Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (180)

Search Parameters:
Keywords = proximal point mapping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 9908 KB  
Article
Mapping the Chemical Space of Antiviral Peptides with Half-Space Proximal and Metadata Networks Through Interactive Data Mining
by Daniela de Llano García, Yovani Marrero-Ponce, Guillermin Agüero-Chapin, Hortensia Rodríguez, Francesc J. Ferri, Edgar A. Márquez, José R. Mora, Felix Martinez-Rios and Yunierkis Pérez-Castillo
Computers 2025, 14(10), 423; https://doi.org/10.3390/computers14100423 - 3 Oct 2025
Abstract
Antiviral peptides (AVPs) are promising therapeutic candidates, yet the rapid growth of sequence data and the field’s emphasis on predictors have left a gap: the lack of an integrated view linking peptide chemistry with biological context. Here, we map the AVP landscape through [...] Read more.
Antiviral peptides (AVPs) are promising therapeutic candidates, yet the rapid growth of sequence data and the field’s emphasis on predictors have left a gap: the lack of an integrated view linking peptide chemistry with biological context. Here, we map the AVP landscape through interactive data mining using Half-Space Proximal Networks (HSPNs) and Metadata Networks (MNs) in the StarPep toolbox. HSPNs minimize edges and avoid fixed thresholds, reducing computational cost while enabling high-resolution analysis. A threshold-free HSPN resolved eight chemically and biologically distinct communities, while MNs contextualized AVPs by source, function, and target, revealing structural–functional relationships. To capture diversity compactly, we applied centrality-guided scaffold extraction with redundancy removal (90–50% identity), producing four representative subsets suitable for modeling and similarity searches. Alignment-free motif discovery yielded 33 validated motifs, including 10 overlapping with reported AVP signatures and 23 apparently novel. Motifs displayed category-specific enrichment across antimicrobial classes, and sequences carrying multiple motifs (≥4–5) consistently showed higher predicted antiviral probabilities. Beyond computational insights, scaffolds provide representative “entry points” into AVP chemical space, while motifs serve as modular building blocks for rational design. Together, these resources provide an integrated framework that may inform AVP discovery and support scaffold- and motif-guided therapeutic design. Full article
Show Figures

