Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,230)

Search Parameters:
Keywords = power converters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 4561 KB  
Review
Smartphone-Integrated Electrochemical Devices for Contaminant Monitoring in Agriculture and Food: A Review
by Sumeyra Savas and Seyed Mohammad Taghi Gharibzahedi
Biosensors 2025, 15(9), 574; https://doi.org/10.3390/bios15090574 (registering DOI) - 2 Sep 2025
Abstract
Recent progress in microfluidic technologies has led to the development of compact and highly efficient electrochemical platforms, including lab-on-a-chip (LoC) systems, that integrate multiple testing functions into a single, portable device. Combined with smartphone-based electrochemical devices, these systems enable rapid and accurate on-site [...] Read more.
Recent progress in microfluidic technologies has led to the development of compact and highly efficient electrochemical platforms, including lab-on-a-chip (LoC) systems, that integrate multiple testing functions into a single, portable device. Combined with smartphone-based electrochemical devices, these systems enable rapid and accurate on-site detection of food contaminants, including pesticides, heavy metals, pathogens, and chemical additives at farms, markets, and processing facilities, significantly reducing the need for traditional laboratories. Smartphones improve the performance of these platforms by providing computational power, wireless connectivity, and high-resolution imaging, making them ideal for in-field food safety testing with minimal sample and reagent requirements. At the core of these systems are electrochemical biosensors, which convert specific biochemical reactions into electrical signals, ensuring highly sensitive and selective detection. Advanced nanomaterials and integration with Internet of Things (IoT) technologies have further improved performance, delivering cost-effective, user-friendly food monitoring solutions that meet regulatory safety and quality standards. Analytical techniques such as voltammetry, amperometry, and impedance spectroscopy increase accuracy even in complex food samples. Moreover, low-cost engineering, artificial intelligence (AI), and nanotechnology enhance the sensitivity, affordability, and data analysis capabilities of smartphone-integrated electrochemical devices, facilitating their deployment for on-site monitoring of food and agricultural contaminants. This review explains how these technologies address global food safety challenges through rapid, reliable, and portable detection, supporting food quality, sustainability, and public health. Full article
Show Figures

