Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (621)

Search Parameters:
Keywords = profilometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2270 KB  
Article
Effect of Manual and Electronic Toothbrushes on Color Stability and Contact Profilometry of Different CAD/CAM Ceramic Materials After Immersion in Coffee for Varying Time Intervals
by Mohammed M. Al Moaleem and Manea Musa M. Alahmari
Prosthesis 2025, 7(5), 110; https://doi.org/10.3390/prosthesis7050110 - 25 Aug 2025
Viewed by 112
Abstract
Aim: This study evaluated the effect of manual and electronic toothbrushes on the color stability (∆E*) and surface roughness (Ra) of four CAD/CAM ceramics after their immersion in coffee for 2 and 4 weeks. Methodology: A total of 160 specimens (Vitablocs [...] Read more.
Aim: This study evaluated the effect of manual and electronic toothbrushes on the color stability (∆E*) and surface roughness (Ra) of four CAD/CAM ceramics after their immersion in coffee for 2 and 4 weeks. Methodology: A total of 160 specimens (Vitablocs Mark II, Ceramill Zolid zirconia, Vita Triluxe Forte, and IPS e.max CAD) were divided into four brushing subgroups (manual, sonic, oscillating–rotating, and ionic). The samples underwent daily coffee staining, thermocycling (5–55 °C), and twice-daily brushing. Color parameters (L, a, and b) were assessed and measured utilizing a spectrophotometer (Vita Easyshade) at baseline, 2 weeks, and 4 weeks. ∆E* was calculated using the CIEDE2000 formula, and surface roughness (Ra, µm) was assessed via contact profilometry at the study’s conclusion. Data were analyzed using Kruskal–Wallis and Mann–Whitney tests (α = 0.05). Results: Among the tested samples, IPS e.max ceramic with manual toothbrushing exhibited the highest ΔE* values after 2 and 4 weeks (∆E* = 4.424 and ∆E* = 4.802) of immersion. Moreover, Ceramill Zolid zirconia demonstrated the highest ΔE* values with ionic brushing (∆E* = 4.883 at 2 weeks; ΔE* = 4.760 at 4 weeks). Significant differences were observed among ceramics and cleaning methods, with manual/ionic brushing causing the greatest changes (p < 0.05). IPS e.max had the highest Ra with manual brushing (0.745–0.789 µm), whereas Ceramill Zolid zirconia with ionic brushing showed the highest Ra values among the electric methods (0.745–0.757 µm). Conclusions: Manual brushing induced clinically unacceptable color changes in IPS e.max CAD, whereas ionic brushing adversely affected Ceramill Zolid zirconia. All brushing methods increased surface roughness beyond acceptable limits. Full article
Show Figures

Figure 1

20 pages, 8484 KB  
Article
Nanoparticle-Reinforced Electroless Composite Coatings for Pipeline Steel: Synthesis and Characterization
by Biplab Baran Mandal, Vikash Kumar, Sovan Sahoo, Buddhadeb Oraon and Sumanta Mukherjee
Materials 2025, 18(17), 3949; https://doi.org/10.3390/ma18173949 - 22 Aug 2025
Viewed by 280
Abstract
Protective coatings are essential for extending the service life of components exposed to harsh conditions, such as pipes used in industrial systems, where wear and corrosion remain constant challenges. This study explores the development of a nano-sized TiO2-reinforced electroless nickel-based ternary [...] Read more.
Protective coatings are essential for extending the service life of components exposed to harsh conditions, such as pipes used in industrial systems, where wear and corrosion remain constant challenges. This study explores the development of a nano-sized TiO2-reinforced electroless nickel-based ternary (Ni-W-P) alloy and composite coating on API X60 steel, a high-strength carbon steel pipe grade widely used in oil and gas pipelines, using an alkaline hypophosphite-reduced bath. The surface morphology, microstructure, elemental composition, structure, phase evolution, adhesion, and roughness of the coatings were analyzed using optical microscopy, FESEM, EDS, XRD, AFM, cross-cut tape test, and 3D profilometry. The tribological performance was evaluated via Vickers microhardness measurements and reciprocating wear tests conducted under dry conditions at a 5 N load. The TiO2 nanoparticle-reinforced composite coating achieved a consistent thickness of approximately 24 µm and exhibited enhanced microhardness and reduced coefficient of friction (COF), although the addition of nanoparticles increased surface roughness (Sa). Annealing the electroless composites at 400 °C led to a significant improvement in their tribological properties, primarily owing to the grain growth, phase transformation, and Ni3P crystallization. XRD analysis revealed phase evolution from an amorphous state to crystalline Ni3P upon annealing. Both the alloy and composite coatings exhibited excellent adhesion performances. The combined effect of TiO2 nanoparticles, tungsten, and Ni3P crystallization greatly improved the wear resistance, with abrasive and adhesive wear identified as the dominant mechanisms, making these coatings well suited for high-wear applications. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

