Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,204)

Search Parameters:
Keywords = preservation strategies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1327 KB  
Review
Unequal Horizons: Global North–South Disparities in Archaeological Earth Observation (2000–2025)
by Athos Agapiou
Remote Sens. 2025, 17(19), 3371; https://doi.org/10.3390/rs17193371 - 6 Oct 2025
Abstract
This systematic review analyzes 4359 archaeologically relevant publications spanning 25 years to examine global disparities in archaeological remote sensing research between Global North and Global South participation. This study reveals deep inequalities among these regions, with 72.1% of research output originating from Global [...] Read more.
This systematic review analyzes 4359 archaeologically relevant publications spanning 25 years to examine global disparities in archaeological remote sensing research between Global North and Global South participation. This study reveals deep inequalities among these regions, with 72.1% of research output originating from Global North-only institutions, despite these regions hosting less than half of UNESCO World Heritage Sites. The temporal analysis demonstrates exponential growth, with 47.2% of all research published in the last five years, indicating rapid technological advancement concentrated in well-resourced institutions. Sub-Saharan Africa produces only 0.6% of research output while hosting 9.4% of World Heritage Sites, highlighting a technology gap in heritage protection. The findings suggest an urgent need for coordinated interventions to address structural inequalities and promote technological fairness in global heritage preservation. The research employed bibliometric analysis of Scopus database records from four complementary search strategies, revealing that just three countries—Italy (20.3%), the United States (16.7%), and the United Kingdom (10.0%)—account for nearly half of all archaeological remote sensing research and applications worldwide. This study documents patterns that have profound implications for cultural heritage preservation and sustainable development in an increasingly digital world where advanced Earth observation technologies have become essential for effective heritage protection and archaeological research. Full article
19 pages, 24401 KB  
Article
Effect of Crease-Weakening Schemes on the Structural Performance of Lightweight Foldable Columns Based on the Pillow Box Pattern
by Qingyun Zhang, Joseph M. Gattas and Jian Feng
Appl. Sci. 2025, 15(19), 10756; https://doi.org/10.3390/app151910756 - 6 Oct 2025
Abstract
Origami structures exhibit significant potential for rapid deployment in post-disaster response and temporary architecture due to their ability to quickly fold and deploy. Further development of these structures into modular components that can be assembled into large-scale architectural systems holds great importance for [...] Read more.
Origami structures exhibit significant potential for rapid deployment in post-disaster response and temporary architecture due to their ability to quickly fold and deploy. Further development of these structures into modular components that can be assembled into large-scale architectural systems holds great importance for the fields of architecture and civil engineering. In this study, a thin-walled foldable column was developed based on the “pillow box” origami pattern. This column maintains its three-dimensional configuration during folding, owing to its inherent self-locking characteristic. Two crease-weakening strategies (“dashed-line” and “slit-hole”) were proposed and experimentally validated. A systematic numerical study was conducted to investigate the axial compressive performance of pillow box columns with weakened curved creases. The results indicate that both weakening strategies effectively enable folding while preserving global integrity under compression. The pillow box column with “dashed-line” creases (OCC-D) demonstrated superior load-bearing capacity, with a load-to-weight ratio of up to 658.9, nearly twice that of the corresponding conventional square tube. Parametric analysis of the crease geometry further revealed that increasing the number of crease units enhances the load-bearing performance, and the optimal performance is achieved when the spacing between slit openings equals the slit length (lh=lc). These findings highlight the advantages of pillow box origami columns as thin-walled load-bearing components, offering new insights for the rapid construction and lightweight design of architectural structures. Full article
Show Figures