Figure 1

19 pages, 2128 KB  
Article
The Torrefaction of Agricultural and Industrial Residues: Thermogravimetric Analysis, Characterization of the Products and TG-FTIR Analysis of the Gas Phase
by Danijela Urbancl, Deniz Agačević, Eva Gradišnik, Anja Šket, Nina Štajnfelzer, Darko Goričanec and Aleksandra Petrovič
Energies 2025, 18(17), 4648; https://doi.org/10.3390/en18174648 (registering DOI) - 1 Sep 2025
Abstract
Four biomass residues–rosemary pomace, rosemary cake, grape seed and apple pomace–were torrefied at 250, 350 and 450 °C, and the physical, chemical and structural changes were characterized. The mass and energy yield decreased with increasing torrefaction temperature; the lowest mass (~10.4%) and energy [...] Read more.
Four biomass residues–rosemary pomace, rosemary cake, grape seed and apple pomace–were torrefied at 250, 350 and 450 °C, and the physical, chemical and structural changes were characterized. The mass and energy yield decreased with increasing torrefaction temperature; the lowest mass (~10.4%) and energy yield (~10.6%) were observed for rosemary cake torrefied at 450 °C. The HHV increased the most for all feedstocks at 350 °C, with rosemary cake reaching a peak value of 36.4 MJ/kg at 350 °C. Ash content increased with temperature due to organic mass loss, while volatiles decreased and fixed carbon increased in most samples. The FTIR spectra showed the progressive loss of hydroxyl, carbonyl and C–O functionalities and the appearance of aromatic C=C bonds, indicating the formation of the biochar. TGA and DTG analyses revealed that the torrefied samples exhibited higher initial and maximum temperatures for decomposition, confirming improved thermal stability. The TGA-FTIR analyses of gas emissions during pyrolysis and combustion showed that the emissions of CO2, CH4, NOx and SO2 decreased with increasing degree of torrefaction. Overall, 350 °C was optimal to maximize energy density. The results show that agro-industrial residues can be effectively converted into sustainable biofuels, which offer the dual benefit of reducing waste disposal problems and providing a renewable alternative. In practice, such residues could be used for decentralized power generation in rural areas, co-combustion in existing power plants, or as feedstock for advanced bioenergy systems. Full article
(This article belongs to the Section B: Energy and Environment)
21 pages, 2790 KB  
Article
Fault Identification Method for Flexible Traction Power Supply System by Empirical Wavelet Transform and 1-Sequence Faulty Energy
by Jiang Lu, Shuai Wang, Shengchun Yan, Nan Chen, Daozheng Tan and Zhongrui Sun
World Electr. Veh. J. 2025, 16(9), 495; https://doi.org/10.3390/wevj16090495 (registering DOI) - 1 Sep 2025
Abstract
The 2 × 25 kV flexible traction power supply system (FTPSS), using a three-phase-single-phase converter as its power source, effectively addresses the challenges of neutral section transitions and power quality issues inherent in traditional power supply systems (TPSSs). However, the bidirectional fault current [...] Read more.
The 2 × 25 kV flexible traction power supply system (FTPSS), using a three-phase-single-phase converter as its power source, effectively addresses the challenges of neutral section transitions and power quality issues inherent in traditional power supply systems (TPSSs). However, the bidirectional fault current and low short-circuit current characteristics degrade the effectiveness of traditional TPSS protection schemes. This paper analyzes the fault characteristics of FTPSS and proposes a fault identification method based on empirical wavelet transform (EWT) and 1-sequence faulty energy. First, a composite sequence network model is developed to reveal the characteristics of three typical fault types, including ground faults and inter-line short circuits. The 1-sequence differential faulty energy is then calculated. Since the 1-sequence component is unaffected by the leakage impedance of autotransformers (ATs), the proposed method uses this feature to distinguish the TPSS faults from disturbances caused by electric multiple units (EMUs). Second, EWT is used to decompose the 1-sequence faulty energy, and relevant components are selected by permutation entropy. The fault variance derived from these components enables reliable identification of TPSS faults, effectively avoiding misjudgment caused by AT excitation inrush or harmonic disturbances from EMUs. Finally, real-time digital simulator experimental results verify the effectiveness of the proposed method. The fault identification method possesses high tolerance to transition impedance performance and does not require synchronized current measurements from both sides of the TPSS. Full article
28 pages, 4658 KB  
Article
Simulation, Optimization, and Techno-Economic Assessment of 100% Off-Grid Hybrid Renewable Energy Systems for Rural Electrification in Eastern Morocco
by Noure Elhouda Choukri, Samir Touili, Abdellatif Azzaoui and Ahmed Alami Merrouni
Processes 2025, 13(9), 2801; https://doi.org/10.3390/pr13092801 - 1 Sep 2025
Abstract
Hybrid Renewable Energy Systems (HRESs) can be an effective and sustainable way to provide electricity for remote and rural villages in Morocco; however, the design and optimization of such systems can be a challenging and difficult task. In this context, the objective of [...] Read more.
Hybrid Renewable Energy Systems (HRESs) can be an effective and sustainable way to provide electricity for remote and rural villages in Morocco; however, the design and optimization of such systems can be a challenging and difficult task. In this context, the objective of this research is to design and optimize different (HRESs) that incorporate various renewable energy technologies, namely Photovoltaics (PVs), wind turbines, and Concentrating Solar Power (CSP), whereas biomass generators and batteries are used as a storage medium. Overall, 15 scenarios based on different HRES configurations were designed, simulated, and optimized by the HOMER software for the site of Ain Beni Mathar, located in eastern Morocco. Furthermore, the potential CO2 emissions reduction from the different scenarios was estimated as well. The results show that the scenario including PVs and batteries is most cost-effective due to favorable climatic conditions and low costs. In fact, the most optimal HRES from a technical and economic standpoint is composed of a 48.8 kW PV plant, 213 batteries, a converter capacity of 43.8 kW, and an annual production of 117.5 MWh with only 8.8% excess energy, leading to an LCOE of 0.184 USD/kWh with a CO2 emissions reduction of 81.7 tons per year, whereas scenarios with wind turbines, CSP, and biomass exhibit a higher LCOE in the range of 0.472–1.15 USD/kWh. This study’s findings confirm the technical and economic viability of HRESs to supply 100% of the electricity demand for rural Moroccan communities, through a proper HRES design. Full article
(This article belongs to the Special Issue Advances in Heat Transfer and Thermal Energy Storage Systems)
Show Figures

