Smartphone-Integrated Electrochemical Devices for Contaminant Monitoring in Agriculture and Food: A Review
Abstract
1. Introduction
2. Electrochemical Biosensors
3. Lab-on-a-Chip (LoC) Sensor System
3.1. LoC Platforms: Design and Development
3.2. Cutting-Edge LOC Technologies for Food and Agricultural Contaminant Detection
4. Smartphone-Integrated Electrochemical LoC Systems
4.1. Smartphone-Based Biosensors with LoC Technology
4.1.1. Integration of Smartphones into Electrochemical Sensing Systems
4.1.2. Smartphone-Based Electrochemical Device Architecture and Workflow
5. Trends in Lab-Chip Electrochemical Biosensors for Food and Agricultural Contaminants
6. From Lab to Field: Bottlenecks and Strategies for Commercializing
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFB1 | Aflatoxin B1 |
AIEgen | Aggregation-Induced Emission Generator |
AI | Artificial Intelligence |
ASSURED | Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, Deliverable to End-Users |
AuNPs | Gold Nanoparticles |
CA | Chronoamperometry |
CBA | Carbaryl |
CNN | Convolutional Neural Network |
CPUs | Central Processing Units |
CV | Cyclic Voltammetry |
COF/MB@MnO2 | Covalent Organic Framework/Methylene Blue@Manganese Dioxide |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
DPV | Differential Pulse Voltammetry |
EDCs | Endocrine-Disrupting Chemicals |
EIS | Electrochemical Impedance Spectroscopy |
ELISA | Enzyme-Linked Immunosorbent Assay |
EµPAD | Electrochemical Microfluidic Paper-based Analytical Device |
FETs | Field-Effect Transistors |
FNT | Fenitrothion |
GLE | Gold Leaf Electrode |
GPUs | Graphics Processing Units |
IC50 | Half Maximal Inhibitory Concentration |
IoT | Internet of Things |
LC-MS/MS | Liquid Chromatography–Tandem Mass Spectrometry |
LoC | Lab-on-a-Chip |
LOD | Limit of Detection |
LoRaWAN | Long Range Wide Area Network |
ISE | Ion Selective Electrode |
LSV | Linear Sweep Voltammetry |
MCU | Microcontroller Unit |
μMISPE-MS | Micro Molecularly Imprinted Solid-Phase Extraction—Mass Spectrometry |
μTAS | Micro Total Analysis System |
MIP | Molecularly Imprinted Polymer |
ML | Machine Learning |
MOF | Metal–Organic Framework |
MRL | Maximum Residue Limit |
MRS | Magnetic Relaxation Switch |
NFC | Near Field Communication |
NMR | Nuclear Magnetic Resonance |
OP | Organophosphorus Pesticide |
OWLS | Optical Waveguide Lightmode Spectroscopy |
PCBs | Printed Circuit Boards |
PCR | Polymerase Chain Reaction |
PDMS | Polydimethylsiloxane |
PET | Polyethylene Terephthalate |
PFAS | Per- and Polyfluoroalkyl Substances |
PFOS | Perfluorooctane Sulfonate |
(P)GO | (Porous) Graphene Oxide |
PPCPs | Pharmaceuticals and Personal Care Products |
QCM | Quartz Crystal Microbalance |
RCA | Rolling Circle Amplification |
rGO | Reduced Graphene Oxide |
RhizoChip | Rhizosphere on a Chip |
RSD | Relative Standard Deviation |
SBC | Single Board Computer |
SNR | Signal-to-Noise Ratio |
SPCE | Screen-Printed Carbon Electrode |
SPR | Surface Plasmon Resonance |
SWV | Square Wave Voltammetry |
Wi-Fi | Wireless Fidelity |
References
- Hu, K.; Liu, J.; Li, B.; Liu, L.; Gharibzahedi, S.M.T.; Su, Y.; Jiang, J.; Tan, J.; Wang, Y.; Guo, Y. Global Research Trends in Food Safety in Agriculture and Industry from 1991 to 2018: A Data-Driven Analysis. Trends Food Sci. Technol. 2019, 85, 262–276. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Y.; Huang, K.; Cheng, N. Biosensor for Agriculture and Food Safety: Recent Advances and Future Perspectives. Adv. Agrochem. 2022, 1, 3–6. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Altintas, Z. Advancing Food Safety with Molecularly Imprinted Nanozyme-Based Sensors for Detecting Food Contaminants: A Review. Trends Food Sci. Technol. 2025, 163, 105147. [Google Scholar] [CrossRef]
- Umapathi, R.; Ghoreishian, S.M.; Rani, G.M.; Cho, Y.; Huh, Y.S. Emerging Trends in the Development of Electrochemical Devices for the On-Site Detection of Food Contaminants. ECS Sens. Plus 2022, 1, 044601. [Google Scholar] [CrossRef]
- Eyvazi, S.; Baradaran, B.; Mokhtarzadeh, A.; de la Guardia, M. Recent Advances on Development of Portable Biosensors for Monitoring of Biological Contaminants in Foods. Trends Food Sci. Technol. 2021, 114, 712–721. [Google Scholar] [CrossRef]
- Das, J.; Mishra, H.N. Recent Advances in Sensors for Detecting Food Pathogens, Contaminants, and Toxins: A Review. Eur. Food Res. Technol. 2022, 248, 1125–1148. [Google Scholar] [CrossRef]
- Savaş, S.; Gharibzahedi, S.M.T. Whole Cell FRET Immunosensor Based on Graphene Oxide and Graphene Dot for Campylobacter Jejuni Detection. Food Chem. 2025, 489, 144889. [Google Scholar] [CrossRef]
- Savas, S.; Saricam, M. Rapid Method for Detection of Vibrio cholerae from Drinking Water with Nanomaterials Enhancing Electrochemical Biosensor. J. Microbiol. Methods 2024, 216, 106862. [Google Scholar] [CrossRef] [PubMed]
- Savas, S.; Sarıçam, M. A Novel PCR-Free Ultrasensitive GQD-Based Label-Free Electrochemical DNA Sensor for Sensitive and Rapid Detection of Francisella tularensis. Micromachines 2024, 15, 1308. [Google Scholar] [CrossRef] [PubMed]
- Gharibzahedi, S.M.T.; Razavi, S.H.; Mousavi, M. Potential Applications and Emerging Trends of Species of the Genus Dietzia: A Review. Ann. Microbiol. 2014, 64, 421–429. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Hasabnis, G.K.; Akin, E.; Altintas, Z. Molecularly Imprinted Polymers-Based Electrochemical Sensors for Tracking Vitamin B12 Released from Spray-Dried Microcapsules During In Vitro Simulated Gastrointestinal Digestion. Sens. Bio-Sens. Res. 2025, 47, 100759. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Altintas, Z. State-of-the-Art Sensor Technologies for Tracking SARS-CoV-2 in Contaminated Food and Packaging: Towards the Future Techniques of Food Safety Assurance. TrAC Trends Anal. Chem. 2024, 170, 117473. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Barba, F.J.; Mofid, V.; Altintas, Z. Biosensing technology in food production and processing. In Advanced Sensor Technology; Barhoum, A., Altintas, Z., Eds.; Elsevier: Oxford, UK, 2023; pp. 743–824. [Google Scholar]
