Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (310)

Search Parameters:
Keywords = pulmonary drug delivery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3914 KB  
Article
Pulmonary Suffusion Refinements for Primary and Secondary Malignancies: Preliminary Analyses of Phase I Safety and Drug Delivery Data
by Todd Demmy, Samah Abdelhady, Garin Tomaszewski, Michael Petroziello, Omar Hasan, Mark Hennon, Elisabeth Dexter, Deepak Vadehra, Ajay Gupta, Anne Grand‘Maison, Grace Dy and Sai Yendamuri
Cancers 2025, 17(17), 2880; https://doi.org/10.3390/cancers17172880 (registering DOI) - 2 Sep 2025
Abstract
Objectives: We sought to document interim methodologic improvements and preliminary results for pulmonary suffusion. Methods: A Phase I/II trial of thoracoscopic lung suffusion for resectable sarcoma and colorectal carcinoma metastases followed a pilot study on oligometastatic lung malignancy at a comprehensive [...] Read more.
Objectives: We sought to document interim methodologic improvements and preliminary results for pulmonary suffusion. Methods: A Phase I/II trial of thoracoscopic lung suffusion for resectable sarcoma and colorectal carcinoma metastases followed a pilot study on oligometastatic lung malignancy at a comprehensive cancer center. Primary-specific chemotherapy doses (cisplatin, oxaliplatin, doxorubicin, or gemcitabine) suffused unilaterally for 30 min were escalated to amplify regional deliveries three-fold. Drug delivery was measured with tissue, blood samples, and 99Tc; pulmonary function tests and clinical adverse events (AEs) assessed safety and tolerance. Results: From 2008–2025, 31 ECOG 0–2 patients (10 male) aged 33–75 years had unilateral lung suffusion (16 right, 14 left, 1 aborted, and 8 sides selected randomly). Vascular occlusion intolerance was immediate or delayed (25 min) in two cases. Two catheter-positioning grade 3 AEs occurred: hypotension with troponin leak (1) and atrial fibrillation (1). Patients averaged 1.3 ± 1.2 metastasectomies (17 sub-lobar, 8 lobar resections, and 2 intentional open cytoreductive metastasectomies). Hospitalizations were brief (1–4 days) except for 6–7 day stays in the only two open cases and one doxorubicin (grade 4 hypoxic respiratory failure) case. Ninety-day survival was 100%, and the Phase I delivery goal of 12.75 mg/m2 65 (15% systemic) was achieved for oxaliplatin. Lung function was preserved according to 99Tc differentials within 6.1 ± 7.1% of the predicted reductions at 30 days. Sampling delays, tracer discordances, and atypical pharmacokinetics reduced tissue drug detections. Recent pulmonary artery snaring cases (two) demonstrated in-flow control more stable than that of balloon occlusions. Conclusions: Suffusion for metastatic malignancies appears safe and warrants further investigation. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

24 pages, 2946 KB  
Article
Comparative In Vitro Deposition Analysis of Formoterol, Glycopyrronium, and Tiotropium Delivered via Capsule-Based DPI
by Adam Sikora, Joanna Chałupka, Kinga Lewandowska, Paulina Drapińska and Michał Piotr Marszałł
Pharmaceutics 2025, 17(9), 1089; https://doi.org/10.3390/pharmaceutics17091089 - 22 Aug 2025
Viewed by 330
Abstract
Dry powder inhalers (DPIs) are the mainstay in the treatment of obstructive pulmonary diseases. However, the performance of DPI formulations is highly dependent on the used inhaler device and the patient’s inspiratory effort. This study aimed to evaluate and compare the aerosolization behavior [...] Read more.
Dry powder inhalers (DPIs) are the mainstay in the treatment of obstructive pulmonary diseases. However, the performance of DPI formulations is highly dependent on the used inhaler device and the patient’s inspiratory effort. This study aimed to evaluate and compare the aerosolization behavior of three commercially available capsule-based DPI medications—formoterol (Foradil®), glycopyrronium (Seebri® Breezhaler), and tiotropium (Spiriva®)—delivered using three different capsule-based inhalers (Aerolizer, Breezhaler, and Handihaler), under varying flow conditions. Methods: The aerodynamic performance of each formulation–inhaler combination was assessed using the Next-Generation Impactor (NGI) and Dosage Unit Sampling Apparatus (DUSA) methodology. Fine particle dose (FPD) and aerodynamic particle size distribution (APSD) were determined at fixed flow rates of 15, 30, 60, and 100 L/min, as well as at inhaler-specific flow rates corresponding to a 4 kPa pressure drop. Chromatographic quantification of active ingredients was performed using validated HPLC methods specific to each drug. Results: The FPD values increased consistently with higher flow rates across all tested formulations and inhalers. At a 4 kPa pressure drop, Aerolizer and Breezhaler achieved significantly higher FPDs compared to Handihaler. Notably, in some instances, non-dedicated inhalers produced greater respirable fractions than the originally intended devices. APSD profiles revealed that drug deposition shifted toward smaller NGI stages at higher inspiratory flows, supporting enhanced deep lung delivery potential under optimal conditions. Conclusions: Device resistance, capsule orientation, and piercing mechanics substantially influence drug aerosolization. Although non-dedicated inhalers may offer improved FPDs in vitro, clinical use should adhere to approved drug–device combinations, as these have been validated for efficacy and safety under real-world conditions. Full article
(This article belongs to the Special Issue Inhaled Advances: Emerging Trends in Pulmonary Drug Delivery)
Show Figures

