicating that this ligninolytic enzyme might participate in the biotransformation process. Conclusions: Thus, the results reported in this article extend our knowledge of the catalytic potential of C. gallica and give further perspectives for its application in the biodegradation of antibiotics. To the best of our knowledge, this is the first study wherein C. gallica was used for the treatment of tetracycline, chloramphenicol, and sulfanilamide. Full article
Show Figures

Figure 1

31 pages, 1475 KB  
Review
TREM2 in Neurodegenerative Diseases: Mechanisms and Therapeutic Potential
by Ling Li, Xiaoxiao Zheng, Hongyue Ma, Mingxia Zhu, Xiuli Li, Xiaodan Sun and Xinhong Feng
Cells 2025, 14(17), 1387; https://doi.org/10.3390/cells14171387 (registering DOI) - 5 Sep 2025
Abstract
Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), represent significant global health challenges, affecting millions and straining healthcare systems. These disorders involve progressive neuronal loss and cognitive decline, with incompletely elucidated underlying mechanisms. Chronic neuroinflammation is increasingly [...] Read more.
Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), represent significant global health challenges, affecting millions and straining healthcare systems. These disorders involve progressive neuronal loss and cognitive decline, with incompletely elucidated underlying mechanisms. Chronic neuroinflammation is increasingly recognized as a critical contributor to disease progression. The brain’s resident immune cells, microglia, are central to this inflammatory response. When overactivated, microglia and other immune cells, such as peripheral macrophages, can exacerbate inflammation and accelerate disease development. Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) is a transmembrane receptor of the immunoglobulin superfamily that demonstrates high expression on microglia in the central nervous system. TREM2 serves a vital role in regulating phagocytosis, synaptic pruning, and energy metabolism. This review examines the functions of TREM2 in neurodegenerative diseases and its potential as a therapeutic target, aiming to inform future treatment strategies. Full article
Show Figures

Figure 1

21 pages, 320 KB  
Review
Virtual Reality as a Mediating Tool in Addressing Social Communication Disorder: Current Understanding and Implementation Strategies
by Weifeng Han, Tianchong Wang, Yu Takizakwa and Shane Pill
Languages 2025, 10(9), 226; https://doi.org/10.3390/languages10090226 (registering DOI) - 5 Sep 2025
Abstract
Social Communication Disorder (SCD) involves persistent verbal and non-verbal communication difficulties, significantly impacting children and adolescents’ social interactions. Traditional interventions, while valuable, face practical limitations, including difficulties replicating real-world social contexts and low engagement among some learners. This paper examines Virtual Reality (VR) [...] Read more.
Social Communication Disorder (SCD) involves persistent verbal and non-verbal communication difficulties, significantly impacting children and adolescents’ social interactions. Traditional interventions, while valuable, face practical limitations, including difficulties replicating real-world social contexts and low engagement among some learners. This paper examines Virtual Reality (VR) as an innovative intervention tool for SCD through a comprehensive review of empirical studies (2010–2024). Analysis of 11 peer-reviewed studies, encompassing both autism spectrum disorder (ASD)-specific and broader SCD populations, revealed five key themes being discussed in the current literature: usability and acceptability, social skills training, gaze and attention tracking, measurement and assessment, and applications in inclusive education. Our findings demonstrate VR’s potential as a mediating tool between therapeutic interventions and real-world social interactions, offering controlled yet naturalistic environments that enable safe, structured practice while maintaining engagement. The alignment with cognitive science principles enhances learning processes through effective management of cognitive demands. Building on these findings, we propose implementation strategies for educational and therapeutic settings, addressing design considerations, delivery methods, and outcome evaluation. This synthesis advances the understanding of VR as an innovative, scalable approach to supporting social communication development in children and adolescents. Full article
18 pages, 2353 KB  
Article
Dynamic Facility Location and Allocation Optimization for Sustainable Product-Service Delivery Using Co-Evolutionary Adaptive Genetic Algorithms
by Wei Ye and Zhitao Xu
Sustainability 2025, 17(17), 8000; https://doi.org/10.3390/su17178000 (registering DOI) - 5 Sep 2025
Abstract
Product-service systems contribute to sustainable development through innovative service integration and novel customer value creation. However, the competitive advantage of sustainable product lifecycle service delivery hinges critically on the operational efficiency of service networks. This study addresses dynamic service facility location and allocation [...] Read more.
Product-service systems contribute to sustainable development through innovative service integration and novel customer value creation. However, the competitive advantage of sustainable product lifecycle service delivery hinges critically on the operational efficiency of service networks. This study addresses dynamic service facility location and allocation challenges in a time-varying demand environment, focusing on the strategic deployment of multiple comprehensive service centers (CSCs) and their dynamic customer allocation across planning horizons. In this study, we develop a 0–1 integer programming model and propose a novel co-evolutionary adaptive multi-objective genetic algorithm (CA-MOGA) with four key enhancements: (1) optimized chromosome representation, (2) adaptive strategy incorporation, (3) genetic operators with gene repair mechanisms, and (4) elite trans-generation migration. Through real-world case validation, CA-MOGA demonstrates significant improvements over conventional genetic algorithms in both convergence speed and solution quality. The performance and adaptability of the proposed algorithm suggest strong potential for customizable applications in solving diverse complex optimization problems. Full article
(This article belongs to the Special Issue Sustainable Project, Production and Service Operations Management)
Show Figures

Figure 1

Back to TopTop