- Gharibzahedi, S.M.T.; Barba, F.J.; Zhou, J.; Wang, M.; Altintas, Z. Electronic Sensor Technologies in Monitoring Quality of Tea: A Review. Biosensors 2022, 12, 356. [Google Scholar] [CrossRef] [PubMed]
- Savas, S.; Altintas, Z. Graphene Quantum Dots as Nanozymes for Electrochemical Sensing of Yersinia Enterocolitica in Milk and Human Serum. Materials 2019, 12, 2189. [Google Scholar] [CrossRef]
- Savas, S.; Kılıç, Y.; Gharibzahedi, S.M.T.; Altintas, Z. A Novel Smartphone-Based Nanozyme-Enhanced Electrochemical Immunosensor for Ultrasensitive Direct Detection of Staphylococcus Aureus in Milk and Blood Serum. Sens. Bio-Sens. Res. 2025, 49, 100822. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Moghadam, M.; Amft, J.; Tolun, A.; Hasabnis, G.; Altintas, Z. Recent Advances in Dietary Sources, Health Benefits, Emerging Encapsulation Methods, Food Fortification, and New Sensor-Based Monitoring of Vitamin B12: A Critical Review. Molecules 2023, 28, 7469. [Google Scholar] [CrossRef]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar]
- Savas, S. Electrochemical-based biosensors for the detection and diagnosis of common pathogens. In Current Developments in Biosensors and Emerging Smart Technologies; Karakuş, S., Ed.; IntechOpen Ltd.: London, UK, 2025. [Google Scholar]
- Majer-Baranyi, K.; Székács, A.; Adányi, N. Application of Electrochemical Biosensors for Determination of Food Spoilage. Biosensors 2023, 13, 456. [Google Scholar] [CrossRef]
- Melo, R.L.F.; Neto, F.S.; Dari, D.N.; Fernandes, B.C.C.; Freire, T.M.; Fechine, P.B.A.; Soares, J.M.; dos Santos, J.C.S. A Comprehensive Review on Enzyme-Based Biosensors: Advanced Analysis and Emerging Applications in Nanomaterial-Enzyme Linkage. Int. J. Biol. Macromol. 2024, 264, 130817. [Google Scholar] [CrossRef]
- Byrne, B.; Stack, E.; Gilmartin, N.; O’Kennedy, R. Antibody-Based Sensors: Principles, Problems and Potential for Detection of Pathogens and Associated Toxins. Sensors 2009, 9, 4407. [Google Scholar] [CrossRef]
- Sequeira-Antunes, B.; Ferreira, H.A. Nucleic Acid Aptamer-Based Biosensors: A Review. Biomedicines 2023, 11, 3201. [Google Scholar] [CrossRef]
- Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S.K.; et al. Recent Progress and Growth in Biosensors Technology: A Critical Review. J. Ind. Eng. Chem. 2022, 109, 21–51. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Smutok, O.; Katz, E. Biosensors: Electrochemical Devices—General Concepts and Performance. Biosensors 2023, 13, 44. [Google Scholar] [CrossRef]
- Zhao, D.; Jiang, S.; Zhang, J.; Zhu, F.; Wang, Y.; Guo, Y.; Qian, S. Implanted Fiber-Optic Sensor for Analyzing Catalytic Reactions and Kinetics in Au/TiO2 Systems. Sens. Actuators B Chem. 2025, 443, 138238. [Google Scholar] [CrossRef]
- Cinti, S.; Singh, S.; Covone, G.; Tonietti, L.; Ricciardelli, A.; Cordone, A.; Iacono, R.; Mazzoli, A.; Moracci, M.; Rotundi, A.; et al. Reviewing the State of Biosensors and Lab-on-a-Chip Technologies: Opportunities for Extreme Environments and Space Exploration. Front. Microbiol. 2023, 14, 1215529. [Google Scholar] [CrossRef] [PubMed]
- Cetinkaya, A.; Kaya, S.I.; Ozkan, S.A. A Review of Point-of-Care (POC) and Lab-on-Chip (LOC) Approaches in Molecularly Imprinted Polymer-Based Electrochemical Sensors for Biomedical Applications. Anal. Chim. Acta 2025, 1357, 344080. [Google Scholar] [CrossRef] [PubMed]
- Barek, J. How to Improve the Performance of Electrochemical Sensors via Minimization of Electrode Passivation. Chemosensors 2021, 9, 12. [Google Scholar] [CrossRef]
- Rafiq, S.M.; Majumder, R.; Joshi, D.; Dar, A.H.; Dash, K.K.; Pandey, V.K.; Sidiqi, U.S. Lab-on-a-Chip Device for Food Quality Control and Safety. Food Control 2024, 164, 110596. [Google Scholar] [CrossRef]
- Fibben, K.; Williams, E.K.; Roback, J.D.; Lam, W.A.; Alter, D.N. From Lab-on-a-Chip to Lab-on-a-Chip-in-the-Lab: A Perspective of Clinical Laboratory Medicine for the Microtechnologist. Lab Chip 2025, 25, 2566–2577. [Google Scholar] [CrossRef]
- Shukla, V.C.; Kuang, T.-R.; Senthilvelan, A.; Higuita-Castro, N.; Duarte-Sanmiguel, S.; Ghadiali, S.N.; Gallego-Perez, D. Lab-on-a-Chip Platforms for Biophysical Studies of Cancer with Single-Cell Resolution. Trends Biotechnol. 2018, 36, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Yunus, M.H.; Abdul Aziz, S.F.N.; Zakaria, N.D.; Mohd Bakhori, N.; Arifin, N. Lab-on-a-chip electrochemical sensors and biosensors. In Electrochemical Sensors and Biosensors, Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, Netherlands, 2025; Chapter 4; pp. 109–149. [Google Scholar]
- Cooper, J.M. Challenges in Lab-on-a-Chip Technology. Front. Lab Chip Technol. 2022, 1, 979398. [Google Scholar] [CrossRef]
- Herrasti, Z.; Etxabe, I.; Mitxelena, J.M.; Martínez, M.P.; Martínez, F. Development and Integration of an Electrochemical System in a LOC Device for DNA Detection. Procedia Eng. 2012, 47, 25–28. [Google Scholar] [CrossRef]
- Malic, L.; Brassard, D.; Veres, T.; Tabrizian, M. Integration and Detection of Biochemical Assays in Digital Microfluidic LOC Devices. Lab Chip 2010, 10, 418–431. [Google Scholar] [CrossRef]
- Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A.J. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-On-A-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem. Rev. 2018, 119, 120–194. [Google Scholar] [CrossRef]
- Asri, M.A.M.; Mak, W.C.; Norazman, S.A.; Nordin, A.N. Low-Cost and Rapid Prototyping of Integrated Electrochemical Microfluidic Platforms Using Consumer-Grade Off-the-Shelf Tools and Materials. Lab Chip 2022, 22, 1779–1792. [Google Scholar] [CrossRef]