Figure 1

27 pages, 11587 KB  
Article
Adaptive Transient Power Angle Control for Virtual Synchronous Generators via Physics-Embedded Reinforcement Learning
by Jiemai Gao, Siyuan Chen, Shixiong Fan, Jun Jason Zhang, Deping Ke, Hao Jun, Kezheng Jiang and David Wenzhong Gao
Electronics 2025, 14(17), 3503; https://doi.org/10.3390/electronics14173503 - 1 Sep 2025
Abstract
With the increasing integration of renewable energy sources and power electronic converters, Grid-Forming (GFM) technologies such as Virtual Synchronous Generators (VSGs) have emerged as key enablers of future power systems. However, conventional VSG control strategies with fixed parameters often fail to maintain transient [...] Read more.
With the increasing integration of renewable energy sources and power electronic converters, Grid-Forming (GFM) technologies such as Virtual Synchronous Generators (VSGs) have emerged as key enablers of future power systems. However, conventional VSG control strategies with fixed parameters often fail to maintain transient stability under dynamic grid conditions. This paper proposes a novel adaptive GFM control framework based on physics-informed reinforcement learning, targeting transient power angle stability in systems with high renewable penetration. An adaptive controller, termed the 3N-D controller, is developed to periodically update the virtual inertia and damping coefficients of VSGs based on real-time system observations, enabling anticipatory adjustments to evolving operating conditions. The controller leverages a reinforcement learning architecture embedded with physical priors, which captures the high-order differential relationships between rotor angle dynamics and control variables. This approach enhances generalization, reduces data dependency, and mitigates the risk of local optima. Comprehensive simulations on the IEEE-39 bus system with varying VSG penetration levels validate the proposed method’s effectiveness in improving system stability and control flexibility. The results demonstrate that the physics-embedded GFM strategy can significantly enhance the transient stability and adaptability of future power grids. Full article
16 pages, 2934 KB  
Article
Analytical Approach to Estimate Temperature Variations in Passively Cooled Train Inverters
by Christophe Montsarrat, Sai Kausik Abburu, Carlos Casanueva and Ciarán J. O’Reilly
Machines 2025, 13(9), 788; https://doi.org/10.3390/machines13090788 (registering DOI) - 1 Sep 2025
Abstract
The advent of silicon carbide (SiC) semiconductors in electric traction enables several benefits, including the shift to passive cooling. However, it requires a conjugate heat transfer analysis to understand the temperature distribution and variation. While steady-state solutions exist, transient conditions in rail vehicles [...] Read more.
The advent of silicon carbide (SiC) semiconductors in electric traction enables several benefits, including the shift to passive cooling. However, it requires a conjugate heat transfer analysis to understand the temperature distribution and variation. While steady-state solutions exist, transient conditions in rail vehicles remain challenging. This paper develops two analytical models to predict temperature distribution and variation, validated against numerical simulations. An electric motor model estimates power losses in the converter, defining heat dissipation. The complete model is tested under realistic drive cycles, linking operational conditions to power losses and free flow speed. The results show the model effectively captures temperature variations, with higher losses during acceleration and larger temperature surges of around 70 K at lower speeds. Furthermore, the temperature at the junction was observed to be 20 K higher than at the base position and to exceed 420 K at a more downstream location. Thus, the proposed method captures the temperature variations considering different physical effects with reasonable accuracy and significantly faster computation times than transient numerical simulations. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