25 pages, 8278 KB  
Article
Calibration and Validation of Slurry Erosion Models for Glass Fibre Composites in Marine Energy Systems
by Payvand Habibi and Saeid Lotfian
J. Mar. Sci. Eng. 2025, 13(9), 1602; https://doi.org/10.3390/jmse13091602 - 22 Aug 2025
Viewed by 243
Abstract
Erosive wear from suspended sediments significantly threatens the structural integrity and efficiency of composite tidal turbine blades. This study develops a novel framework for predicting erosion in FR4 glass fibre-reinforced polymers (GFRPs)—materials increasingly adopted for marine renewable energy components. While erosion models exist [...] Read more.
Erosive wear from suspended sediments significantly threatens the structural integrity and efficiency of composite tidal turbine blades. This study develops a novel framework for predicting erosion in FR4 glass fibre-reinforced polymers (GFRPs)—materials increasingly adopted for marine renewable energy components. While erosion models exist for metals, their applicability to heterogeneous composites with unique failure mechanisms remains unvalidated. We calibrated the Oka erosion model specifically for FR4 using a complementary experimental–computational approach. High-velocity slurry jet tests (12.5 m/s) were conducted at a 90° impact angle, and erosion was quantified using both gravimetric mass loss and surface profilometry. It revealed a distinctive W-shaped erosion profile with 3–6 mm of peak material removal from the impingement centre. Concurrently, CFD simulations employing Lagrangian particle tracking were used to extract local impact velocities and angles. These datasets were combined in a constrained nonlinear optimisation scheme (SLSQP) to determine material-specific Oka model coefficients. The calibrated coefficients were further validated on an independent 45° impingement case (same particle size and flow conditions), yielding 0.0143 g/h predicted versus 0.0124 g/h measured (15.5% error). This additional case confirms the accuracy and feasibility of the predictive model under input conditions different from those used for calibration. The calibrated model achieved strong agreement with measured erosion rates (R2 = 0.844), successfully capturing the progressive matrix fragmentation and fibre debonding, the W-shaped erosion morphology, and highlighting key composite-specific damage mechanisms, such as fibre detachment and matrix fragmentation. By enabling the quantitative prediction of erosion severity and location, the calibrated model supports the optimisation of blade profiles, protective coatings, and maintenance intervals, ultimately contributing to the extended durability and performance of tidal turbine systems. This study presents a procedure and the output of calibration for the Oka erosion model, specifically for a composite material, providing a transferable methodology for erosion prediction in GFRPs subjected to abrasive marine flows. Full article
(This article belongs to the Special Issue Advances in Ships and Marine Structures—Edition II)
Show Figures