- Shariati Pour, S.R.; Calabria, D.; Emamiamin, A.; Lazzarini, E.; Pace, A.; Guardigli, M.; Zangheri, M.; Mirasoli, M. Electrochemical vs. Optical Biosensors for Point-of-Care Applications: A Critical Review. Chemosensors 2023, 11, 546. [Google Scholar] [CrossRef]
- Mota, F.A.R.; Passos, M.L.C.; Santos, J.L.M.; Saraiva, M.L.M.F.S. Comparative analysis of Electrochemical and Optical Sensors for Detection of Chronic Wounds Biomarkers: A Review. Biosens. Bioelectron. 2024, 251, 116095. [Google Scholar] [CrossRef]
- Liu, J.; Wu, D.; Wu, Y.; Shi, Y.; Liu, W.; Sun, Z.; Li, G. Recent Advances in Optical Sensors and Probes for the Detection of Freshness in Food Samples: A Comprehensive Review (2020–2023). TrAC Trends Anal. Chem. 2024, 177, 117793. [Google Scholar] [CrossRef]
- Rajan, N.K.; Routenberg, D.A.; Reed, M.A. Optimal Signal-to-Noise Ratio for Silicon Nanowire Biochemical Sensors. Appl. Phys. Lett. 2011, 98, 264107. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef]
- Gao, A.; Zou, N.; Dai, P.; Lu, N.; Li, T.; Wang, Y.; Zhao, J.; Mao, H. Signal-to-Noise Ratio Enhancement of Silicon Nanowire Biosensor with Rolling Circle Amplification. Nano Lett. 2013, 13, 4123–4130. [Google Scholar] [CrossRef]
- Yang, M.K.; Jeong, J.-S. Optimized Hybrid Central Processing Unit–Graphics Processing Unit Workflow for Accelerating Advanced Encryption Standard Encryption: Performance Evaluation and Computational Modeling. Appl. Sci. 2025, 15, 3863. [Google Scholar] [CrossRef]
- Shi, F.; Ai, Y.; Wang, B.; Yao, Y.; Zhang, Z.; Zhou, J.; Wang, X.; Sun, W. Portable Wireless Intelligent Electrochemical Sensor for the Ultrasensitive Detection of Rutin Using Functionalized Black Phosphorene Nanocomposite. Molecules 2022, 27, 6603. [Google Scholar] [CrossRef] [PubMed]
- Bocu, R. Extended Review Concerning the Integration of Electrochemical Biosensors into Modern IoT and Wearable Devices. Biosensors 2024, 14, 214. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Xin, X.; Su, J.; Song, S. Research Progress of Electrochemical Biosensors for Diseases Detection in China: A Review. Biosensors 2025, 15, 231. [Google Scholar] [CrossRef] [PubMed]
- Pauliukaite, R. Sensors and Biosensors: From Architecture to Analytes. Curr. Opin. Electrochem. 2025, 52, 101721. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef]
- Beduk, T.; Beduk, D.; Hasan, M.R.; Guler Celik, E.; Kosel, J.; Narang, J.; Salama, K.N.; Timur, S. Smartphone-Based Multiplexed Biosensing Tools for Health Monitoring. Biosensors 2022, 12, 583. [Google Scholar] [CrossRef]
- Kumar, T.H.V.; Sundramoorthy, A.K. Electrochemical Biosensor for Methyl Parathion Based on Single-Walled Carbon Nanotube/Glutaraldehyde Crosslinked Acetylcholinesterase-Wrapped Bovine Serum Albumin Nanocomposites. Anal. Chim. Acta 2019, 1074, 131–141. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, Z.; Lu, X. Construction of Novel Enzyme-Graphene Oxide Catalytic Interface with Improved Enzymatic Performance and Its Assembly Mechanism. ACS Appl. Mater. Interfaces 2019, 11, 11349–11359. [Google Scholar] [CrossRef]
- Cunha, D.R.; Segundo, M.A.; Quinaz, M.B. Impedimetric Biosensor Based on Gold Nanostructures and Concanavalin A for Glycoproteins Detection. Bioelectrochemistry 2025, 166, 109042. [Google Scholar] [CrossRef]
- Marimuthu, M.; Krishnan, V.; Sudhakaran, S.D.; Vigneswari, S.; Senthilkumar, S.; Veerapandian, M. Electrochemical-Based Biosensor Platforms in Lab-Chip Models for Point-of-Need Toxicant Analysis. Electrochem. 2023, 4, 537–552. [Google Scholar] [CrossRef]
- Pattan-Siddappa, G.; Ko, H.-U.; Kim, S.-Y. Active Site Rich MXene as a Sensing Interface for Brain Neurotransmitters and Pharmaceuticals: One Decade, Many Sensors. TrAC Trends Anal. Chem. 2023, 164, 117096. [Google Scholar] [CrossRef]
- Biosensors Market Size, Share & Analysis, Growth Report [2032]. Available online: https://www.fortunebusinessinsights.com/industry-reports/bio-sensors-market-100146 (accessed on 11 July 2025).
- Jacobsson, S.; Boiko, I.; Golparian, D.; Blondeel, K.; Kiarie, J.; Toskin, I.; Peeling, R.W.; Unemo, M. WHO Laboratory Validation of Xpert® CT/NG and Xpert® TV on the Genexpert System Verifies High Performances. APMIS 2018, 126, 907–912. [Google Scholar] [CrossRef]
- Sivaranjanee, R.; Senthil Kumar, P.; Saravanan, R.; Govarthanan, M. Electrochemical Sensing System for the Analysis of Emerging Contaminants in Aquatic Environment: A Review. Chemosphere 2022, 294, 133779. [Google Scholar] [CrossRef]
- Wang, K.; Lin, X.; Zhang, M.; Li, Y.; Luo, C.; Wu, J. Review of Electrochemical Biosensors for Food Safety Detection. Biosensors 2022, 12, 959. [Google Scholar] [CrossRef]
- Pattan-Siddappa, G.; Elugoke, S.E.; Erkmen, C.; Kim, S.-Y.; Ebenso, E.E. Flexible Carbon Cloth Electrode: Pioneering the Future of Electrochemical Sensing Devices. Adv. Compos. Hybrid Mater. 2025, 8, 263. [Google Scholar] [CrossRef]
- Ganesh, P.S.; Elugoke, S.E.; Lee, S.-H.; Kim, S.-Y.; Ebenso, E.E. Smart and Emerging Point-of-Care Electrochemical Sensors Based on Nanomaterials for SARS-CoV-2 Virus Detection: Towards Designing a Future Rapid Diagnostic Tool. Chemosphere 2024, 352, 141269. [Google Scholar] [CrossRef]
- Kapoor, A.; Ramamoorthy, S.; Sundaramurthy, A.; Vaishampayan, V.; Sridhar, A.; Balasubramanian, S.; Ponnuchamy, M. Paper-Based Lab-on-a-Chip Devices for Detection of Agri-Food Contamination. Trends Food Sci. Technol. 2024, 147, 104476. [Google Scholar] [CrossRef]
- Sharma, V.; Mottafegh, A.; Joo, J.U.; Kang, J.H.; Wang, L.; Kim, D.P. Toward Microfluidic Continuous-Flow and Intelligent Downstream Processing of Biopharmaceuticals. Lab. Chip. 2024, 24, 2861–2882. [Google Scholar] [CrossRef] [PubMed]
- US Lab-on-a-Chip Device Market Size, Growth Insights 2035. Available online: https://www.marketresearchfuture.com/reports/us-lab-on-a-chip-device-market-13333 (accessed on 12 July 2025).