Figure 1

17 pages, 327 KB  
Article
Best Proximity Theory in Metrically Convex Menger PM-Spaces via Cyclic Kannan Maps
by Moosa Gabeleh, Elif Uyanık Ekici and Maggie Aphane
Symmetry 2025, 17(9), 1549; https://doi.org/10.3390/sym17091549 - 16 Sep 2025
Viewed by 215
Abstract
A Takahashi convex structure is considered on Menger PM-spaces and used to investigate the existence of best proximity points for weak cyclic Kannan contractions. We then introduce a concept of a probabilistic proximal quasi-normal structure on a convex pair of subsets of Menger [...] Read more.
A Takahashi convex structure is considered on Menger PM-spaces and used to investigate the existence of best proximity points for weak cyclic Kannan contractions. We then introduce a concept of a probabilistic proximal quasi-normal structure on a convex pair of subsets of Menger PM-spaces and prove that every compact and convex pair in metrically convex Menger PM-spaces has the probabilistic proximal quasi-normal structure. By applying this geometric property, we survey the existence of a best proximity point for cyclic relatively Kannan nonexpansive maps which preserves distance. In order to provide more accurate results, we obtain the same conclusions in the framework of CAT(0) spaces. Full article
17 pages, 344 KB  
Article
On Some Classes of Enriched Cyclic Contractive Self-Mappings and Their Boundedness and Convergence Properties
by Manuel De la Sen
Mathematics 2025, 13(18), 2948; https://doi.org/10.3390/math13182948 - 11 Sep 2025
Viewed by 198
Abstract
This paper focuses on dealing with several types of enriched cyclic contractions defined in the union of a set of non-empty closed subsets of normed or metric spaces. In general, any finite number p2 of subsets is permitted in the cyclic [...] Read more.
This paper focuses on dealing with several types of enriched cyclic contractions defined in the union of a set of non-empty closed subsets of normed or metric spaces. In general, any finite number p2 of subsets is permitted in the cyclic arrangement. The types of examined single-valued enriched cyclic contractions are, in general, less stringent from the point of view of constraints on the self-mappings compared to p-cyclic contractions while the essential properties of these last ones are kept. The convergence of distances is investigated as well as that of sequences generated by the considered enriched cyclic mappings. It is proved that, both in normed spaces and in simple metric spaces, the distances of sequences of points in adjacent subsets converge to the distance between such subsets under weak extra conditions compared to the cyclic contractive case, which is simply that the contractive constant be less than one. It is also proved that if the metric space is a uniformly convex Banach space and one of the involved subsets is convex then all the sequences between adjacent subsets converge to a unique set of best proximity points, one of them per subset which conform a limit cycle, although the sets of best proximity points are not all necessarily singletons in all the subsets. Full article
(This article belongs to the Topic Fixed Point Theory and Measure Theory)
12 pages, 207 KB  
Article
The Proximal Point Method for Infinite Families of Maximal Monotone Operators and Set-Valued Mappings
by Alexander J. Zaslavski
Mathematics 2025, 13(17), 2765; https://doi.org/10.3390/math13172765 - 28 Aug 2025
Viewed by 315
Abstract
In the present paper we use the proximal point method in order to find an approximate common zero of an infinite collection of maximal monotone maps in a real Hilbert space under the presence of computational errors. We prove that the inexact proximal [...] Read more.
In the present paper we use the proximal point method in order to find an approximate common zero of an infinite collection of maximal monotone maps in a real Hilbert space under the presence of computational errors. We prove that the inexact proximal point method generates an approximate solution if these errors are sufficiently small. Full article
(This article belongs to the Special Issue Variational Problems and Applications, 3rd Edition)
19 pages, 300 KB  
Article
Certain Novel Best Proximity Theorems with Applications to Complex Function Theory and Integral Equations
by Moosa Gabeleh
Axioms 2025, 14(9), 657; https://doi.org/10.3390/axioms14090657 - 27 Aug 2025
Viewed by 453
Abstract
Let E and F be nonempty disjoint subsets of a metric space (M,d). For a non-self-mapping φ:EF, which is fixed-point free, a point ϰE is said to be a best proximity [...] Read more.
Let E and F be nonempty disjoint subsets of a metric space (M,d). For a non-self-mapping φ:EF, which is fixed-point free, a point ϰE is said to be a best proximity point for the mapping φ whenever the distance of the point ϰ to its image under φ is equal to the distance between the sets, E and F. In this article, we establish new best proximity point theorems and obtain real extensions of Edelstein’s fixed point theorem in metric spaces, Krasnoselskii’s fixed point theorem in strictly convex Banach spaces, Dhage’s fixed point theorem in strictly convex Banach algebras, and Sadovskii’s fixed point problem in strictly convex Banach spaces. We then present applications of these best proximity point results to complex function theory, as well as the existence of a solution of a nonlinear functional integral equation and the existence of a mutually nearest solution for a system of integral equations. Full article
16 pages, 301 KB  
Article
Solutions of Nonlinear Differential and Integral Equations via Optimality Results Involving Proximal Mappings
by Sonam, Deb Sarkar, Purvee Bhardwaj, Satyendra Narayan and Ramakant Bhardwaj
AppliedMath 2025, 5(3), 108; https://doi.org/10.3390/appliedmath5030108 - 22 Aug 2025
Viewed by 315
Abstract
This research paper delves into the application of optimality results in orthogonal fuzzy metric spaces to demonstrate the existence and uniqueness of solutions of nonlinear differential equations with boundary conditions and nonlinear integral equations, emphasizing the importance of orthogonal fuzzy metric spaces in [...] Read more.
This research paper delves into the application of optimality results in orthogonal fuzzy metric spaces to demonstrate the existence and uniqueness of solutions of nonlinear differential equations with boundary conditions and nonlinear integral equations, emphasizing the importance of orthogonal fuzzy metric spaces in extending fixed-point theory. Through introducing this innovative concept, the study provides a theoretical framework for analyzing mappings in diverse scenarios. In this study, we introduce the concept of best proximity point (BPP) within the framework of orthogonal fuzzy metric spaces by employing orthogonal fuzzy proximal contractive mappings. Moreover, this research explores the implications of the established results, considering both self-mappings and non-self mappings that share the same parameter set. Additionally, some examples are provided to illustrate the practical relevance of the proven results and consequences in various mathematical contexts. The findings of this study can open up avenues for further exploration and application in solving real-world problems. Full article
16 pages, 6127 KB  
Article
Radiographic, Ultrasonographic and Shear Elastosonographic Changes in Patellar Ligament in Dogs Undergoing Tibial Plateau Leveling Osteotomy
by Angela Palumbo Piccionello, Luca Pennasilico, Adolfo Maria Tambella, Sara Sassaroli, Margherita Galosi, Nicola Pilati and Fabrizio Dini
Vet. Sci. 2025, 12(8), 745; https://doi.org/10.3390/vetsci12080745 - 11 Aug 2025
Viewed by 491
Abstract
This study aims to evaluate the morpho-functional changes in the patellar ligament in dogs undergoing tibial plateau leveling osteotomy (TPLO) during the first six months of the postoperative follow-up and correlate the radiographic and conventional ultrasonography changes in the patellar ligament with its [...] Read more.
This study aims to evaluate the morpho-functional changes in the patellar ligament in dogs undergoing tibial plateau leveling osteotomy (TPLO) during the first six months of the postoperative follow-up and correlate the radiographic and conventional ultrasonography changes in the patellar ligament with its elastic properties. Dogs with a unilateral cranial cruciate ligament (CCL) rupture who underwent TPLO were enrolled. The patients were subjected to radiographic, ultrasonographic and elastosonographic evaluations of the patellar ligament before surgery (T0) and 1 month (T1), 2 months (T2) and 6 months (T3) after surgery. The radiographic and ultrasound thicknesses of the patellar ligament were recorded at three points: proximal, central and distal. A color map of strain elastosonography with superimposed B-mode images was used to evaluate the elasticity (hardness and softness) of the ligament. Twenty-two dogs completed the trial. At T0, the patellar ligament showed statistically reduced radiographic and ultrasonographic thicknesses compared to those at T1, T2 and T3. Additionally, the patellar ligament in the distal portion was statistically thicker in comparison to the proximal and central points at T2 and T3. At T1, T2 and T3, there was an increase in hardness and a reduction in softness of the patellar ligament compared to that at T0. The elastosonographic analysis and the radiographic and ultrasonographic thicknesses of the patellar ligament showed no correlation. The patellar ligament showed structural and mechanical alterations in the dogs undergoing TPLO, even six months after surgery. Full article
Show Figures