Figure 1

21 pages, 4865 KB  
Article
Surface Treatment, Chemical Characterization, and Debonding Crack Initiation Strength for Veneering Dental Ceramics on Ni-Cr Alloys
by Blanca Irma Flores-Ferreyra, María de los Angeles Moyaho-Bernal, Héctor Nahum Chavarría-Lizárraga, Jorge Castro-Ramos, Guillermo Franco-Romero, Ulises Velázquez-Enríquez, Abigailt Flores-Ledesma, Eric Reyes-Cervantes, Ana Karina Ley-García, Estela del Carmen Velasco-León and Rosendo Gerardo Carrasco-Gutiérrez
Materials 2025, 18(16), 3822; https://doi.org/10.3390/ma18163822 - 14 Aug 2025
Viewed by 390
Abstract
Despite aesthetic trends, metal–ceramic restorations continue to be widely accepted due to their durability, and variations in surface preparation process can significantly influence bond strength outcomes. The purpose of this study was to determine whether there are differences in the bond strength depending [...] Read more.
Despite aesthetic trends, metal–ceramic restorations continue to be widely accepted due to their durability, and variations in surface preparation process can significantly influence bond strength outcomes. The purpose of this study was to determine whether there are differences in the bond strength depending on three surface treatment protocols for veneering ceramics on Ni-Cr alloys. The following surface treatments were used: (1) control (C) (no treatment), (2) airborne-particle abrasion (APA) with 50 µm Al2O3 (G1-APA), (3) APA followed by oxidation (G2-APA-O), and (4) APA-O, with a second APA (G3-APA-O-APA). Subsequently surface roughness (Ra and Rz) was evaluated using profilometry, hardness was measured through Leeb’s hardness dynamic test (HLD), morphology was investigated through scanning electron microscopy (SEM), and the chemical composition of the alloy surface was evaluated using energy-dispersive spectroscopy (EDS). After surface treatments, veneering ceramic was applied, the debonding crack initiation strength (DCIS) was investigated through the three-point bending test, failure mode was classified using a stereoscopic microscope, and chemical characterization of the fractured surfaces was performed using Raman spectroscopy (RS). For DCIS, G2-APA-O demonstrated the highest value 63.97 ± 44.40 (MPa) (p < 0.05). The results of this study indicate that oxidation treatment has a positive effect on the bonding strength between veneering ceramic and Ni-Cr alloys. Full article
Show Figures

Graphical abstract

30 pages, 8202 KB  
Article
Structure and Texture Synergies in Fused Deposition Modeling (FDM) Polymers: A Comparative Evaluation of Tribological and Mechanical Properties
by Patricia Isabela Brăileanu, Marius-Teodor Mocanu, Tiberiu Gabriel Dobrescu, Nicoleta Elisabeta Pascu and Dan Dobrotă
Polymers 2025, 17(15), 2159; https://doi.org/10.3390/polym17152159 - 7 Aug 2025
Viewed by 476
Abstract
This study investigates the interplay between infill structure and surface texture in Fused Deposition Modeling (FDM)-printed polymer specimens and their combined influence on tribological and mechanical performance. Unlike previous works that focus on single-variable analysis, this work offers a comparative evaluation of Shore [...] Read more.
This study investigates the interplay between infill structure and surface texture in Fused Deposition Modeling (FDM)-printed polymer specimens and their combined influence on tribological and mechanical performance. Unlike previous works that focus on single-variable analysis, this work offers a comparative evaluation of Shore D hardness and coefficient of friction (COF) for PLA and Iglidur materials, incorporating diverse infill patterns. The results reveal that specific combinations (e.g., grid infill with 90% density) optimize hardness and minimize friction, offering practical insights for design optimization in functional parts. Our aim is to provide design insights for enhanced wear resistance and hardness through tailored structural configurations. Carbon Fiber-reinforced PLA (PLA CF), aramid fiber-reinforced Acrylonitrile Styrene Acrylate (Kevlar), and Iglidur I180-BL tribofilament. Disc specimens were fabricated with gyroid infill densities ranging from 10% to 100%. Experimental methodologies included Ball-on-Disc tests conducted under dry sliding conditions (5 N normal load, 150 mm/s sliding speed) to assess friction and wear characteristics. These tribological evaluations were complemented by profilometric and microscopic analyses and Shore D hardness testing. The results show that Iglidur I180-BL achieved the lowest friction coefficients (0.141–0.190) and negligible wear, while PLA specimens with 90% infill demonstrated a polishing-type wear with minimal material loss and a friction coefficient (COF) of ~0.108. In contrast, PLA CF and Kevlar exhibited higher wear depths (up to 154 µm for Kevlar) and abrasive mechanisms due to fiber detachment. Shore hardness values increased with infill density, with PLA reaching a maximum of 82.7 Shore D. These findings highlight the critical interplay between infill architecture and surface patterning and offer actionable guidelines for the functional design of durable FDM components in load-bearing or sliding applications. Full article
(This article belongs to the Collection Mechanical Behavior of Polymer-Based Materials)
Show Figures