Figure 1

20 pages, 887 KB  
Article
Mitigating the Stability–Plasticity Trade-Off in Neural Networks via Shared Extractors in Class-Incremental Learning
by Mingda Dong, Rui Li and Feng Liu
Appl. Sci. 2025, 15(19), 10757; https://doi.org/10.3390/app151910757 - 6 Oct 2025
Abstract
Humans learn new tasks without forgetting, but neural networks suffer from catastrophic forgetting when trained sequentially. Dynamic expandable networks attempt to address this by assigning each task its own feature extractor and freezing previous ones to preserve past knowledge. While effective for retaining [...] Read more.
Humans learn new tasks without forgetting, but neural networks suffer from catastrophic forgetting when trained sequentially. Dynamic expandable networks attempt to address this by assigning each task its own feature extractor and freezing previous ones to preserve past knowledge. While effective for retaining old tasks, this design leads to rapid parameter growth, and frozen extractors never adapt to future data, often producing irrelevant features that degrade later performance. To overcome these limitations, we propose Task-Sharing Distillation (TSD), which reduces the number of extractors by allowing multiple tasks to share one extractor and consolidating them through distillation. We study two strategies: (1) grouped rolling consolidation, which groups consecutive tasks and consolidates them into a shared extractor, and (2) a fixed-size pooling with similarity-based consolidation, where new tasks are merged into the most compatible extractor in a fixed pool according to prototype similarity. Experiments on the CIFAR-100 and ImageNet-100 datasets show that TSD maintains strong performance across tasks, demonstrating that careful feature sharing is more effective than simply adding more extractors. On ImageNet-100, our method achieves 2.5% higher average accuracy than DER while using fewer feature extractors. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

29 pages, 2430 KB  
Article
A Federated Fine-Tuning Framework for Large Language Models via Graph Representation Learning and Structural Segmentation
by Yuxin Dong, Ruotong Wang, Guiran Liu, Binrong Zhu, Xiaohan Cheng, Zijun Gao and Pengbin Feng
Mathematics 2025, 13(19), 3201; https://doi.org/10.3390/math13193201 - 6 Oct 2025
Abstract
This paper focuses on the efficient fine-tuning of large language models within the federated learning framework. To address the performance bottlenecks caused by multi-source heterogeneity and structural inconsistency, a structure-aware federated fine-tuning method is proposed. The method incorporates a graph representation module (GRM) [...] Read more.
This paper focuses on the efficient fine-tuning of large language models within the federated learning framework. To address the performance bottlenecks caused by multi-source heterogeneity and structural inconsistency, a structure-aware federated fine-tuning method is proposed. The method incorporates a graph representation module (GRM) to model internal structural relationships within text and employs a segmentation mechanism (SM) to reconstruct and align semantic structures across inputs, thereby enhancing structural robustness and generalization under non-IID (non-Independent and Identically Distributed) settings. During training, the method ensures data locality and integrates structural pruning with gradient encryption (SPGE) strategies to balance privacy preservation and communication efficiency. Compared with representative federated fine-tuning baselines such as FedNLP and FedPrompt, the proposed method achieves consistent accuracy and F1-score improvements across multiple tasks. To evaluate the effectiveness of the proposed method, extensive comparative experiments are conducted across tasks of text classification, named entity recognition, and question answering, using multiple datasets with diverse structures and heterogeneity levels. Experimental results show that the proposed approach significantly outperforms existing federated fine-tuning strategies on most tasks, achieving higher performance while preserving privacy, and demonstrating strong practical applicability and generalization potential. Full article
(This article belongs to the Special Issue Privacy-Preserving Machine Learning in Large Language Models (LLMs))
Show Figures