- Lab-on-a-Chip Device Market Size, Share, Trends Report 2032. MRFR. Available online: https://www.marketresearchfuture.com/reports/lab-on-a-chip-device-market-6215/?utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=2893753364&hsa_cam=20266715755&hsa_grp=151736942524&hsa_ad=661538375401&hsa_src=g&hsa_tgt=dsa-2201735890020&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1 (accessed on 12 July 2025).
- Hasell, J.; Mathieu, E.; Beltekian, D.; Macdonald, B.; Giattino, C.; Ortiz-Ospina, E.; Roser, M.; Ritchie, H. A Cross-Country Database of COVID-19 Testing. Sci. Data 2020, 7, 345. [Google Scholar] [CrossRef] [PubMed]
- Cong, H.; Zhang, N. Perspectives in Translating Microfluidic Devices from Laboratory Prototyping into Scale-Up Production. Biomicrofluidics 2022, 16, 021301. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Huang, A.; He, L.; Cai, C.; You, T. Recent Advances in Foodborne Pathogen Detection Using Photoelectrochemical Biosensors: From Photoactive Material to Sensing Strategy. Front. Sustain. Food Syst. 2024, 8, 1432555. [Google Scholar] [CrossRef]
- Lab on Chip Market Size to Hit USD 17.00 Billion by 2034. Available online: https://www.precedenceresearch.com/lab-on-chip-market (accessed on 12 July 2025).
- Singh, A.K.; Tiwari, I. Smarter Chips, Safer Lives: Lab-on-a-chip Biosensors for Pharmacological Applications and Healthcare Transformation. Med. Res. Arch. 2025, 13. [Google Scholar]
- Baker, D.V.; Bernal-Escalante, J.; Traaseth, C.; Wang, Y.; Tran, M.V.; Keenan, S.; Algar, W.R. Smartphones as a Platform for Molecular Analysis: Concepts, Methods, Devices and Future Potential. Lab Chip 2025, 25, 884–955. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, K. Portable Solutions for Plant Pathogen Diagnostics: Development, Usage, and Future Potential. Front. Microbiol. 2025, 16, 1516723. [Google Scholar] [CrossRef]
- Mutunga, T.; Sinanovic, S.; Harrison, C.S. Integrating Wireless Remote Sensing and Sensors for Monitoring Pesticide Pollution in Surface and Groundwater. Sensors 2024, 24, 3191. [Google Scholar] [CrossRef]
- Loima, T.; Yoon, J.Y.; Kaarj, K. Microfluidic Sensors Integrated with Smartphones for Applications in Forensics, Agriculture, and Environmental Monitoring. Micromachines 2025, 16, 835. [Google Scholar] [CrossRef]
- Lab on a Chip, (All Fields)—68,879—Web of Science Core Collection. Available online: https://www.webofscience.com/wos/woscc/summary/f4ca8f63-c161-40bb-9f38-ae76bd580c81-016e982d45/relevance/1 (accessed on 15 July 2025).
- Dkhar, D.S.; Kumari, R.; Malode, S.J.; Shetti, N.P.; Chandra, P. Integrated Lab-on-a-Chip Devices: Fabrication Methodologies, Transduction System for Sensing Purposes. J. Pharm. Biomed. Anal. 2023, 223, 115120. [Google Scholar] [CrossRef]
- Sharma, B.; Sharma, A. Microfluidics: Recent Advances Toward Lab-on-Chip Applications in Bioanalysis. Adv. Eng. Mater. 2022, 24, 2100738. [Google Scholar] [CrossRef]
- Podwin, A.K. Lab-on-Chip Technologies for Space Research—Current Trends and Prospects. Microchim. Acta 2024, 191, 31. [Google Scholar]
- Nielsen, J.B.; Hanson, R.L.; Almughamsi, H.M.; Pang, C.; Fish, T.R.; Woolley, A.T. Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. Anal. Chem. 2020, 92, 150–168. [Google Scholar] [CrossRef] [PubMed]
- Papavassiliou, D.; Lima, R.A. The Impact of Polydimethylsiloxane (PDMS) in Engineering: Recent Advances and Applications. Fluids 2025, 10, 41. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, X.; Cai, Z.; Tu, M.; Wang, Y.; Ouyang, Q.; Yan, X.; Jing, G.; Yang, G. Transformation Gap From Research Findings to Large-Scale Commercialized Products in Microfluidic Field. Mater. Today Bio 2024, 29, 101373. [Google Scholar] [CrossRef]
- Qamar, A.Z.; Shamsi, M.H. Desktop Fabrication of Lab-On-Chip Devices on Flexible Substrates: A Brief Review. Micromachines 2020, 11, 126. [Google Scholar] [CrossRef]
- Varela Leniz, I.; Bakouche, T.; Astigarraga, M.; Husson, F.; Zaldua, A.M.; Gemini, L.; Vilas-Vilela, J.L.; Etxeberria, L. Analyzing the Potential of Laser Femtosecond Technology for the Mass Production of Cyclic Olefin Copolymer Microfluidic Devices for Biomedical Applications. Polymers 2025, 17, 1289. [Google Scholar] [CrossRef]
- Soghomonyan, H.; Pupeikis, J.; Willenberg, B.; Stumpp, A.; Lang, L.; Phillips, C.R.; Resan, B.; Keller, U. 3D in-Situ Profiling in a Laser Micromachining Station Using Dual-Comb LiDAR. arXiv 2025, arXiv:2504.09659. [Google Scholar]
- Rivera-Medellin, E.G.; Pereyra-Laguna, I.; Lugo-Uribe, L.E.; González-López, M.A.; Mayen-Chaires, J. 3D Printing of Microchannels with MSLA Technology for Microfluidic Devices: From Design to Manufacturing. Rev. Mex. Ing. Quím. 2025, 24, Mat25518. [Google Scholar] [CrossRef]
- Mecca, G.; Bernasconi, R.; Zega, V.; Suriano, R.; Menegazzo, M.; Bussetti, G.; Corigliano, A.; Magagnin, L. Inkjet-Printed Flexible Piezoelectric Sensor for Large Deformation Applications. Technologies 2025, 13, 206. [Google Scholar] [CrossRef]
- Alghannam, F.; Alayed, M.; Alfihed, S.; Sakr, M.A.; Almutairi, D.; Alshamrani, N.; Al Fayez, N. Recent Progress in PDMS-Based Microfluidics toward Integrated Organ-on-a-Chip Biosensors and Personalized Medicine. Biosensors 2025, 15, 76. [Google Scholar] [CrossRef]
- Torre, R.; Costa-Rama, E.; Nouws, H.P.A.; Delerue-Matos, C. Screen-Printed Electrode-Based Sensors for Food Spoilage Control: Bacteria and Biogenic Amines Detection. Biosensors 2020, 10, 139. [Google Scholar] [CrossRef]
- Pérez-Fernández, B.; Costa-García, A.; De La Escosura-Muñiz, A. Electrochemical (Bio)Sensors for Pesticides Detection Using Screen-Printed Electrodes. Biosensors 2020, 10, 32. [Google Scholar] [CrossRef]