Figure 1

24 pages, 19050 KB  
Article
Innovative Deposition of AZO as Recombination Layer on Silicon Nanowire Scaffold for Potential Application in Silicon/Perovskite Tandem Solar Cell
by Grażyna Kulesza-Matlak, Marek Szindler, Magdalena M. Szindler, Milena Kiliszkiewicz, Urszula Wawrzaszek, Anna Sypień, Łukasz Major and Kazimierz Drabczyk
Energies 2025, 18(15), 4193; https://doi.org/10.3390/en18154193 - 7 Aug 2025
Viewed by 425
Abstract
Transparent conductive aluminum-doped zinc oxide (AZO) films were investigated as potential recombination layers for perovskite/silicon tandem solar cells, comparing the results of atomic layer deposition (ALD) and magnetron sputtering (MS) on vertically aligned silicon nanowire (SiNW) scaffolds. Conformality and thickness control were examined [...] Read more.
Transparent conductive aluminum-doped zinc oxide (AZO) films were investigated as potential recombination layers for perovskite/silicon tandem solar cells, comparing the results of atomic layer deposition (ALD) and magnetron sputtering (MS) on vertically aligned silicon nanowire (SiNW) scaffolds. Conformality and thickness control were examined by cross-sectional SEM/TEM and profilometry, revealing fully conformal ALD coatings with tunable thicknesses (40–120 nm) versus tip-capped, semi-uniform MS films (100–120 nm). Optical transmission measurements on glass substrates showed that both 120 nm ALD and MS layers exhibit interference maxima near 450–500 nm and 72–89% transmission across 800–1200 nm; the thinnest ALD films reached up to 86% near-IR transparency. Four-point probe analysis demonstrated that ALD reduces surface resistance from 1150 Ω/□ at 40 nm to 245 Ω/□ at 120 nm, while MS layers achieved 317 Ω/□ at 120 nm. These results delineate the balance between conformality, transparency, and conductivity, providing design guidelines for AZO recombination interfaces in next-generation tandem photovoltaics. Full article
(This article belongs to the Special Issue Perovskite Solar Cells and Tandem Photovoltaics)
Show Figures

Figure 1

21 pages, 15471 KB  
Article
Tribology of EDM Recast Layers Vis-À-Vis TIG Cladding Coatings: An Experimental Investigation
by Muhammad Adnan, Waqar Qureshi and Muhammad Umer
Micromachines 2025, 16(8), 913; https://doi.org/10.3390/mi16080913 - 7 Aug 2025
Viewed by 570
Abstract
Tribological performance is critical for the longevity and efficiency of machined components in industries such as aerospace, automotive, and biomedical. This study investigates whether electrical discharge machining recast layers can serve as a cost-effective and time-efficient alternative to conventional tungsten inert gas cladding [...] Read more.
Tribological performance is critical for the longevity and efficiency of machined components in industries such as aerospace, automotive, and biomedical. This study investigates whether electrical discharge machining recast layers can serve as a cost-effective and time-efficient alternative to conventional tungsten inert gas cladding coatings for enhancing surface properties. The samples were prepared using electrical discharge machining and tungsten inert gas cladding. For electrical discharge machining, various combinations of electrical and non-electrical parameters were applied using Taguchi’s L18 orthogonal array. Similarly, tungsten inert gas cladding coatings were prepared using a suitable combination of current, voltage, powder size, and speed. The samples were characterized using, scanning electron microscopy, optical microscopy, microhardness testing, tribological testing, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis and profilometry. The electrical discharge machining recast layers exhibited superior tribological performance compared to tungsten inert gas cladding coatings. This improvement is attributed to the formation of carbides, such as TiC and Ti6C3.75. The coefficient of friction and specific wear rate were reduced by 11.11% and 1.57%, respectively, while microhardness increased by 10.93%. Abrasive wear was identified as the predominant wear mechanism. This study systematically compares electrical discharge machining recast layers with tungsten inert gas cladding coatings. The findings suggest that optimized electrical discharge machining recast layers can serve as effective coatings, offering cost and time savings. Full article
(This article belongs to the Special Issue Recent Developments in Electrical Discharge Machining Technology)
Show Figures