Figure 1

36 pages, 4428 KB  
Article
Federated Reinforcement Learning with Hybrid Optimization for Secure and Reliable Data Transmission in Wireless Sensor Networks (WSNs)
by Seyed Salar Sefati, Seyedeh Tina Sefati, Saqib Nazir, Roya Zareh Farkhady and Serban Georgica Obreja
Mathematics 2025, 13(19), 3196; https://doi.org/10.3390/math13193196 - 6 Oct 2025
Abstract
Wireless Sensor Networks (WSNs) consist of numerous battery-powered sensor nodes that operate with limited energy, computation, and communication capabilities. Designing routing strategies that are both energy-efficient and attack-resilient is essential for extending network lifetime and ensuring secure data delivery. This paper proposes Adaptive [...] Read more.
Wireless Sensor Networks (WSNs) consist of numerous battery-powered sensor nodes that operate with limited energy, computation, and communication capabilities. Designing routing strategies that are both energy-efficient and attack-resilient is essential for extending network lifetime and ensuring secure data delivery. This paper proposes Adaptive Federated Reinforcement Learning-Hunger Games Search (AFRL-HGS), a Hybrid Routing framework that integrates multiple advanced techniques. At the node level, tabular Q-learning enables each sensor node to act as a reinforcement learning agent, making next-hop decisions based on discretized state features such as residual energy, distance to sink, congestion, path quality, and security. At the network level, Federated Reinforcement Learning (FRL) allows the sink node to aggregate local Q-tables using adaptive, energy- and performance-weighted contributions, with Polyak-based blending to preserve stability. The binary Hunger Games Search (HGS) metaheuristic initializes Cluster Head (CH) selection and routing, providing a well-structured topology that accelerates convergence. Security is enforced as a constraint through a lightweight trust and anomaly detection module, which fuses reliability estimates with residual-based anomaly detection using Exponentially Weighted Moving Average (EWMA) on Round-Trip Time (RTT) and loss metrics. The framework further incorporates energy-accounted control plane operations with dual-format HELLO and hierarchical ADVERTISE/Service-ADVERTISE (SrvADVERTISE) messages to maintain the routing tables. Evaluation is performed in a hybrid testbed using the Graphical Network Simulator-3 (GNS3) for large-scale simulation and Kali Linux for live adversarial traffic injection, ensuring both reproducibility and realism. The proposed AFRL-HGS framework offers a scalable, secure, and energy-efficient routing solution for next-generation WSN deployments. Full article
18 pages, 2116 KB  
Article
A Markov Chain Replacement Strategy for Surrogate Identifiers: Minimizing Re-Identification Risk While Preserving Text Reuse
by John D. Osborne, Andrew Trotter, Tobias O’Leary, Chris Coffee, Micah D. Cochran, Luis Mansilla-Gonzalez, Akhil Nadimpalli, Alex McAnnally, Abdulateef I. Almudaifer, Jeffrey R. Curtis, Salma M. Aly and Richard E. Kennedy
Electronics 2025, 14(19), 3945; https://doi.org/10.3390/electronics14193945 - 6 Oct 2025
Abstract
“Hiding in Plain Sight” (HIPS) strategies for Personal Health Information (PHI) replace PHI with surrogate values to hinder re-identification attempts. We evaluate three different HIPS strategies for PHI replacement, a standard Consistent replacement strategy, a Random replacement strategy, and a novel Markov model [...] Read more.
“Hiding in Plain Sight” (HIPS) strategies for Personal Health Information (PHI) replace PHI with surrogate values to hinder re-identification attempts. We evaluate three different HIPS strategies for PHI replacement, a standard Consistent replacement strategy, a Random replacement strategy, and a novel Markov model strategy. We evaluate the privacy-preserving benefits and relative utility for information extraction of these strategies on both a simulated PHI distribution and real clinical corpora from two different institutions using a range of false negative error rates (FNER). The Markov strategy consistently outperformed the Consistent and Random substitution strategies on both real data and in statistical simulations. Using FNER ranging from 0.1% to 5%, PHI leakage at the document level could be reduced from 27.1% to 0.1% and from 94.2% to 57.7% with the Markov strategy versus the standard Consistent substitution strategy, at 0.1% and 0.5% FNER, respectively. Additionally, we assessed the generated corpora containing synthetic PHI for reuse using a variety of information extraction methods. Results indicate that modern deep learning methods have similar performance on all strategies, but older machine learning techniques can suffer from the change in context. Overall, a Markov surrogate generation strategy substantially reduces the chance of inadvertent PHI release. Full article
Show Figures