- Deepak, K.S.; Dubey, S.K.; Goel, S.; Javed, S. A Portable Hand-Held Microfluidic Colorimetric Device for the Detection of Organophosphorus Pesticides. IEEE Sens. J. 2024, 25, 3465–3472. [Google Scholar] [CrossRef]
- Zou, R.; Yu, Q.; Wang, Z.; Yang, P.; Zhao, Y.; Liu, Y.; Fu, Y.; Guo, Y. A Portable 3D-Printed Lab-on-a-Chip Device for On-Site Monitoring of Thiamethoxam Residue in Food Samples. Food Chem. 2025, 486, 144594. [Google Scholar] [CrossRef]
- Atoloye, I.A.; Herrera, D.; Veličković, D.; Clendinen, C.S.; Tate, K.; Bhattacharjee, A.; Aufrecht, J.; Zeng, T.; Rai, D.; Bhowmik, A. Insight into Industrial Hemp (Cannabis sativa L.) Root Exudation Composition in a Simulated Soil Environment: A Rhizosphere-on-a-Chip Study. Rhizosphere 2025, 34, 101099. [Google Scholar] [CrossRef]
- Manduca, G.; Zeni, V.; Casadei, A.; Tarasco, E.; Lucchi, A.; Benelli, G.; Stefanini, C.; Romano, D. Unveiling Host-Seeking Behaviour in Entomopathogenic Nematodes via Lab-on-a-Chip Technology. Biosyst. Eng. 2025, 255, 104159. [Google Scholar] [CrossRef]
- Feng, N.; Li, Y.; Zhao, Y.; Tao, J.; Jiang, H.; Wang, S.; Huang, X.; Ma, J.; Tang, B.Z. Customized AIEgen-Based Molecular Signaling Tags Combined Microfluidic Chip for Point-of-Care Testing Viable E. coli O157:H7. ACS Sens. 2025, 10, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, X.; Wang, X.; Zhang, L.; Chen, F.; Yoon, S.-C.; Ni, X.; Dong, Y.; Chen, Y.; Wang, W. Development of a Portable NMR Device for Quantitative Detection of Norfloxacin (A Veterinary Drug) in Animal-Derived Food Products. Appl. Eng. Agric. 2025, 41, 307–318. [Google Scholar] [CrossRef]
- Taylor, P.; Forecast Number of Mobile Users Worldwide 2020–2025. Statista. 2024. Available online: https://www.scirp.org/reference/referencespapers?referenceid=3715079 (accessed on 14 July 2025).
- Zhang, S.; Wang, S.; Sun, B.; Chen, S.; Ma, Q.; Han, K.; Yin, C.; Wang, X.; Jiang, H. A Smartphone-Based Electrochemical/Visible Light Dual-Readout Biosensor for Sensitive Detection of MRSA by Self-Assembly AuNPs@Nisin. Sens. Actuators B Chem. 2025, 425, 137000. [Google Scholar] [CrossRef]
- Yoon, J.Y. Basic Principles of Electrochemical Biosensing Using a Smartphone. In Smartphone-Based Medical Diagnostics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 29–43. [Google Scholar]
- Shen, X.; Ju, F.; Li, G.; Ma, L. Smartphone-Based Electrochemical Potentiostat Detection System Using PEDOT:PSS/Chitosan/Graphene Modified Screen-Printed Electrodes for Dopamine Detection. Sensors 2020, 20, 2781. [Google Scholar] [CrossRef] [PubMed]
- Xing, E.; Chen, H.; Xin, X.; Cui, H.; Dou, Y.; Song, S. Recent Advances in Smart Phone-Based Biosensors for Various Applications. Chemosensors 2025, 13, 221. [Google Scholar] [CrossRef]
- Xu, G.; Cheng, C.; Liu, Z.; Yuan, W.; Wu, X.; Lu, Y.; Low, S.S.; Liu, J.; Zhu, L.; Ji, D.; et al. Battery-Free and Wireless Epidermal Electrochemical System with All-Printed Stretchable Electrode Array for Multiplexed In Situ Sweat Analysis. Adv. Mater. Technol. 2019, 4, 1800658. [Google Scholar] [CrossRef]
- Lu, Y.; Shi, Z.; Liu, Q. Smartphone-Based Biosensors for Portable Food Evaluation. Curr. Opin. Food Sci. 2019, 28, 74–81. [Google Scholar] [CrossRef]
- Boonkaew, S.; Szot-Karpińska, K.; Niedziółka-Jönsson, J.; de Marco, A.; Jönsson-Niedziółka, M. NFC Smartphone-Based Electrochemical Microfluidic Device Integrated with Nanobody Recognition for C-Reactive Protein. ACS Sens. 2024, 9, 3066–3074. [Google Scholar] [CrossRef]
- Moshirian-Farahi, S.S.; Rahmanian, H.; Wu, J.; Huang, Q.; Sun, Y.; Ma, T.; Wu, H.; Fu, Y.; Cheng, K.; Pan, J. Integrated and Confinable Paper-Based Chip Biosensor for All-in-One Colorimetric Detection of Aflatoxin B1. Biosens. Bioelectron. 2025, 282, 117500. [Google Scholar] [CrossRef]
- Abiri, R.; Rizan, N.; Balasundram, S.K.; Bayat Shahbazi, A.; Abdul-Hamid, H. Application of Digital Technologies for Ensuring Agricultural Productivity. Heliyon 2023, 9, e22601. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Cui, X.; Li, N. Smartphone-Based Mobile Biosensors for the Point-of-Care Testing of Human Metabolites. Mater. Today Bio 2022, 14, 100254. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Zhang, B.; Zhang, S.; Dong, Y.; Deng, J.; Shui, H.; Liu, X. An Electrochemical Point-of-Care Testing Device for Specific Diagnosis of the Albinism Biomarker Based on Paradigm Shift Designs. Biosens. Bioelectron. 2024, 264, 116645. [Google Scholar] [CrossRef]
- Xu, Y.; Ning, H.; Yu, S.; Liu, S.; Zhang, Y.; Niu, C.; Zhang, Y.; Low, S.S.; Liu, J. Portable Multi-Channel Electrochemical Device with Good Interaction and Wireless Connection for On-Site Testing. Micromachines 2023, 14, 142. [Google Scholar] [CrossRef]
- Topkaya, S.N.; Azimzadeh, M.; Ozsoz, M. Electrochemical Biosensors for Cancer Biomarkers Detection: Recent Advances and Challenges. Electroanalysis 2016, 28, 1402–1419. [Google Scholar] [CrossRef]
- Bui, T.H.; Thangavel, B.; Sharipov, M.; Chen, K.; Shin, J.H. Smartphone-Based Portable Bio-Chemical Sensors: Exploring Recent Advancements. Chemosensors 2023, 11, 468. [Google Scholar] [CrossRef]
- Lacourt, C.; Mukherjee, K.; Garthoff, J.; O’Sullivan, A.; Meunier, L.; Fattori, V. Recent and Emerging Food Packaging Alternatives: Chemical Safety Risks, Current Regulations, and Analytical Challenges. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70059. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; He, Z.; Zhao, Z.; Duan, X.; Wang, S.; Shen, J.; Wang, Z.; Chen, H. Advances in Electrochemical Aptasensors: Aptamer Selection, Construction and Application in Food Safety. TrAC Trends Anal. Chem. 2025, 191, 118332. [Google Scholar] [CrossRef]