Figure 1

13 pages, 1039 KB  
Article
Evaluation of Printability, Color Difference, Translucency, and Surface Roughness over Time in a 3D-Printed TiO2-Containing Denture Base Resin: A Pilot Study
by Gregory Bennett, Mark W. Beatty and Bobby Simetich
Materials 2025, 18(15), 3683; https://doi.org/10.3390/ma18153683 - 5 Aug 2025
Viewed by 343
Abstract
Recent evidence suggests that nano-TiO2 particles improve antimicrobial and physical properties when incorporated into dental prosthetic materials. However, there exists a paucity of information regarding their impact on material properties when the prosthetic materials are 3D-printed over time. The purpose of this [...] Read more.
Recent evidence suggests that nano-TiO2 particles improve antimicrobial and physical properties when incorporated into dental prosthetic materials. However, there exists a paucity of information regarding their impact on material properties when the prosthetic materials are 3D-printed over time. The purpose of this study was to evaluate the time-dependent printability and surface property changes occurring in a 3D-printed denture base resin containing nano-titanium dioxide (TiO2) particles. A 0.4 wt% concentration of 30 nm rutile TiO2 nanoparticles was ultrasonically dispersed into a denture base resin. Disks were printed weekly using a Form 2 SLA printer until printing failed. Printability, surface roughness (Ra), color difference (ΔEab), and translucency parameters were measured across timepoints. Surface roughness was assessed via profilometry, while color and translucency were evaluated using a spectrophotometer under standardized conditions. Print failure occurred at week 8, beyond which the resin could no longer reliably produce full specimens. Ra roughness decreased from 3.83 µm to 0.48 µm, which denoted a significant time-dependent decrease (ρ = −0.733, p = 0.016). Color difference with the unmodified control declined from 26.32 to 17.13 ΔEab units (ρ = −0.976, p < 0.001). All printed samples exceeded the clinically acceptable thresholds for both Ra (0.2 µm) and ΔEab (<3.7). Although the printability of the resin–TiO2 mixture was maintained for 7 weeks, mixture homogeneity declined over time. TiO2 additions to a denture polymer produced significant changes in surface roughness and color that were not clinically acceptable. Results from this study illustrate the time dependence required for retaining surface properties in 3D-printed dentures containing nano-TiO2. Full article
Show Figures