Figure 1

15 pages, 1082 KB  
Article
Effects of High-Intensity Interval Training on Functional Fitness in Older Adults
by André Schneider, Luciano Bernardes Leite, Fernando Santos, José Teixeira, Pedro Forte, Tiago M. Barbosa and António Miguel Monteiro
Appl. Sci. 2025, 15(19), 10745; https://doi.org/10.3390/app151910745 - 6 Oct 2025
Abstract
(1) Background: The global increase in life expectancy has generated growing interest in strategies that support functional independence and quality of life among older adults. Functional fitness—including strength, mobility, flexibility, and aerobic endurance—is essential for preserving autonomy during aging. In this context, physical [...] Read more.
(1) Background: The global increase in life expectancy has generated growing interest in strategies that support functional independence and quality of life among older adults. Functional fitness—including strength, mobility, flexibility, and aerobic endurance—is essential for preserving autonomy during aging. In this context, physical exercise, particularly High-Intensity Interval Training (HIIT), has gained attention for its time efficiency and physiological benefits. This randomized controlled trial aimed to evaluate the effects of a group-based HIIT program on functional fitness in older adults; (2) Methods: Functional outcomes were assessed before, during, and after a 65-week intervention using standardized field tests, including measures of upper and lower body strength, flexibility, aerobic endurance, and agility. This study was prospectively registered at ClinicalTrials.gov (NCT07170579); (3) Results: Significant improvements were observed in the HIIT group across multiple domains of functional fitness compared to the control group, notably in upper body strength, lower limb flexibility, cardiorespiratory endurance, and mobility; (4) Conclusions: These results suggest that HIIT is an effective and adaptable strategy for improving functional fitness in older adults, with the potential to enhance performance in daily activities and support healthy aging in community settings. Full article
(This article belongs to the Special Issue Sports, Exercise and Healthcare)
Show Figures

Figure 1

52 pages, 1054 KB  
Review
Advancements in Microbial Applications for Sustainable Food Production
by Alane Beatriz Vermelho, Verônica da Silva Cardoso, Levy Tenório Sousa Domingos, Ingrid Teixeira Akamine, Bright Amenu, Bernard Kwaku Osei and Athayde Neves Junior
Foods 2025, 14(19), 3427; https://doi.org/10.3390/foods14193427 - 5 Oct 2025
Abstract
This review consolidates recent advancements in microbial biotechnology for sustainable food systems. It focuses on the fermentation processes used in this sector, emphasizing precision fermentation as a source of innovation for alternative proteins, fermented foods, and applications of microorganisms and microbial bioproducts in [...] Read more.
This review consolidates recent advancements in microbial biotechnology for sustainable food systems. It focuses on the fermentation processes used in this sector, emphasizing precision fermentation as a source of innovation for alternative proteins, fermented foods, and applications of microorganisms and microbial bioproducts in the food industry. Additionally, it explores food preservation strategies and methods for controlling microbial contamination. These biotechnological approaches are increasingly replacing synthetic additives, contributing to enhanced food safety, nutritional functionality, and product shelf stability. Examples include bacteriocins from lactic acid bacteria, biodegradable microbial pigments, and exopolysaccharide-based biopolymers, such as pullulan and xanthan gum, which are used in edible coatings and films. A comprehensive literature search was conducted across Scopus, PubMed, ScienceDirect, and Google Scholar, covering publications from 2014 to 2025. A structured Boolean search strategy was applied, targeting core concepts in microbial fermentation, bio-based food additives, and contamination control. The initial search retrieved 5677 articles, from which 370 studies were ultimately selected after applying criteria such as duplication removal, relevance to food systems, full-text accessibility, and scientific quality. This review highlights microbial biotransformation as a route to minimize reliance on synthetic inputs, valorize agri-food byproducts, and support circular bioeconomy principles. It also discusses emerging antimicrobial delivery systems and regulatory challenges. Overall, microbial innovations offer viable and scalable pathways for enhancing food system resilience, functionality, and environmental stewardship. Full article
Show Figures