Figure 1

25 pages, 4021 KB  
Article
A Hybrid Path Planning Algorithm for Orchard Robots Based on an Improved D* Lite Algorithm
by Quanjie Jiang, Yue Shen, Hui Liu, Zohaib Khan, Hao Sun and Yuxuan Huang
Agriculture 2025, 15(15), 1698; https://doi.org/10.3390/agriculture15151698 - 6 Aug 2025
Viewed by 604
Abstract
Due to the complex spatial structure, dense tree distribution, and narrow passages in orchard environments, traditional path planning algorithms often struggle with large path deviations, frequent turning, and reduced navigational safety. In order to overcome these challenges, this paper proposes a hybrid path [...] Read more.
Due to the complex spatial structure, dense tree distribution, and narrow passages in orchard environments, traditional path planning algorithms often struggle with large path deviations, frequent turning, and reduced navigational safety. In order to overcome these challenges, this paper proposes a hybrid path planning algorithm based on improved D* Lite for narrow forest orchard environments. The proposed approach enhances path feasibility and improves the robustness of the navigation system. The algorithm begins by constructing a 2D grid map reflecting the orchard layout and inflates the tree regions to create safety buffers for reliable path planning. For global path planning, an enhanced D* Lite algorithm is used with a cost function that jointly considers centerline proximity, turning angle smoothness, and directional consistency. This guides the path to remain close to the orchard row centerline, improving structural adaptability and path rationality. Narrow passages along the initial path are detected, and local replanning is performed using a Hybrid A* algorithm that accounts for the kinematic constraints of a differential tracked robot. This generates curvature-continuous and directionally stable segments that replace the original narrow-path portions. Finally, a gradient descent method is applied to smooth the overall path, improving trajectory continuity and execution stability. Field experiments in representative orchard environments demonstrate that the proposed hybrid algorithm significantly outperforms traditional D* Lite and KD* Lite-B methods in terms of path accuracy and navigational safety. The average deviation from the centerline is only 0.06 m, representing reductions of 75.55% and 38.27% compared to traditional D* Lite and KD* Lite-B, respectively, thereby enabling high-precision centerline tracking. Moreover, the number of hazardous nodes, defined as path points near obstacles, was reduced to five, marking decreases of 92.86% and 68.75%, respectively, and substantially enhancing navigation safety. These results confirm the method’s strong applicability in complex, constrained orchard environments and its potential as a foundation for efficient, safe, and fully autonomous agricultural robot operation. Full article
(This article belongs to the Special Issue Perception, Decision-Making, and Control of Agricultural Robots)
Show Figures