Figure 1

17 pages, 5565 KB  
Article
Green Mild Acid Treatment of Recycled Concrete Aggregates: Concentration Thresholds for Mortar Removal While Avoiding Degradation of Original Limestone Aggregate and Concrete
by Shunquan Zhang and Yifan Zhang
Materials 2025, 18(15), 3673; https://doi.org/10.3390/ma18153673 - 5 Aug 2025
Viewed by 358
Abstract
While acetic acid has proven effective as a mild acidic treatment for removing adhered mortar from recycled concrete aggregate (RCA) surfaces, its potential for dissolving damage to the surface of the original natural coarse aggregate (NCA) within the RCA and its impact on [...] Read more.
While acetic acid has proven effective as a mild acidic treatment for removing adhered mortar from recycled concrete aggregate (RCA) surfaces, its potential for dissolving damage to the surface of the original natural coarse aggregate (NCA) within the RCA and its impact on the resultant concrete properties require careful consideration. This investigation systematically evaluates the effects of varying concentrations of dilute acetic acid solutions, commonly used in RCA treatment protocols, through a multi-methodological approach that includes comprehensive physical characterization, stylus and 3D optical profilometry, scanning electron microscopy (SEM), and nanoindentation analysis. The results show that even dilute acid solutions have an upper concentration limit, as excessive acid concentration, specifically 0.4 M, induces significant textural dislocations on NCA surfaces, creating millimeter-scale erosion pits that increase aggregate water absorption by 18.5%. These morphological changes significantly impair concrete workability and reduce compressive strength performance. Furthermore, microstructural analysis reveals a 45.24% expansion in interfacial transition zone (ITZ) thickness, accompanied by notable reductions in elastic modulus and microhardness characteristics. In practical RCA treatment applications, for RCA containing limestone-based NCA, it is recommended to use acetic acid concentrations between 0.1 and 0.3 M to avoid substantial physical and microstructural degradation of aggregates and concrete. Full article
Show Figures

Graphical abstract

16 pages, 19147 KB  
Article
Surface Assessment of a Novel Acid-Etching Solution on CAD/CAM Dental Ceramics
by Fabio Andretti, Carlos A. Jurado, Mark Antal, Alfredo I. Hernandez, Silvia Rojas-Rueda, Franklin Garcia-Godoy, Brian R. Morrow and Hamid Nurrohman
Biomimetics 2025, 10(8), 508; https://doi.org/10.3390/biomimetics10080508 - 4 Aug 2025
Viewed by 487
Abstract
Background: This study investigated a new multi-acid-etching formulation for zirconia ceramics, containing hydrochloric, hydrofluoric, nitric, orthophosphoric, and sulfuric acids. The solution was tested on polycrystalline (5Y-TZP zirconia), lithium disilicate, hybrid ceramic, and feldspathic porcelain to assess compatibility, etching selectivity, and surface conditioning. Methods: [...] Read more.
Background: This study investigated a new multi-acid-etching formulation for zirconia ceramics, containing hydrochloric, hydrofluoric, nitric, orthophosphoric, and sulfuric acids. The solution was tested on polycrystalline (5Y-TZP zirconia), lithium disilicate, hybrid ceramic, and feldspathic porcelain to assess compatibility, etching selectivity, and surface conditioning. Methods: Two-hundred-and-forty CAD/CAM specimens were etched for 20 s, 60 s, 30 min, or 1 h, and their surface roughness and etching patterns ware evaluated using 3D optical profilometry and scanning electron microscopy (SEM). Results: A positive correlation was observed between etching time and surface roughness (Ra values). The most pronounced changes were observed in lithium disilicate and feldspathic porcelain, with Ra values increasing from 0.733 ± 0.082 µm (Group 5) to 1.295 ± 0.123 µm (Group 8), and from 0.902 ± 0.102 µm (Group 13) to 1.480 ± 0.096 µm (Group 16), respectively. Zirconia increased from 0.181 ± 0.043 µm (Group 1) to 0.371 ± 0.074 µm (Group 4), and the hybrid ceramic from 0.053 ± 0.008 µm (Group 9) to 0.099 ± 0.016 µm (Group 12). Two-way ANOVA revealed significant effects of material and etching time, as well as a significant interaction between the two factors (p < 0.001). SEM observation revealed non-selective etching pattern for the lithium disilicate groups, indicating a risk of over-etching. Conclusions: The tested etching solution increased surface roughness, especially for the lithium disilicate and feldspathic porcelain specimens. In zirconia, one-hour etching improved surface characteristics with minimal observable damage. However, additional studies are necessary to validate the mechanical stability and bond effectives of this approach. Full article
(This article belongs to the Special Issue Biomimetic Bonded Restorations for Dental Applications)
Show Figures