Graphical abstract

15 pages, 2733 KB  
Article
Population Genomic Survey of Hypophthalmichthys molitrix in the Yangtze River Basin: A RAD Sequencing Perspective
by Weitao Li, Xingkun Hu, Yanfu Que, Ezhou Wang, Nian Xu, Ke Shao, Guoqing Lu, Xiaolin Liao and Bin Zhu
Animals 2025, 15(19), 2906; https://doi.org/10.3390/ani15192906 - 5 Oct 2025
Abstract
This study examines the genetic diversity and population structure of silver carp (Hypophthalmichthys molitrix), an ecologically and economically important freshwater species. Samples were collected from 17 sites along the Yangtze River, including LCH, LCS, LJHK, and LXZX, as well as one [...] Read more.
This study examines the genetic diversity and population structure of silver carp (Hypophthalmichthys molitrix), an ecologically and economically important freshwater species. Samples were collected from 17 sites along the Yangtze River, including LCH, LCS, LJHK, and LXZX, as well as one population from the United States (SV). Restriction-site associated DNA sequencing (RAD-seq) generated 759,453 high-quality single-nucleotide polymorphisms (SNPs) for population genomic analyses, including genetic differentiation (FST), population structure, and linkage disequilibrium (LD) decay. Genetic variation was primarily found within populations (78.05%), with 21.94% among populations. Most sites exhibited low genetic differentiation (FST < 0.05), suggesting high admixture along the river, although a few sites displayed elevated values (FST > 0.15). Rapid LD decay in LCH, LCS, and LJZ indicated frequent recombination and moderate to large effective population sizes. These patterns reflect the influence of geographic and ecological factors on population structure. Conservation strategies should maintain genetic connectivity while protecting distinct genetic resources. Populations with high differentiation, such as LXZX and LWZ, warrant targeted management to preserve unique genetic diversity. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

29 pages, 2495 KB  
Systematic Review
Manufacturing Supply Chain Resilience Amid Global Value Chain Reconfiguration: An Enhanced Bibliometric–Systematic Literature Review
by Yan Li, Xinxin Xia, Cong Wang and Qingbo Huang
Systems 2025, 13(10), 873; https://doi.org/10.3390/systems13100873 - 5 Oct 2025
Abstract
Global Value Chains (GVCs) have driven the worldwide dispersion of manufacturing but remain highly vulnerable to macro-level shocks, including financial crises, geopolitical tensions, and the COVID-19 pandemic. These shocks expose manufacturing supply chains (MSCs) to systemic risks, but limited research has explored how [...] Read more.
Global Value Chains (GVCs) have driven the worldwide dispersion of manufacturing but remain highly vulnerable to macro-level shocks, including financial crises, geopolitical tensions, and the COVID-19 pandemic. These shocks expose manufacturing supply chains (MSCs) to systemic risks, but limited research has explored how GVC reconfiguration mediates their impact on manufacturing supply chain resilience (MSCR). To address this gap, this study conducts an enhanced bibliometric–systematic literature review (B-SLR) of 120 peer-reviewed articles. The findings reveal that macro-level shocks induce GVC reconfigurations along geographical, value, and governance dimensions, which in turn trigger MSCR through node- and link-level mechanisms. MSCR represents a manufacturer-centered capability that enables MSCs to preserve, realign, and enhance value amid shocks. Building on these insights, this research proposes a multi-tier strategy encompassing firm-level practices, inter-firm collaborations, and policy interventions. This study outlines three key contributions. First, at the theoretical level, it embeds MSCR within a GVC framework, clarifying how GVC reconfiguration mediates SCR under macro-level shocks. Second, at the methodological level, it ensures corpus completeness through snowballing and refines bibliometric mapping with multi-dimensional visualization. Third, at the managerial level, it provides actionable guidance for firms, industry alliances, and policymakers to align MSCR strategies with the dynamics of global production networks. Full article
(This article belongs to the Section Supply Chain Management)
36 pages, 20759 KB  
Article
Autonomous UAV Landing and Collision Avoidance System for Unknown Terrain Utilizing Depth Camera with Actively Actuated Gimbal
by Piotr Łuczak and Grzegorz Granosik
Sensors 2025, 25(19), 6165; https://doi.org/10.3390/s25196165 - 5 Oct 2025
Abstract
Autonomous landing capability is crucial for fully autonomous UAV flight. Currently, most solutions use either color imaging from a camera pointed down, lidar sensors, dedicated landing spots, beacons, or a combination of these approaches. Classical strategies can be limited by either no color [...] Read more.
Autonomous landing capability is crucial for fully autonomous UAV flight. Currently, most solutions use either color imaging from a camera pointed down, lidar sensors, dedicated landing spots, beacons, or a combination of these approaches. Classical strategies can be limited by either no color data when lidar is used, limited obstacle perception when only color imaging is used, a low field of view from a single RGB-D sensor, or the requirement for the landing spot to be prepared in advance. In this paper, a new approach is proposed where an RGB-D camera mounted on a gimbal is used. The gimbal is actively actuated to counteract the limited field of view while color images and depth information are provided by the RGB-D camera. Furthermore, a combined UAV-and-gimbal-motion strategy is proposed to counteract the low maximum range of depth perception to provide static obstacle detection and avoidance, while preserving safe operating conditions for low-altitude flight, near potential obstacles. The system is developed using a PX4 flight stack, CubeOrange flight controller, and Jetson nano onboard computer. The system was flight-tested in simulation conditions and statically tested on a real vehicle. Results show the correctness of the system architecture and possibility of deployment in real conditions. Full article
(This article belongs to the Special Issue UAV-Based Sensing and Autonomous Technologies)
Show Figures