Figure 1

37 pages, 642 KB  
Article
The Goddess of the Flaming Mouth Between India and Tibet
by Arik Moran and Alexander Zorin
Religions 2025, 16(8), 1002; https://doi.org/10.3390/rel16081002 - 1 Aug 2025
Viewed by 1376
Abstract
This article examines the evolution and potential cross-cultural adaptations of the “Goddess of the Flaming Mouth”, Jvālāmukhī (Skt.) or Kha ‘bar ma (Tib.), in Indic and Tibetan traditions. A minor figure in medieval Hindu Tantras, Jvālāmukhī is today best known through her tangible [...] Read more.
This article examines the evolution and potential cross-cultural adaptations of the “Goddess of the Flaming Mouth”, Jvālāmukhī (Skt.) or Kha ‘bar ma (Tib.), in Indic and Tibetan traditions. A minor figure in medieval Hindu Tantras, Jvālāmukhī is today best known through her tangible manifestation as natural flames in a West Himalayan temple complex in the valley of Kangra, Himachal Pradesh, India. The gap between her sparse portrayal in Tantric texts and her enduring presence at this local “seat of power” (śakti pīṭha) raises questions regarding her historical development and sectarian affiliations. To address these questions, we examine mentions of Jvālāmukhī’s Tibetan counterpart, Kha ‘bar ma, across a wide range of textual sources: canonical Buddhist texts, original Tibetan works of the Bön and Buddhist traditions, and texts on sacred geography. Regarded as a queen of ghost spirits (pretas) and field protector (kṣetrapāla) in Buddhist sources, her portrayal in Bön texts contain archaic motifs that hint at autochthonous and/or non-Buddhist origins. The assessment of Indic material in conjunction with Tibetan texts point to possible transformations of the goddess across these culturally proximate Himalayan settings. In presenting and contextualizing these transitions, this article contributes critical data to ongoing efforts to map the development, adaptation, and localization of Tantric deities along the Indo-Tibetan interface. Full article
25 pages, 1507 KB  
Article
DARN: Distributed Adaptive Regularized Optimization with Consensus for Non-Convex Non-Smooth Composite Problems
by Cunlin Li and Yinpu Ma
Symmetry 2025, 17(7), 1159; https://doi.org/10.3390/sym17071159 - 20 Jul 2025
Viewed by 366
Abstract
This paper proposes a Distributed Adaptive Regularization Algorithm (DARN) for solving composite non-convex and non-smooth optimization problems in multi-agent systems. The algorithm employs a three-phase iterative framework to achieve efficient collaborative optimization: (1) a local regularized optimization step, which utilizes proximal mappings to [...] Read more.
This paper proposes a Distributed Adaptive Regularization Algorithm (DARN) for solving composite non-convex and non-smooth optimization problems in multi-agent systems. The algorithm employs a three-phase iterative framework to achieve efficient collaborative optimization: (1) a local regularized optimization step, which utilizes proximal mappings to enforce strong convexity of weakly convex objectives and ensure subproblem well-posedness; (2) a consensus update based on doubly stochastic matrices, guaranteeing asymptotic convergence of agent states to a global consensus point; and (3) an innovative adaptive regularization mechanism that dynamically adjusts regularization strength using local function value variations to balance stability and convergence speed. Theoretical analysis demonstrates that the algorithm maintains strict monotonic descent under non-convex and non-smooth conditions by constructing a mixed time-scale Lyapunov function, achieving a sublinear convergence rate. Notably, we prove that the projection-based update rule for regularization parameters preserves lower-bound constraints, while spectral decay properties of consensus errors and perturbations from local updates are globally governed by the Lyapunov function. Numerical experiments validate the algorithm’s superiority in sparse principal component analysis and robust matrix completion tasks, showing a 6.6% improvement in convergence speed and a 51.7% reduction in consensus error compared to fixed-regularization methods. This work provides theoretical guarantees and an efficient framework for distributed non-convex optimization in heterogeneous networks. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