Figure 1

17 pages, 4785 KB  
Article
A Clustered Adaptive Exposure Time Selection Methodology for HDR Structured Light 3D Reconstruction
by Zhuang Li, Rui Ma and Shuyu Duan
Sensors 2025, 25(15), 4786; https://doi.org/10.3390/s25154786 - 3 Aug 2025
Viewed by 430
Abstract
Fringe projection profilometry (FPP) has been widely applied in industrial 3D measurement due to its high precision and non-contact advantages. However, FPP often encounters measurement problems with high-dynamic-range objects, consequently impacting phase computation. In this paper, an adaptive exposure time selection method is [...] Read more.
Fringe projection profilometry (FPP) has been widely applied in industrial 3D measurement due to its high precision and non-contact advantages. However, FPP often encounters measurement problems with high-dynamic-range objects, consequently impacting phase computation. In this paper, an adaptive exposure time selection method is proposed to calculate the optimal number of exposures and exposure time by using an improved clustering method to divide the region with different reflection degrees. Meanwhile, the phase order sharing strategy is adopted in the phase unwrapping stage, and the same set of complementary Gray code patterns is used to calculate the phase orders under different exposure times. The experimental results demonstrate that the measurement error of the method described in this paper was reduced by 25.4% under almost the same exposure times. Full article
Show Figures

Figure 1

34 pages, 4238 KB  
Review
Optical Fringe Projection: A Straightforward Approach to 3D Metrology
by Rigoberto Juarez-Salazar, Sofia Esquivel-Hernandez and Victor H. Diaz-Ramirez
Metrology 2025, 5(3), 47; https://doi.org/10.3390/metrology5030047 - 3 Aug 2025
Viewed by 439
Abstract
Optical fringe projection is an outstanding technology that significantly enhances three-dimensional (3D) metrology in numerous applications in science and engineering. Although the complexity of fringe projection systems may be overwhelming, current scientific advances bring improved models and methods that simplify the design and [...] Read more.
Optical fringe projection is an outstanding technology that significantly enhances three-dimensional (3D) metrology in numerous applications in science and engineering. Although the complexity of fringe projection systems may be overwhelming, current scientific advances bring improved models and methods that simplify the design and calibration of these systems, making 3D metrology less complicated. This paper provides an overview of the fundamentals of fringe projection profilometry, including imaging, stereo systems, phase demodulation, triangulation, and calibration. Some applications are described to highlight the usefulness and accuracy of modern optical fringe projection profilometers, impacting 3D metrology in different fields of science and engineering. Full article
(This article belongs to the Special Issue Advancements in Optical Measurement Devices and Technologies)
Show Figures

Figure 1

15 pages, 6688 KB  
Article
Integrated Additive Manufacturing of TGV Interconnects and High-Frequency Circuits via Bipolar-Controlled EHD Jetting
by Dongqiao Bai, Jin Huang, Hongxiao Gong, Jianjun Wang, Yunna Pu, Jiaying Zhang, Peng Sun, Zihan Zhu, Pan Li, Huagui Wang, Pengbing Zhao and Chaoyu Liang
Micromachines 2025, 16(8), 907; https://doi.org/10.3390/mi16080907 - 2 Aug 2025
Viewed by 418
Abstract
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to [...] Read more.
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to drive ink into deep and narrow vias; sufficiently high ink viscosity to prevent gravity-induced leakage; and stable meniscus dynamics to avoid satellite droplets and charge accumulation on the glass surface. By coupling electrostatic field analysis with transient level-set simulations, we establish a dimensionless regime map that delineates stable cone-jetting regime; these predictions are validated by high-speed imaging and surface profilometry. Operating within this window, the platform achieves complete, void-free filling of 200 µm × 1.52 mm TGVs and continuous 10 µm-wide traces in a single print pass. Demonstrating its capabilities, we fabricate transparent Ku-band substrate-integrated waveguide antennas on borosilicate glass: the printed vias and arc feed elements exhibit a reflection coefficient minimum of −18 dB at 14.2 GHz, a −10 dB bandwidth of 12.8–16.2 GHz, and an 8 dBi peak gain with 37° beam tilt, closely matching full-wave predictions. This physics-driven, all-in-one EHD approach provides a scalable route to high-performance, glass-integrated RF devices and transparent electronics. Full article
Show Figures