12 pages, 1211 KB  
Article
Dynamic Thermal Voltage Adaptation for LED Branches in Automotive Applications
by Jose R. Martínez-Pérez, Miguel A. Carvajal, Juan J. Santaella, Pablo Escobedo, Nuria López-Ruiz and Antonio Martínez-Olmos
Sensors 2025, 25(17), 5392; https://doi.org/10.3390/s25175392 (registering DOI) - 1 Sep 2025
Abstract
This paper presents a novel technique for thermally compensating the power output of a DC-DC converter that supplies automotive lighting/signaling systems with multiple LED branches. The method ensures stable bias voltage for the current drivers controlling each branch, maintaining consistent power consumption across [...] Read more.
This paper presents a novel technique for thermally compensating the power output of a DC-DC converter that supplies automotive lighting/signaling systems with multiple LED branches. The method ensures stable bias voltage for the current drivers controlling each branch, maintaining consistent power consumption across a wide temperature range. This issue has been minimally addressed in existing literature, providing few solutions which are too complex for industrial production. The approach proposed is simple and involves incorporating a temperature-sensitive thermistor into the DC-DC converter’s control loop, enabling the output voltage to adjust with ambient temperature. Different control loop configurations are explored, demonstrating that a simple resistor-thermistor network can approximate the desired voltage response under diverse thermal conditions. The power dissipated in the current drivers is kept within a controlled range, improving system efficiency and reducing heat loss. Additionally, it minimizes the need for additional current drivers, lowering the cost of these systems, improving battery life of the DC-DC converter, and decreasing CO2 emissions. For the case studies analyzed, an optimized configuration with appropriate resistor values and thermistor models achieves a 75% relative reduction in power dissipation by the current driver and a 50% improvement in the relative efficiency of the LED branch system. Full article
Show Figures

Figure 1

24 pages, 4629 KB  
Review
Wave Energy Conversion Technology Based on Liquid Metal Magnetohydrodynamic Generators and Its Research Progress
by Lingzhi Zhao and Aiwu Peng
Energies 2025, 18(17), 4615; https://doi.org/10.3390/en18174615 (registering DOI) - 30 Aug 2025
Viewed by 46
Abstract
Wave energy is a highly concentrated energy resource with five times higher energy density than wind and at least ten times the power density of solar energy. It is expected to make a major contribution to addressing climate change and to help end [...] Read more.
Wave energy is a highly concentrated energy resource with five times higher energy density than wind and at least ten times the power density of solar energy. It is expected to make a major contribution to addressing climate change and to help end our dependency on fossil fuels. Many ingenious wave energy conversion methods have been put forward, and a large number of wave energy converters (WECs) have been developed. However, to date, wave energy conversion technology is still in the demonstration application stage. Key issues such as survivability, reliability, and efficient conversion still need to be solved. The major hurdle is the fact that ocean waves provide a slow-moving, high-magnitude force, whereas most electric generators operate at high rotary speed and low torque. Coupling the slow-moving, high-magnitude force of ocean waves normally requires conversion to a high-speed, low-magnitude force as an intermediate step before a rotary generator is applied. This, in general, tends to severely limit the overall efficiency and reliability of the converter and drives the capital cost of the converter well above an acceptable commercial target. Magnetohydrodynamic (MHD) wave energy conversion makes use of MHD generators in which a conducting fluid passes through a very strong magnetic field to produce an electric current. In contrast to alternatives, the relatively slow speed at which the fluid traverses the magnetic field makes it possible to directly couple to ocean waves with a high-magnitude, slowly moving force. The MHD generator provides an excellent match to the mechanical impedance of an ocean wave, and therefore, an MHD WEC has no rotating mechanical parts with high speeds, no complex control process, and has good response to low sea states and high efficiency under all working conditions. This review introduces the system composition, working process, and technical features of WECs based on MHD generators first. Then, the research development, key points, and issues of wave energy conversion technology based on MHD generators are presented in detail. Finally, the problems to be solved and the future research directions of wave energy conversion based on MHD generators are pointed out. Full article
(This article belongs to the Special Issue Advances in Ocean Energy Technologies and Applications)
Show Figures