Figure 1

14 pages, 2579 KB  
Article
Targeted Delivery of VEGF-siRNA to Glioblastoma Using Orientation-Controlled Anti-PD-L1 Antibody-Modified Lipid Nanoparticles
by Ayaka Matsuo-Tani, Makoto Matsumoto, Takeshi Hiu, Mariko Kamiya, Longjian Geng, Riku Takayama, Yusuke Ushiroda, Naoya Kato, Hikaru Nakamura, Michiharu Yoshida, Hidefumi Mukai, Takayuki Matsuo and Shigeru Kawakami
Pharmaceutics 2025, 17(10), 1298; https://doi.org/10.3390/pharmaceutics17101298 - 4 Oct 2025
Abstract
Background/Objectives: Glioblastoma (GBM) is an aggressive primary brain tumor with limited therapeutic options despite multimodal treatment. Small interfering RNA (siRNA)-based therapeutics can silence tumor-promoting genes, but achieving efficient and tumor-specific delivery remains challenging. Lipid nanoparticles (LNPs) are promising siRNA carriers; however, conventional [...] Read more.
Background/Objectives: Glioblastoma (GBM) is an aggressive primary brain tumor with limited therapeutic options despite multimodal treatment. Small interfering RNA (siRNA)-based therapeutics can silence tumor-promoting genes, but achieving efficient and tumor-specific delivery remains challenging. Lipid nanoparticles (LNPs) are promising siRNA carriers; however, conventional antibody conjugation can impair antigen recognition and complicate manufacturing. This study aimed to establish a modular Fc-binding peptide (FcBP)-mediated post-insertion strategy to enable PD-L1-targeted delivery of VEGF-siRNA via LNPs for GBM therapy. Methods: Preformed VEGF-siRNA-loaded LNPs were functionalized with FcBP–lipid conjugates, enabling non-covalent anchoring of anti-PD-L1 antibodies through Fc interactions. Particle characteristics were analyzed using dynamic light scattering and encapsulation efficiency assays. Targeted cellular uptake and VEGF gene silencing were evaluated in PD-L1-positive GL261 glioma cells. Anti-tumor efficacy was assessed in a subcutaneous GL261 tumor model following repeated intratumoral administration using tumor volume and bioluminescence imaging as endpoints. Results: FcBP post-insertion preserved LNP particle size (125.2 ± 1.3 nm), polydispersity, zeta potential, and siRNA encapsulation efficiency. Anti-PD-L1–FcBP-LNPs significantly enhanced cellular uptake (by ~50-fold) and VEGF silencing in PD-L1-expressing GL261 cells compared to controls. In vivo, targeted LNPs reduced tumor volume by 65% and markedly suppressed bioluminescence signals without inducing weight loss. Final tumor weight was reduced by 63% in the anti-PD-L1–FcBP–LNP group (656.9 ± 125.4 mg) compared to the VEGF-siRNA LNP group (1794.1 ± 103.7 mg). The FcBP-modified LNPs maintained antibody orientation and binding activity, enabling rapid functionalization with targeting antibodies. Conclusions: The FcBP-mediated post-insertion strategy enables site-specific, modular antibody functionalization of LNPs without compromising physicochemical integrity or antibody recognition. PD-L1-targeted VEGF-siRNA delivery demonstrated potent, selective anti-tumor effects in GBM murine models. This platform offers a versatile approach for targeted nucleic acid therapeutics and holds translational potential for treating GBM. Full article
Show Figures