Figure 1

25 pages, 8312 KB  
Article
Quantitative Assessment of Woven Fabric Surface Changes During Martindale Abrasion Using Contactless Optical Profilometry
by Małgorzata Matusiak and Gabriela Kosiuk
Materials 2025, 18(15), 3636; https://doi.org/10.3390/ma18153636 - 1 Aug 2025
Viewed by 413
Abstract
The abrasion resistance of fabrics is one of the basic properties determining the utility performance and durability. The abrasion resistance of textile materials is measured using the Martindale device according to appropriate standards. The sample breakage method is the most commonly used of [...] Read more.
The abrasion resistance of fabrics is one of the basic properties determining the utility performance and durability. The abrasion resistance of textile materials is measured using the Martindale device according to appropriate standards. The sample breakage method is the most commonly used of the three methods. The method is based on organoleptic assessment of fabric breakage. The method is time-consuming, and results may be subject to error resulting from the subjective nature of the assessment. The aim of the presented work was to check the possibility of the application of contactless 3D surface geometry measurement using an optical profilometer in an assessment of changes in fabrics’ surface due to the abrasion process. The obtained results confirmed that some parameters of the geometric structure of fabric surfaces, such as the highest height of the roughness profile Rz, the height of the highest pick of the roughness profile Rp, the depth of the lowest valley of the roughness profile Rv, the depth of the total height of the roughness profile Rt, and the kurtosis Rku, can be used to assess the abrasion resistance of fabrics. It is also stated that using the non-contact optical measurement of fabric surface geometry allows for an assessment of the directionality of surface texture. For this purpose, the autocorrelation function and angle distribution function can be applied. Full article
Show Figures

Figure 1

21 pages, 3340 KB  
Article
Simulation and Experimental Investigation on the Performance of Co-, Bi-, and La-Doped AgSnO2 Contact Interface Models
by Yihong Lv, Jingqin Wang, Yuxuan Wang, Yancai Zhu and Ying Zhang
Coatings 2025, 15(8), 885; https://doi.org/10.3390/coatings15080885 - 29 Jul 2025
Viewed by 349
Abstract
The inferior electrical conductivity and elevated hardness of AgSnO2 electrical contact materials have impeded their development. To investigate the effects of Co, Bi, and La doping on the stability and electrical properties of AgSnO2, this study established interfacial models of [...] Read more.
The inferior electrical conductivity and elevated hardness of AgSnO2 electrical contact materials have impeded their development. To investigate the effects of Co, Bi, and La doping on the stability and electrical properties of AgSnO2, this study established interfacial models of doped AgSnO2 based on first-principles calculations initiated from the atomic structures of constituent materials, subsequently computing electronic structure parameters. The results indicate that doping effectively enhances the interfacial stability and bonding strength of AgSnO2 and thereby predicted improved electrical contact performance. Doped SnO2 powders were prepared experimentally using the sol–gel method, and AgSnO2 contacts were fabricated using high-energy ball milling and powder metallurgy. Testing of wettability and electrical contact properties revealed reductions in arc energy, arcing time, contact resistance, and welding force post-doping. Three-dimensional profilometry and scanning electron microscopy (SEM) were employed to characterize electrical contact surfaces, elucidating the arc erosion mechanism of AgSnO2 contact materials. Among the doped variants, La-doped electrical contact materials exhibited optimal performance (the lowest interfacial energy was 1.383 eV/Å2 and wetting angle was 75.6°). The mutual validation of experiments and simulations confirms the feasibility of the theoretical calculation method. This study provides a novel theoretical method for enhancing the performance of AgSnO2 electrical contact materials. Full article
Show Figures

Figure 1

Back to TopTop