Figure 1

24 pages, 8730 KB  
Article
Full-Bridge T-Type Three-Level LLC Resonant Converter with Wide Output Voltage Range
by Kangjia Zhang, Kun Zhao, Xiaoxiao Yang, Muyang Liu and Zhigang Yao
Energies 2025, 18(17), 4613; https://doi.org/10.3390/en18174613 (registering DOI) - 30 Aug 2025
Viewed by 49
Abstract
Traditional LLC resonant converters face significant challenges in wide-output-voltage-applications, such as limited voltage gain, efficiency degradation under wide-gain range, and increased complexity in magnetic component design. For example, in electric vehicle charging power modules, achieving wide output voltage typically relies on changing the [...] Read more.
Traditional LLC resonant converters face significant challenges in wide-output-voltage-applications, such as limited voltage gain, efficiency degradation under wide-gain range, and increased complexity in magnetic component design. For example, in electric vehicle charging power modules, achieving wide output voltage typically relies on changing the transformer turns ratio or switching the series-parallel circuit configuration via relays, which prevents real-time dynamic adjustment. To overcome these limitations, this paper proposes a wide-gain-range control method based on a full-bridge T-type three-level LLC resonant converter, capable of achieving a voltage gain range exceeding six times. By integrating a T-type three-level bridge arm with PWM modulation and employing a variable-topology and variable-frequency control strategy, the proposed method achieves synergistic optimization for wide-output-voltage-applications. PWM modulation enables wide-range voltage output by dynamically adjusting both the converter topology and switching frequency. Finally, the proposed method is validated through circuit simulations and experimental results based on a full-bridge T-type three-level LLC converter prototype, demonstrating its effectiveness and feasibility. Full article
(This article belongs to the Special Issue Control and Optimization of Power Converters)
Show Figures

Figure 1

20 pages, 9282 KB  
Article
Electromagnetic Vibration Characteristics Analysis of Large-Scale Doubly Fed Induction Machines Under Multiple Operating Conditions
by Haoyu Kang, Yiming Ma, Liyang Liu, Fanqi Huang and Libing Zhou
Machines 2025, 13(9), 777; https://doi.org/10.3390/machines13090777 (registering DOI) - 30 Aug 2025
Viewed by 46
Abstract
The electromagnetic vibration characteristics of doubly fed induction machines (DFIMs) employed in variable-speed pumped storage units, which must accommodate frequent power response and operational mode transitions, serve as critical indicators for assessing unit safety and stability. Nevertheless, there persists a significant research gap [...] Read more.
The electromagnetic vibration characteristics of doubly fed induction machines (DFIMs) employed in variable-speed pumped storage units, which must accommodate frequent power response and operational mode transitions, serve as critical indicators for assessing unit safety and stability. Nevertheless, there persists a significant research gap regarding generalized vibration analysis models and comprehensive investigations into their steady-state and dynamic vibration performance. To address this challenge, this study develops a universal analytical model for electromagnetic excitation forces in DFIMs using Maxwell’s stress tensor method, explicitly incorporating operational conditions such as rotor eccentricity and load imbalance. Using a 300 MW DFIM as a case study, we employ a hybrid numerical-analytical approach to examine the detrimental effects of harmonic currents generated by rotor-side converters. Furthermore, we systematically analyze how spatial harmonics induced by mechanical faults and temporal harmonics arising from electrical faults collectively influence the electromagnetic vibration behavior. Experimental validation conducted on a 10 MW DFIM prototype through vibration displacement measurements confirms the efficacy of the proposed analytical framework. Full article
Show Figures