Graphical abstract

19 pages, 819 KB  
Review
Fertility Preservation Strategies in Female Cancer Patients: Current Approaches and Future Directions
by Nicolae Gică, Ioana Vișoiu, Ioana-Catalina Mocanu, Ancuța Năstac, Romina Marina Sima, Anca Maria Panaitescu and Claudia Mehedințu
Medicina 2025, 61(10), 1794; https://doi.org/10.3390/medicina61101794 - 4 Oct 2025
Abstract
Fertility-sparing treatments (FSTs) have gained importance for young female cancer patients, especially those with early-stage cervical, ovarian, and endometrial cancers. However, concerns about the long-term safety of these procedures, particularly in more advanced cancers, persist. A literature review was conducted using databases such [...] Read more.
Fertility-sparing treatments (FSTs) have gained importance for young female cancer patients, especially those with early-stage cervical, ovarian, and endometrial cancers. However, concerns about the long-term safety of these procedures, particularly in more advanced cancers, persist. A literature review was conducted using databases such as PubMed, Scopus, and Web of Science. The search terms included “fertility preservation” and “gynaecological cancer”. Articles published between 2014 and 2024 were considered, with 39 articles cited in the paper. The inclusion criteria were female patients undergoing FST. Studies were excluded if prior treatments impacted fertility or if oncological outcomes were inadequately reported. Radical trachelectomy, laparoscopic fertility-sparing surgeries, and cryopreservation techniques, such as ovarian tissue vitrification and oocyte cryopreservation, offer viable options for preserving fertility in early-stage gynecological cancer patients. Radical trachelectomy and cryopreservation showed positive reproductive outcomes, with pregnancy rates of 30–50% in early-stage cases. GnRH analogs during chemotherapy also demonstrated benefits in maintaining fertility. Despite these advances, recurrence in more advanced stages (FIGO IA2 and beyond) remains a concern. Minimally invasive surgeries like robotic-assisted procedures demonstrated comparable fertility outcomes to traditional methods but with fewer complications. FST is a promising option for women with early-stage cancer, offering favorable reproductive and survival outcomes. However, further research is needed to confirm long-term oncological safety in advanced stages. Multidisciplinary approaches and individualized treatment planning are essential for optimizing outcomes. Full article
(This article belongs to the Special Issue From Conception to Birth: Embryonic Development and Disease)
Show Figures