Graphical abstract

30 pages, 4270 KB  
Review
Latest Advances in Inhalable Dry Powder Bacteriophage Therapy for Pulmonary Infections
by David Encinas-Basurto, Patricia Dolores Martinez-Flores, Joselyn García, Marco Antonio Lopez-Mata, Gerardo García-González, Gerardo E. Rodea, Basanth Babu Eedara, Heidi M. Mansour and Josue Juarez
Pharmaceutics 2025, 17(8), 1077; https://doi.org/10.3390/pharmaceutics17081077 - 20 Aug 2025
Viewed by 393
Abstract
The concerning increase in respiratory infections that are resistant to multiple drugs has led to a growing interest in bacteriophage therapy as a potential alternative to conventional antibiotics. Effective phage delivery to the lungs, however, presents several formulation and stability issues, particularly for [...] Read more.
The concerning increase in respiratory infections that are resistant to multiple drugs has led to a growing interest in bacteriophage therapy as a potential alternative to conventional antibiotics. Effective phage delivery to the lungs, however, presents several formulation and stability issues, particularly for inhalation-based methods. This review highlights current developments in the creation of dry powder formulations that can be inhaled for pulmonary phage therapy, with a focus on encapsulation methods based on nanoparticles, such as solid lipid nanoparticles (SLNs) and polymer-based nanoparticles. These carriers enhance the aerodynamic characteristics of phages, making them suitable for deep lung deposition, while also protecting them during processing and storage. Several drying methods have been investigated to create powders with optimal morphologies, porosity, and dispersibility, including spray drying and spray freeze drying. The review also emphasizes how the phage morphotype affects stability, especially when nebulization stress is present. Furthermore, the advantages of nanoparticle matrices are confirmed by the reduced viability loss (usually< 0.5 log PFU) of encapsulated phages. Standardizing production processes, scaling up, and ensuring regulatory compliance remain challenging despite encouraging preclinical results. The combination of phage therapy with nanotechnology creates new avenues for the utilization of inhalable delivery methods to treat multidrug-resistant pulmonary infections. To translate these novel formulations from preclinical development to clinical application, sustained multidisciplinary collaboration across pharmaceutical sciences, microbiology, and clinical pharmacology is essential. Full article
Show Figures

Figure 1

25 pages, 365 KB  
Review
Nanomaterials in COPD: Emerging Therapeutic and Diagnostic Frontiers with a Focus on Metal–Organic Frameworks
by Antonio Tiralosi, Manuela Cambria, Mariachiara Campanella, Vincenzo Paratore, Cristina Russo, Lucia Malaguarnera, Maria Stella Valle and Maria Teresa Cambria
Int. J. Mol. Sci. 2025, 26(16), 8025; https://doi.org/10.3390/ijms26168025 - 19 Aug 2025
Viewed by 420
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide. Although conventional therapies are effective in controlling symptoms, they remain limited in altering the course of the disease and significantly reducing the chronic inflammation and oxidative stress [...] Read more.
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide. Although conventional therapies are effective in controlling symptoms, they remain limited in altering the course of the disease and significantly reducing the chronic inflammation and oxidative stress underlying it. In this context, nanoparticles and nanomaterials are emerging as innovative tools capable of overcoming traditional pharmacological barriers due to their ability to deliver therapeutic oligonucleotides, antioxidants, and drugs in a targeted manner, modulate immune responses, and improve the bioavailability of active compounds. In particular, metal–organic frameworks (MOFs) stand out as ideal candidates for inhalable drug delivery in COPD, owing to their permanent crystalline porous structure, high specific surface area, and versatile chemical functionalization. This review provides the most recent preclinical evidence on the use of different nanoparticles in COPD, with a focus on the therapeutic and diagnostic potential of MOFs. It discusses their biocompatibility, drug loading strategies, and controlled release mechanisms and explores future perspectives for clinical translation. Full article
(This article belongs to the Section Molecular Nanoscience)
33 pages, 2203 KB  
Review
Cyclodextrin-Based Nanotransporters as a Versatile Tool to Manage Oxidative Stress-Induced Lung Diseases
by Supandeep Singh Hallan, Francesca Ferrara, Maddalena Sguizzato and Rita Cortesi
Antioxidants 2025, 14(8), 1007; https://doi.org/10.3390/antiox14081007 - 17 Aug 2025
Viewed by 815
Abstract
Oxidative stress is one of the key elements in lung-related complications such as cystic fibrosis, acute lung injury, pulmonary hypertension, bronchopulmonary dysplasia, chronic airway diseases, lung cancer, COVID-19, and many others. Antioxidant and anti-inflammatory therapy can be considered as supportive alternatives in their [...] Read more.
Oxidative stress is one of the key elements in lung-related complications such as cystic fibrosis, acute lung injury, pulmonary hypertension, bronchopulmonary dysplasia, chronic airway diseases, lung cancer, COVID-19, and many others. Antioxidant and anti-inflammatory therapy can be considered as supportive alternatives in their management. However, most naturally derived antioxidants face issues with poor aqueous solubility and stability, which hinder their clinical utility. Remarkably, local pulmonary delivery circumvents the severe limitations of oral delivery, including hepatic first-pass metabolism and organ toxicity, and enables a higher drug payload in the lungs. Here, in this review, we present cyclodextrin as a potential drug carrier for pulmonary administration, exploring the possibilities of its surface modification, complexation with other drug transporters, and loading of cannabidiols, siRNA, and antibodies as future trends. However, the lack of a robust physiological model for assessing the efficacy of lung-oriented drug targeting is a significant concern in its path to clinical and commercial success. Full article
(This article belongs to the Special Issue Applications of Antioxidant Nanoparticles, 2nd Edition)
Show Figures