- Veerapandi, G.; Lavanya, N.; Neri, G.; Sekar, C. Non-Enzymatic Electrochemical Sensors Based on Nanostructured Metal Oxides for Food Quality Assessment: A Review. Trends Food Sci. Technol. 2025, 156, 104881. [Google Scholar] [CrossRef]
- Pervaiz, W.; Afzal, M.H.; Feng, N.; Peng, X.; Chen, Y. Machine Learning-Enhanced Electrochemical Sensors for Food Safety: Applications and Perspectives. Trends Food Sci. Technol. 2025, 156, 104872. [Google Scholar] [CrossRef]
- Khoobi, A.; Jangi, S.H. Designing an Electrochemical Sensor Based on Ferrite Nanostructures for Analysis of Heavy Metal Mercury Ions in Agricultural Sources from Saffron to Soil Samples. J. Electrochem. Soc. 2025, 172, 057516. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Z.; Liu, Y.; Gu, S.; Ai, C.; Pan, C.; Yu, G. Hierarchically Structured Nanoporous Organic Polymers as a Rapid Electrochemical Platform for Monitoring Trace Heavy Metal Ions. Microporous Mesoporous Mater. 2025, 395, 113685. [Google Scholar] [CrossRef]
- Liu, H.C.; Du, J.X.; Wang, J.; Liu, J.; Yang, L.; Yong, Y.C. A Bioelectric Active Hydrogel Sensor for Trace Detection of Heavy Metal Ions in Livestock and Poultry Farm Wastewater. Biosensors 2025, 15, 341. [Google Scholar] [CrossRef]
- Karn-Orachai, K.; Niamlaoong, R.; Ngamaroonchote, A.; Wattanasin, P. AuNPs-SPCE: A Versatile Sensor for Multi-Heavy Metal Detection in Water. Microchem. J. 2025, 210, 113028. [Google Scholar] [CrossRef]
- Wei, J.; Wang, L.; Hu, J.; Wei, W.; Yang, Y.; Song, Y.; Li, Y.; Gao, G. Development of an Origami Paper-Based Electrochemical Sensor Using N-Doped Graphene for Simultaneous Detection of Cd(II), Pb(II), and Hg(II) in Water. Microchem. J. 2025, 212, 113223. [Google Scholar] [CrossRef]
- Han, Y.; Tian, Y.; Li, Q.; Yao, T.; Yao, J.; Zhang, Z.; Wu, L. Advances in Detection Technologies for Pesticide Residues and Heavy Metals in Rice: A Comprehensive Review of Spectroscopy, Chromatography, and Biosensors. Foods 2025, 14, 1070. [Google Scholar] [CrossRef] [PubMed]
- Pesticide Residue Detection Services Market Size and Trends 2025–2033: Comprehensive Outlook. Available online: https://www.marketreportanalytics.com/reports/pesticide-residue-detection-services-56622#summary (accessed on 16 July 2025).
- Gharibzahedi, S.M.T.; Yousefi, S.; Chronakis, I.S. Microbial Transglutaminase in Noodle and Pasta Processing. Crit. Rev. Food Sci. Nutr. 2019, 59, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Galimberti, F.; Bopp, S.K.; Carletti, A.; Catarino, R.; Claverie, M.; Florio, P.; Ippolito, A.; Jones, A.; Marchetto, F.; Olvedy, M.; et al. Development of a Spatial Risk Indicator for Monitoring Residential Pesticide Exposure in Agricultural Areas. Sci. Rep. 2025, 15, 16785. [Google Scholar] [CrossRef] [PubMed]
- Gharibzahedi, S.M.T.; Razavi, S.H.; Mousavi, M. Microbial Canthaxanthin: Perspectives on Biochemistry and Biotechnological Production. Eng. Life Sci. 2013, 13, 408–417. [Google Scholar] [CrossRef]
- Cobos, A.G.Z.; Bykbaev, Y.R.; Farfán, F.P.; Perez, P.C. Evaluation of Pesticide Contamination Risks and Sustainable Practices in Ecuadorian Agriculture. Sci. Rep. 2024, 14, 26034. [Google Scholar] [CrossRef]
- Novakovic, Z.; Vasiljevic, Z.Z.; Nikolic, M.V.; Tadic, N.B.; Djordjevic, T.; Radovic, M.; Gadjanski, I.; Papović, S.; Vlahovic, F.; Stankovic, D.; et al. ZnO-Nanostructured Electrochemical Sensor for Efficient Detection of Glyphosate in Water. Talanta Open 2025, 12, 100481. [Google Scholar] [CrossRef]
- Wen, S.H.; Zhang, H.; Yu, S.; Ma, J.; Zhu, J.J.; Zhou, Y. Complementary Homogeneous Electrochemical and Photothermal Dual-Modal Sensor for Highly Sensitive Detection of Organophosphorus Pesticides via Stimuli-Responsive COF/Methylene Blue@MnO2 Composite. Anal. Chem. 2023, 95, 14914–14924. [Google Scholar] [CrossRef]
- Yadav, J.; Hooda, V.; Chauhan, N. AChE Inhibition Sensing through SiO2 and GQDs Interface on Screen-Printed Electrode for Malathion Detection. Process Biochem. 2025, 153, 238–247. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Karuppiah, C.; Alagarsamy, S.; Mohandoss, S.; Arunachalam, P.; Govindasamy, C.; Velmurugan, M.; Yang, C.C.; Lee, H.J.; Ramaraj, S.K. Highly Sensitive Detection of Environmental Toxic Fenitrothion in Fruits and Water Using a Porous Graphene Oxide Nanosheets Based Disposable Sensor. Environ. Res. 2024, 259, 119500. [Google Scholar] [CrossRef]
- Sang, X.Q.; Yan, W.J.; Qin, X.F.; Zhou, X.Y.; Jin, W.Y.; Yuan, Y.L.; Zhang, Y.; Niu, W.X. Non-Instrumental and Ultrasensitive Detection of Acetamiprid Residue Based on Tyndall Effect of Silver Nanoparticles. Chin. J. Anal. Chem. 2023, 51, 100194. [Google Scholar] [CrossRef]
- Khosropour, H.; Keramat, M.; Primpray, V.; Karuwan, C.; Tasca, F.; Laiwattanapaisal, W. An Electrochemical Aptamer-Based Biosensor for Rapid and Ultrasensitive Detection of Carbaryl by Red Blood Cell-Like MOFs. Alex. Eng. J. 2025, 124, 1–11. [Google Scholar] [CrossRef]
- Chaturvedi, M.; Mishra, A.; Sharma, K.; Sharma, G.; Saxena, G.; Singh, A.K. Emerging Contaminants in Wastewater: Sources of Contamination, Toxicity, and Removal Approaches. In Emerging Treatment Technologies for Waste Management; Singh, A.K., Mishra, A., Eds.; Springer: Singapore, 2021; pp. 103–132. [Google Scholar]
- Xiao, Z.; Hong, S.; Chen, Y.; Zhang, Z.; Zhang, Y. Smart and Accurate Detection of Nanoplastics in Aquatic Environments by Photoelectrochemical–Electrochemical Dual-Mode Portable Sensor. Sens. Actuators B Chem. 2024, 420, 136483. [Google Scholar] [CrossRef]