Figure 1

20 pages, 4443 KB  
Article
Preventing Sepsis in Preterm Infants with Bovine Lactoferrin: A Randomized Trial Exploring Immune and Antioxidant Effects
by Virginia Plaza-Astasio, Belén Pastor-Villaescusa, Mª Cruz Rico-Prados, María Dolores Mesa-García, María José Párraga-Quiles, María Dolores Ruiz-González, Pilar Jaraba-Caballero, Inés Tofé-Valera, María José de la Torre-Aguilar and María Dolores Ordóñez-Díaz
Nutrients 2025, 17(19), 3154; https://doi.org/10.3390/nu17193154 - 3 Oct 2025
Abstract
Background/Objectives: Late-onset neonatal sepsis (LOS) remains a leading cause of morbidity and mortality in very low birth weight (VLBW) infants (<1500 g and/or gestational age <32 weeks), with limited preventive strategies. We evaluated whether early enteral bovine lactoferrin (bLf), given its antimicrobial, [...] Read more.
Background/Objectives: Late-onset neonatal sepsis (LOS) remains a leading cause of morbidity and mortality in very low birth weight (VLBW) infants (<1500 g and/or gestational age <32 weeks), with limited preventive strategies. We evaluated whether early enteral bovine lactoferrin (bLf), given its antimicrobial, immunomodulatory, and antioxidant properties, reduces LOS and improves immunologic, antioxidant, and hematologic markers in these infants. Methods: In this randomized, double-blind, placebo-controlled trial, 103 VLBW infants received bLf (150 mg/kg/day; n = 50) or the placebo (n = 53) within 72 h of birth for four weeks or until discharge. Outcomes included culture-confirmed LOS, mortality, and major morbidities. Risk ratios (RRs) were calculated, adjusting for gestational age, human milk intake, and ventilatory support when ≥25 events occurred. Pre/post changes in cytokines, total antioxidant capacity (TAC), and hemoglobin (Hb) were analyzed for interaction effects (time x intervention). Results: bLf reduced LOS (adjusted RR 0.54; 95% CI 0.31–0.93; p = 0.028), without differences in other morbidities or mortality. bLf preserved MCP-1 levels, declining in the placebo group (interaction p = 0.022). Among LOS infants receiving bLf, IL-6 remained stable and MCP-1 increased, while both declined in other groups (interaction p = 0.007 for IL-6; p = 0.052 for MCP-1). Although TAC showed a non-significant interaction, the placebo group declined (p = 0.002), while bLf remained stable (p = 0.400) in the post hoc analysis. In non-transfused infants, bLf increased Hb by 0.9 g/dL vs. controls (p = 0.028). Conclusions: Early bLf supplementation safely reduces LOS in VLBW infants and may support immunologic, antioxidant, and hematologic stability. Full article
(This article belongs to the Section Pediatric Nutrition)
22 pages, 13067 KB  
Article
Numerical Modeling of Photovoltaic Cells with the Meshless Global Radial Basis Function Collocation Method
by Murat Ispir and Tayfun Tanbay
Energies 2025, 18(19), 5267; https://doi.org/10.3390/en18195267 - 3 Oct 2025
Abstract
Accurate prediction of photovoltaic performance hinges on resolving the electron density in the P-region and the hole density in the N-region. Motivated by this need, we present a comprehensive assessment of a meshless global radial basis function (RBF) collocation strategy for the steady [...] Read more.
Accurate prediction of photovoltaic performance hinges on resolving the electron density in the P-region and the hole density in the N-region. Motivated by this need, we present a comprehensive assessment of a meshless global radial basis function (RBF) collocation strategy for the steady current continuity equation, covering a one-dimensional two-region P–N junction and a two-dimensional single-region problem. The study employs Gaussian (GA) and generalized multiquadric (GMQ) bases, systematically varying shape parameter and node density, and presents a detailed performance analysis of the meshless method. Results map the accuracy–stability–computation-time landscape: GA achieves faster convergence but over a narrower stability window, whereas GMQ exhibits greater robustness to shape-parameter variation. We identify stability plateaus that preserve accuracy without severe ill-conditioning and quantify the runtime growth inherent to dense global collocation. A utopia-point multi-objective optimization balances error and computation time to yield practical node-count guidance; for the two-dimensional case with equal weighting, an optimum of 19 intervals per side emerges, largely insensitive to the RBF choice. Collectively, the results establish global RBF collocation as a meshless, accurate, and systematically optimizable alternative to conventional mesh-based solvers for high-fidelity carrier-density prediction in P-N junctions, thereby enabling more reliable performance analysis and design of photovoltaic devices. Full article
Show Figures

Figure 1

Back to TopTop