19 pages, 4141 KB  
Article
Prediction of Potential Habitat for Korean Endemic Firefly, Luciola unmunsana Doi, 1931 (Coleoptera: Lampyridae), Using Species Distribution Models
by ByeongJun Jung, JuYeong Youn and SangWook Kim
Land 2025, 14(7), 1480; https://doi.org/10.3390/land14071480 - 17 Jul 2025
Viewed by 776
Abstract
This study aimed to predict the potential habitats of Luciola unmunsana using a species distribution model (SDM). Luciola unmunsana is an endemic species that lives only in South Korea, and because its females do not have genus wings and are less fluid, [...] Read more.
This study aimed to predict the potential habitats of Luciola unmunsana using a species distribution model (SDM). Luciola unmunsana is an endemic species that lives only in South Korea, and because its females do not have genus wings and are less fluid, it is difficult to collect, so research related to its distribution and restoration is relatively understudied. Therefore, this study predicted the potential habitats of Luciola unmunsana across South Korea using the single model Maximum Entropy (MaxEnt) and a multi-model ensemble model to prepare basic data necessary for a conservation and habitat restoration plan for the species. A total of 39 points of occurrence were built based on public data and prior research from the Jeonbuk Green Environment Support Center (JGESC), the Global Biodiversity Information Facility (GBIF), and the National Institute of Biological Resources (NIBR). Among the input variables, climate variables were based on the shared socioeconomic pathway (SSP) scenario-based ecological climate index, while nonclimate variables were based on topography, land cover maps, and the Enhanced Vegetation Index (EVI). The main findings of this study are summarized below. First, in predicting Luciola unmunsana potential habitats, the EVI, water network analysis, land cover, and annual precipitation (Bio12) were identified as good predictors in both models. Accordingly, areas with high vegetation activity in their forests, adjacent to water resources, and stable humidity were predicted as potential habitats. Second, by overlaying the predicted potential habitats and highly significant variables, we found that areas with high vegetation vigor within their forests, proximity to water systems, and relatively high annual precipitation, which can maintain stable humidity, are potential habitats for Luciola unmunsana. Third, literature surveys used to predict potential habitat sites, including Geumsan-gun, Chungcheongnam-do, Yeongam-gun, Jeollabuk-do, Mudeungsan Mountain, Gwangju-si, Korea, and Gijang-gun, Busan-si, Korea, confirmed the occurrence of Luciola unmunsana. This study is significant in that it is the first to develop a regional SDM for Luciola unmunsana, whose population is declining due to urbanization. In addition, by applying various environmental variables that reflect ecological characteristics, it contributes to more accurate predictions of the potential habitats of this species. The predicted results can be used as basic data for the future conservation of Luciola unmunsana and the establishment of habitat restoration strategies. Full article
Show Figures

Figure 1

21 pages, 14257 KB  
Article
Shallow-Water Submarine Landslide Susceptibility Map: The Example in a Sector of Capo d’Orlando Continental Margin (Southern Tyrrhenian Sea)
by Elena Scacchia, Daniele Casalbore, Fabiano Gamberi, Daniele Spatola, Marco Bianchini and Francesco Latino Chiocci
J. Mar. Sci. Eng. 2025, 13(7), 1350; https://doi.org/10.3390/jmse13071350 - 16 Jul 2025
Viewed by 648
Abstract
Active continental margins, generally characterized by narrow shelves incised by canyons, are pervasively shaped by submarine landslides that can occur near coastal areas. In this context, creating landslide susceptibility maps is the first step in landslide geohazard assessment. This paper focuses on shallow-water [...] Read more.
Active continental margins, generally characterized by narrow shelves incised by canyons, are pervasively shaped by submarine landslides that can occur near coastal areas. In this context, creating landslide susceptibility maps is the first step in landslide geohazard assessment. This paper focuses on shallow-water submarine landslides along the Capo d’Orlando continental margin and presents a related susceptibility map using the Weight of Evidence method. This method quantifies the strength of the association between a landslide inventory and predisposing factors. A geomorphological analysis of the continental shelf and upper slope yielded a landslide inventory of 450 initiation points, which were combined with five specifically selected preconditioning factors. The results revealed that the most favourable conditions for shallow-water landslides include slopes between 5° and 15°, proximity to faults (<1 km), proximity to river mouths (<2 km), the presence of consolidated lithologies and sandy terraces, and slopes facing NE and E. The landslide susceptibility map indicates that susceptible areas are in canyon heads and flanks, as well as in undisturbed slope portions near canyon heads where retrogressive landslides are likely. The model results are robust (AUC = 0.88), demonstrating that this method can be effectively applied in areas with limited geological data for preliminary susceptibility assessments. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