Figure 1

31 pages, 4693 KB  
Review
Industrial-Scale Renewable Hydrogen Production System: A Comprehensive Review of Power Electronics Converters and Electrical Energy Storage
by Junior Diamant Ngando Ebba, Mamadou Baïlo Camara, Mamadou Lamine Doumbia, Brayima Dakyo and Joseph Song-Manguelle
Electronics 2025, 14(17), 3471; https://doi.org/10.3390/electronics14173471 - 29 Aug 2025
Viewed by 91
Abstract
Given the decline in fossil energy reserves and the need for less pollution, achieving carbon zero is challenging in major industrial sectors. However, the emergence of large-scale hydrogen production systems powered by renewable energy sources offers an achievable option for carbon neutrality in [...] Read more.
Given the decline in fossil energy reserves and the need for less pollution, achieving carbon zero is challenging in major industrial sectors. However, the emergence of large-scale hydrogen production systems powered by renewable energy sources offers an achievable option for carbon neutrality in specific applications. When combined with energy storage systems, static power converters are crucial in these production systems. This paper offers a comprehensive review of various power converter topologies, focusing on AC– and DC–bus architectures that interface battery storage units, electrolyzers, and fuel cells. The evaluation of DC/AC, AC/DC, and DC/DC converter topologies, considering cost, energy efficiency, control complexity, power level suitability, and power quality, represents a significant advancement in the field. Furthermore, the subsequent exploration of battery aging behavioral modeling, characterization methods, and real-time parameter estimation of the battery’s equivalent electrical circuit model enhances our understanding of these systems. Large-scale hydrogen production systems most often use an AC–bus architecture. However, DC–bus configuration offers advantages over AC–bus architecture, including high efficiency, simpler energy management, and lower system costs. In addition, MVDC or HVDC DC/DC converters, including isolated and non-isolated designs based on multiple cascaded DABs and MMC-type topologies, have also been studied to adapt the DC–bus to loads. Finally, this work summarizes several battery energy storage projects in the European Union, specifically supporting the large-scale integration of renewable energy sources. It also provides recommendations, discussion results, and future research perspectives from this study. Full article
(This article belongs to the Special Issue Applications, Control and Design of Power Electronics Converters)
Show Figures

Figure 1

26 pages, 1324 KB  
Article
Optimal Design and Cost–Benefit Analysis of a Solar Photovoltaic Plant with Hybrid Energy Storage for Off-Grid Healthcare Facilities with High Refrigeration Loads
by Obu Samson Showers and Sunetra Chowdhury
Energies 2025, 18(17), 4596; https://doi.org/10.3390/en18174596 - 29 Aug 2025
Viewed by 108
Abstract
This paper presents the optimal design and cost–benefit analysis of an off-grid solar photovoltaic system integrated with a hybrid energy storage system for a Category 3 rural healthcare facility in Elands Bay, South Africa. The optimal configuration, designed in Homer Pro, consists of [...] Read more.
This paper presents the optimal design and cost–benefit analysis of an off-grid solar photovoltaic system integrated with a hybrid energy storage system for a Category 3 rural healthcare facility in Elands Bay, South Africa. The optimal configuration, designed in Homer Pro, consists of a 16.1 kW solar PV array, 10 kW lithium-ion battery, 23 supercapacitor strings (2 modules per string), 50 kW fuel cell, 50 kW electrolyzer, 20 kg hydrogen tank, and 10.8 kW power converter. The daily energy consumption for the selected healthcare facility is 44.82 kWh, and peak demand is 9.352 kW. The off-grid system achieves 100% reliability (zero unmet load) and zero CO2 emissions, compared to the 24,128 kg/year of CO2 emissions produced by the diesel generator. Economically, it demonstrates strong competitiveness with a levelized cost of energy (LCOE) of ZAR24.35/kWh and a net present cost (NPC) of ZAR6.05 million. Sensitivity analysis reveals the potential for a further 20–40% reduction in LCOE by 2030 through anticipated declines in component costs. Hence, it is established that the proposed model is a reliable and viable option for off-grid rural healthcare facilities. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