- Sarmiento, J.; Anaya, M.; Tibaduiza, D. Microplastic Identification Using Impedance Spectroscopy and Machine Learning Algorithms. Int. J. Distrib. Sens. Netw. 2024, 2024, 5298635. [Google Scholar] [CrossRef]
- Motalebizadeh, A.; Fardindoost, S.; Hoorfar, M. Selective On-Site Detection and Quantification of Polystyrene Microplastics in Water Using Fluorescence-Tagged Peptides and Electrochemical Impedance Spectroscopy. J. Hazard. Mater. 2024, 480, 136004. [Google Scholar] [CrossRef]
- Nguyen, H.H.T.; Kim, E.; Imran, M.; Choi, Y.H.; Kwak, D.H.; Ameen, S. Microplastic Contaminants Detection in Aquatic Environment by Hydrophobic Cerium Oxide Nanoparticles. Chemosphere 2024, 357, 141961. [Google Scholar] [CrossRef]
- Noumani, A.; Verma, D.; Kaushik, A.; Khosla, A.; Solanki, P.R. Electrochemical Microplastic Detection Using Chitosan–Magnesium Oxide Nanosheet. Environ. Res. 2024, 252, 118894. [Google Scholar] [CrossRef]
- Lee, C.; Han, S.; Park, J.H. Electrochemical Detection of Microplastics in Water Using Ultramicroelectrodes. Chemosensors 2024, 12, 278. [Google Scholar] [CrossRef]
- Du, H.; Chen, G.; Wang, J. Highly Selective Electrochemical Impedance Spectroscopy-Based Graphene Electrode for Rapid Detection of Microplastics. Sci. Total Environ. 2023, 862, 160873. [Google Scholar] [CrossRef]
- Gongi, W.; Touzi, H.; Sadly, I.; Ben Ouada, H.; Tamarin, O.; Ben Ouada, H. A Novel Impedimetric Sensor Based on Cyanobacterial Extracellular Polymeric Substances for Microplastics Detection. J. Polym. Environ. 2022, 30, 4738–4748. [Google Scholar] [CrossRef]
- Colson, B.C.; Michel, A.P.M. Flow-Through Quantification of Microplastics Using Impedance Spectroscopy. ACS Sens. 2021, 6, 238–244. [Google Scholar] [CrossRef]
- Dogra, P.; Srivastava, M.; Sagar, P.; Tripathi, C.S.P.; Srivastava, S.K. Wireless & Portable Smartphone-Assisted Electrochemical Platform for On-Site Monitoring of Chloramphenicol Drug. Biosens. Bioelectron. 2025, 287, 117694. [Google Scholar]
- Cheng, Y.H.; Barpaga, D.; Soltis, J.A.; Shutthanandan, V.; Kargupta, R.; Han, K.S.; McGrail, B.P.; Motkuri, R.K.; Basuray, S.; Chatterjee, S. Metal–Organic Framework-Based Microfluidic Impedance Sensor Platform for Ultrasensitive Detection of Perfluorooctanesulfonate. ACS Appl. Mater. Interfaces 2020, 12, 10503–10514. [Google Scholar] [CrossRef]
- Menger, R.F.; Funk, E.; Henry, C.S.; Borch, T. Sensors for Detecting Per- and Polyfluoroalkyl Substances (PFAS): A Critical Review of Development Challenges, Current Sensors, and Commercialization Obstacles. Chem. Eng. J. 2021, 417, 129133. [Google Scholar] [CrossRef] [PubMed]
- Hassani, S.; Rezaei Akmal, M.; Salek Maghsoudi, A.; Rahmani, S.; Vakhshiteh, F.; Norouzi, P.; Ganjali, M.R.; Abdollahi, M. High-Performance Voltammetric Aptasensing Platform for Ultrasensitive Detection of Bisphenol A as an Environmental Pollutant. Front. Bioeng. Biotechnol. 2020, 8, 574846. [Google Scholar] [CrossRef] [PubMed]
- Luis-Sunga, M.; Carinelli, S.; García, G.; González-Mora, J.L.; Salazar-Carballo, P.A. Electrochemical Detection of Bisphenol A Based on Gold Nanoparticles/Multi-Walled Carbon Nanotubes: Applications on Glassy Carbon and Screen Printed Electrodes. Sensors 2024, 24, 2570. [Google Scholar] [CrossRef]
- Vogiazi, V.; De La Cruz, A.A.; Varughese, E.A.; Heineman, W.R.; White, R.J.; Dionysiou, D.D. Sensitive Electrochemical Detection of Microcystin-LR in Water Samples via Target-Induced Displacement of Aptamer Associated [Ru(NH3)6]3+. ACS ES T Eng. 2021, 1, 1715–1725. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yuan, H.; Yang, Y.; Yang, P.; Yan, X.; Mu, Y.; Jin, Q.; Yang, P.; Gao, W. A Comb-Shaped Microfluidic Aptasensor for Rapid and Sensitive On-Site Simultaneous Detection of Aflatoxin B1 and Deoxynivalenol. Food Chem. 2025, 473, 143072. [Google Scholar] [CrossRef]
- Hilaluddin, F.; Ong, K.K.; Norrrahim, M.N.F.; Jamari, N.L.A.; Jamal, S.H.; Mohd Noor, S.A.; Mohd Kasim, N.A.; Wan Yunus, W.M.Z.; Abdullah, N.; Osman, M.J.; et al. Recent Applications of Molecularly Imprinted Polymer Sensors Equipped with Smartphones for Detection of Pesticide Residues in Environmental Samples. Arab J. Basic Appl. Sci. 2024, 31, 481–504. [Google Scholar] [CrossRef]
- Parihar, A.; Sharma, P.; Choudhary, N.K.; Khan, R.; Mostafavi, E. Internet-of-Things-Integrated Molecularly Imprinted Polymer-Based Electrochemical Nanosensors for Pesticide Detection in the Environment and Food Products. Environ. Pollut. 2024, 351, 124029. [Google Scholar] [CrossRef]
- Peng, S.; Wang, A.; Lian, Y.; Zhang, X.; Zeng, B.; Chen, Q.; Yang, H.; Li, J.; Li, L.; Dan, J.; et al. Smartphone-Based Molecularly Imprinted Sensors for Rapid Detection of Thiamethoxam Residues and Applications. PLoS ONE 2021, 16, e0258508. [Google Scholar] [CrossRef]
- Qin, S.; Sun, X.; Zhao, X. Advances in Smartphone-Based Biosensors for Food Testing. Curr. Opin. Food Sci. 2025, 61, 101236. [Google Scholar] [CrossRef]
- Yentongchai, M.; Chomthong, K.; Nuanualsuwan, S.; Khongchareonporn, N.; Ruantip, S.; Sain, M.M.; Pungjunun, K.; Chaiyo, S. Label-Free Electrochemical Lateral Flow Immunosensor Integrated with NFC Technology for Detection of Salmonella Typhimurium in Food Samples. Sens. Actuators B Chem. 2025, 441, 138003. [Google Scholar] [CrossRef]
- Govedarica, M.; Milosevic, I.; Jankovic, V.; Mitrovic, R.; Kundacina, I.; Nastasijevic, I.; Radonic, V. A Cost-Effective and Rapid Manufacturing Approach for Electrochemical Transducers with Magnetic Beads for Biosensing. Micromachines 2025, 16, 343. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Razavi, S.H.; Mousavi, M. Characterization of Bacteria of the Genus Dietzia: An Updated Review. Ann. Microbiol. 2014, 64, 1–11. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Razavi, S.H.; Mousavi, M. Developing an Emulsion Model System Containing Canthaxanthin Biosynthesized by Dietzia natronolimnaea HS-1. Int. J. Biol. Macromol. 2012, 51, 618–626. [Google Scholar] [CrossRef]