12 pages, 204 KB  
Article
The Proximal Point Method with Remotest Set Control for Maximal Monotone Operators and Quasi-Nonexpansive Mappings
by Alexander J. Zaslavski
Mathematics 2025, 13(14), 2282; https://doi.org/10.3390/math13142282 - 16 Jul 2025
Cited by 1 | Viewed by 375
Abstract
In the present paper, we use the proximal point method with remotest set control for find an approximate common zero of a finite collection of maximal monotone maps in a real Hilbert space under the presence of computational errors. We prove that the [...] Read more.
In the present paper, we use the proximal point method with remotest set control for find an approximate common zero of a finite collection of maximal monotone maps in a real Hilbert space under the presence of computational errors. We prove that the inexact proximal point method generates an approximate solution if these errors are summable. Also, we show that if the computational errors are small enough, then the inexact proximal point method generates approximate solutions Full article
(This article belongs to the Special Issue Variational Inequality, 2nd Edition)
18 pages, 3919 KB  
Article
Spatial Distribution of Cultural Ecosystem Services in Rural Landscapes Using PGIS and SolVES
by Yasin Yaman and Seda Örücü
Sustainability 2025, 17(14), 6388; https://doi.org/10.3390/su17146388 - 11 Jul 2025
Viewed by 624
Abstract
Cultural ecosystem services (CES) play a vital role in rural well-being, yet their spatial patterns and local perceptions remain underexplored in many regions, including Türkiye. This study aims to assess the social values of CES in rural landscapes by focusing on the Şarkikaraağaç [...] Read more.
Cultural ecosystem services (CES) play a vital role in rural well-being, yet their spatial patterns and local perceptions remain underexplored in many regions, including Türkiye. This study aims to assess the social values of CES in rural landscapes by focusing on the Şarkikaraağaç and Yenişarbademli districts of Isparta Province. Using Participatory Geographic Information Systems (PGIS) and the Social Values for Ecosystem Services (SolVES) models, we collected and analyzed spatial data from 836 community surveys, mapping 3771 CES value points. Sentinel-2A imagery and derived indices (NDVI, NDWI, SAVI, NDBI) were used to classify landscape infrastructures into green, blue, yellow, and grey categories. The results show that aesthetic and recreational services were most highly valued, followed by biodiversity, spiritual, and therapeutic values. Chi-square and Kruskal–Wallis tests revealed significant demographic and spatial variation in CES preferences, while Principal Component Analysis highlighted two key dimensions of value perception. MaxEnt-based modeling within SolVES confirmed the spatial distribution of CES with high predictive accuracy (AUC > 0.93). Our findings underscore the importance of integrating CES into sustainable land-use planning and suggest that infrastructure type and proximity to natural features significantly influence CES valuation in rural settings. Full article
Show Figures

Figure 1

31 pages, 417 KB  
Article
On the Properties of Iterations Generated with Composition Maps of Cyclic Contractive Self-Mappings and Strict Contractions in Metric Spaces
by Manuel De la Sen
Mathematics 2025, 13(14), 2224; https://doi.org/10.3390/math13142224 - 8 Jul 2025
Cited by 1 | Viewed by 332
Abstract
This paper studies the convergence of distances between sequences of points and that of sequences of points in metric spaces. This investigation is focused on the iterative processes built with composed self-mappings of a cyclic contraction, which can involve more than two nonempty [...] Read more.
This paper studies the convergence of distances between sequences of points and that of sequences of points in metric spaces. This investigation is focused on the iterative processes built with composed self-mappings of a cyclic contraction, which can involve more than two nonempty closed subsets in a metric space, which are combined with compositions of a strict contraction with itself, which operates in each of the individual subsets, in any order and any number of mutual compositions. It is admitted, in the most general case, the involvement of any number of repeated compositions of both self-maps with themselves. It is basically seen that, if one of the best-proximity points in the cyclic disposal is unique in a boundedly compact subset of the metric space is sufficient to achieve unique asymptotic cycles formed by a best-proximity point per each adjacent subset. The same property is achievable if such a subset is strictly convex and the metric space is a uniformly convex Banach space. Furthermore, all the sequences with arbitrary initial points in the union of all the subsets of the cyclic disposal converge to such a limit cycle. Full article
(This article belongs to the Special Issue Applied Mathematical Modelling and Dynamical Systems, 2nd Edition)
Back to TopTop