32 pages, 3563 KB  
Article
Research on Flexible Operation Control Strategy of Motor Operating Mechanism of High Voltage Vacuum Circuit Breaker
by Dongpeng Han, Weidong Chen and Zhaoxuan Cui
Energies 2025, 18(17), 4593; https://doi.org/10.3390/en18174593 - 29 Aug 2025
Viewed by 90
Abstract
In order to solve the problem that it is difficult to take into account the performance constraints between the core functions of insulation, current flow and arc extinguishing of high-voltage vacuum circuit breakers at the same time, this paper proposes a flexible control [...] Read more.
In order to solve the problem that it is difficult to take into account the performance constraints between the core functions of insulation, current flow and arc extinguishing of high-voltage vacuum circuit breakers at the same time, this paper proposes a flexible control strategy for the motor operating mechanism of high-voltage vacuum circuit breakers. The relationship between the rotation angle of the motor and the linear displacement of the moving contact of the circuit breaker is analyzed, and the ideal dynamic curve is planned. The motor drive control device is designed, and the phase-shifted full-bridge circuit is used as the boost converter. The voltage and current double closed-loop sliding mode control strategy is used to simulate and verify the realization of multi-stage and stable boost. The experimental platform is built and the experiment is carried out. The results show that under the voltage conditions of 180 V and 150 V, the control range of closing speed and opening speed is increased by 31.7% and 25.9% respectively, and the speed tracking error is reduced by 51.2%. It is verified that the flexible control strategy can meet the ideal action curve of the operating mechanism, realize the precise control of the opening and closing process and expand the control range. The research provides a theoretical basis for the flexible control strategy of the high-voltage vacuum circuit breaker operating mechanism, and provides new ideas for the intelligent operation technology of power transmission and transformation projects. Full article
Show Figures

Figure 1

21 pages, 6382 KB  
Article
Stability Analysis and Enhanced Control of Wind Turbine Generators Based on Hybrid GFL-GFM Control
by Sijia Huang, Zhenbin Zhang, Zhihao Chen, Huimin Huang and Zhen Li
Energies 2025, 18(17), 4590; https://doi.org/10.3390/en18174590 - 29 Aug 2025
Viewed by 78
Abstract
With the proliferation of wind power generation, the receiving end grids exhibit unprecedented dynamic characteristics, imposing critical stability challenges on grid-connected wind turbine’s converter. To address this, wind turbine converter control strategies have evolved beyond traditional grid-following (GFL) methods to include grid-forming (GFM), [...] Read more.
With the proliferation of wind power generation, the receiving end grids exhibit unprecedented dynamic characteristics, imposing critical stability challenges on grid-connected wind turbine’s converter. To address this, wind turbine converter control strategies have evolved beyond traditional grid-following (GFL) methods to include grid-forming (GFM), mode-switching, and hybrid GFL-GFM controls. This paper establishes a small-signal model for hybrid GFL-GFM-controlled wind turbines to analyze stability at varying grid strengths, guiding the selection of coefficients in hybrid mode. Simulation tests validate the theoretical framework. Full article
(This article belongs to the Special Issue Advances in Wind Turbine Optimization and Control)
Show Figures

Figure 1

21 pages, 1634 KB  
Review
A Comprehensive Review of Condition Monitoring Technologies for Modular Multilevel Converter (MMC) HVDC Systems
by Zhoufei Yao, Xing Lei and Xizhou Du
Electronics 2025, 14(17), 3462; https://doi.org/10.3390/electronics14173462 - 29 Aug 2025
Viewed by 189
Abstract
This paper provides an in-depth review of degradation mechanisms and condition monitoring methods for critical components in modular multilevel converter (MMC) high-voltage direct current (HVDC) systems, including insulated gate bipolar transistors (IGBTs), metallized film capacitors, and cross-linked polyethylene (XLPE) DC cables. This study [...] Read more.
This paper provides an in-depth review of degradation mechanisms and condition monitoring methods for critical components in modular multilevel converter (MMC) high-voltage direct current (HVDC) systems, including insulated gate bipolar transistors (IGBTs), metallized film capacitors, and cross-linked polyethylene (XLPE) DC cables. This study systematically evaluates the strengths and limitations of existing technologies, while also projecting future trends in technological advancements. By exploring the multi-fields-coupled degradation processes of these components, the mechanisms of switching oscillations, and the flexible and controllable applications of MMC, this review offers valuable insights for improving the accuracy, real-time performance, and reliability of component condition monitoring. The findings aim to contribute to the advancement and broader application of MMC HVDC systems in modern power networks. Full article
Show Figures

Figure 1

Back to TopTop