- Ardila, C.M. Advancing Healthcare through Laboratory on a Chip Technology: Transforming Microorganism Identification and Diagnostics. World J. Clin. Cases 2025, 13, 97737. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, A.M.; Hassan, S.-u.; Warren, B.M.; Makris, K.; Evans, G.W.H.; Papadopoulou, E.; Coleman, S.; Niu, X. A Droplet Microfluidic-Based Sensor for Simultaneous In Situ Monitoring of Nitrate and Nitrite in Natural Waters. Environ. Sci. Technol. 2019, 53, 9677–9685. [Google Scholar] [CrossRef]
- Nath, S. Advancements in Food Quality Monitoring: Integrating Biosensors for Precision Detection. Sustain. Food Technol. 2024, 2, 976–992. [Google Scholar] [CrossRef]
- Khan, S.; Monteiro, J.K.; Prasad, A.; Filipe, C.D.; Li, Y.; Didar, T.F. Material Breakthroughs in Smart Food Monitoring: Intelligent Packaging and On-Site Testing Technologies for Spoilage and Contamination Detection. Adv. Mater. 2024, 36, 2300875. [Google Scholar] [CrossRef]
- Yin, J.; Suo, Y.; Zou, Z.; Sun, J.; Zhang, S.; Wang, B.; Mu, Y. Integrated Microfluidic Systems with Sample Preparation and Nucleic Acid Amplification. Lab Chip. 2019, 19, 2769–2785. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, N. Electrochemical Biosensors Based on Micro-Fabricated Devices for Point-of-Care Testing: A Review. Electroanalysis 2022, 34, 168–183. [Google Scholar] [CrossRef]
- Vo, D.K.; Trinh, K.T.L. Polymerase Chain Reaction Chips for Biomarker Discovery and Validation in Drug Development. Micromachines 2025, 16, 243. [Google Scholar] [CrossRef] [PubMed]
- Sogore, T.; Guo, M.; Sun, N.; Jiang, D.; Shen, M.; Ding, T. Microbiological and Chemical Hazards in Cultured Meat and Methods for Their Detection. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13392. [Google Scholar] [CrossRef]
- Olarewaju, O.O.; Fawole, O.A.; Baiyegunhi, L.J.; Mabhaudhi, T. Integrating Sustainable Agricultural Practices to Enhance Climate Resilience and Food Security in Sub-Saharan Africa: A Multidisciplinary Perspective. Sustainability 2025, 17, 6259. [Google Scholar] [CrossRef]
- Biswas, G.C.; Choudhury, S.; Rabbani, M.M.; Das, J. A Review on Potential Electrochemical Point-of-Care Tests Targeting Pandemic Infectious Disease Detection: COVID-19 as a Reference. Chemosensors 2022, 10, 269. [Google Scholar] [CrossRef]
- Lu, S.; Fu, B.; Zhang, Z. Zwitterionic Polymers Coating Antibiofouling Photoelectrochemical Aptasensor for In Vivo Antibiotic Metabolism Monitoring and Tracking. Anal. Chem. 2022, 94, 14509–14516. [Google Scholar] [CrossRef]
- Lee, I.; Kim, H.-Y. Lab-on-a-Chip Devices for Nucleic Acid Analysis in Food Safety. Micromachines 2024, 15, 1524. [Google Scholar] [CrossRef]
- Lazaro, A.; Villarino, R.; Lazaro, M.; Canellas, N.; Prieto-Simon, B.; Girbau, D. Recent Advances in Batteryless NFC Sensors for Chemical Sensing and Biosensing. Biosensors 2023, 13, 775. [Google Scholar] [CrossRef]
- Watkins, Z.; Karajic, A.; Young, T.; White, R.; Heikenfeld, J. Week-long operation of electrochemical aptamer sensors: New Insights into Self-Assembled Monolayer Degradation Mechanisms and Solutions for Stability in Serum at Body Temperature. ACS Sens. 2023, 8, 1119–1131. [Google Scholar] [CrossRef]
- Gomis-Pastor, M.; Berdún, J.; Borrás-Santos, A.; De Dios López, A.; Fernández-Montells Rama, B.; García-Esquirol, Ó.; Gratacòs, M.; Ontiveros Rodríguez, G.D.; Pelegrín Cruz, R.; Real, J.; et al. Clinical Validation of Digital Healthcare Solutions: State of the Art, Challenges and Opportunities. Healthcare 2024, 12, 1057. [Google Scholar] [CrossRef] [PubMed]
- Aryal, P.; Henry, C.S. Advancements and Challenges in Microfluidic Paper-Based Analytical Devices: Design, Manufacturing, Sustainability, and Field Applications. Front. Lab Chip Technol. 2024, 3, 1467423. [Google Scholar] [CrossRef]
- Xing, G.; Shang, Y.; Wang, X.; Lin, H.; Chen, S.; Pu, Q.; Lin, L. Multiplexed Detection of Foodborne Pathogens Using One-Pot CRISPR/Cas12a Combined with Recombinase Aided Amplification on a Finger-Actuated Microfluidic Biosensor. Biosens. Bioelectron. 2023, 220, 114885. [Google Scholar] [CrossRef] [PubMed]
- Avanija, J.; Rajyalakshmi, C.; Madhavi, K.R.; Rao, B.N.K. Enabling Smart Farming Through Edge Artificial Intelligence (AI). In Agriculture and Aquaculture Applications of Biosensors and Bioelectronics; IGI Global Scientific Publishing: Hershey, PA, USA, 2024; pp. 69–82. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savas, S.; Gharibzahedi, S.M.T. Smartphone-Integrated Electrochemical Devices for Contaminant Monitoring in Agriculture and Food: A Review. Biosensors 2025, 15, 574. https://doi.org/10.3390/bios15090574
Savas S, Gharibzahedi SMT. Smartphone-Integrated Electrochemical Devices for Contaminant Monitoring in Agriculture and Food: A Review. Biosensors. 2025; 15(9):574. https://doi.org/10.3390/bios15090574
Chicago/Turabian StyleSavas, Sumeyra, and Seyed Mohammad Taghi Gharibzahedi. 2025. "Smartphone-Integrated Electrochemical Devices for Contaminant Monitoring in Agriculture and Food: A Review" Biosensors 15, no. 9: 574. https://doi.org/10.3390/bios15090574
APA StyleSavas, S., & Gharibzahedi, S. M. T. (2025). Smartphone-Integrated Electrochemical Devices for Contaminant Monitoring in Agriculture and Food: A Review. Biosensors, 15(9), 574. https://doi.org/10.3390/bios15090574