Figure 1

12 pages, 1739 KB  
Article
Tailored Levofloxacin Incorporated Extracellular Matrix Nanoparticles for Pulmonary Infections
by Raahi Patel, Ignacio Moyano, Masahiro Sakagami, Jason D. Kang, Phillip B. Hylemon, Judith A. Voynow and Rebecca L. Heise
Int. J. Mol. Sci. 2025, 26(15), 7453; https://doi.org/10.3390/ijms26157453 - 1 Aug 2025
Viewed by 409
Abstract
Cystic fibrosis produces viscous mucus in the lung that increases bacterial invasion, causing persistent infections and subsequent inflammation. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common infections in cystic fibrosis patients that are resistant to antibiotics. One antibiotic approved to [...] Read more.
Cystic fibrosis produces viscous mucus in the lung that increases bacterial invasion, causing persistent infections and subsequent inflammation. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common infections in cystic fibrosis patients that are resistant to antibiotics. One antibiotic approved to treat these infections is levofloxacin (LVX), which functions to inhibit bacterial replication but can be further developed into tailorable particles. Nanoparticles are an emerging inhaled therapy due to enhanced targeting and delivery. The extracellular matrix (ECM) has been shown to possess pro-regenerative and non-toxic properties in vitro, making it a promising delivery agent. The combination of LVX and ECM formed into nanoparticles may overcome barriers to lung delivery to effectively treat cystic fibrosis bacterial infections. Our goal is to advance CF care by providing a combined treatment option that has the potential to address both bacterial infections and lung damage. Two hybrid formulations of a 10:1 and 1:1 ratio of LVX to ECM have shown neutral surface charges and an average size of ~525 nm and ~300 nm, respectively. The neutral charge and size of the particles may suggest their ability to attract toward and penetrate through the mucus barrier in order to target the bacteria. The NPs have also been shown to slow the drug dissolution, are non-toxic to human airway epithelial cells, and are effective in inhibiting Pseudomonas aeruginosa and Staphylococcus aureus. LVX-ECM NPs may be an effective treatment for pulmonary CF bacterial treatments. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

29 pages, 2636 KB  
Review
Inhalable Nanomaterial Discoveries for Lung Cancer Therapy: A Review
by Iqra Safdar, Syed Mahmood, Muhammad Kumayl Abdulwahab, Suzita Mohd Noor, Yi Ge and Zarif Mohamed Sofian
Pharmaceutics 2025, 17(8), 996; https://doi.org/10.3390/pharmaceutics17080996 - 31 Jul 2025
Viewed by 605
Abstract
Lung cancer remains one of the most common and deadliest forms of cancer worldwide despite notable advancements in its management. Conventional treatments, such as chemotherapy, often have limitations in effectively targeting cancer cells, which frequently lead to off-target side effects. In this context, [...] Read more.
Lung cancer remains one of the most common and deadliest forms of cancer worldwide despite notable advancements in its management. Conventional treatments, such as chemotherapy, often have limitations in effectively targeting cancer cells, which frequently lead to off-target side effects. In this context, the pulmonary delivery of inhalable nanomaterials offers the advantages of being rapid, efficient, and target-specific, with minimal systemic side effects. This concise review summarizes the basic research and clinical translation of inhalable nanomaterials for the treatment of lung cancer. We also provide insights into the latest advances in pulmonary drug delivery systems, focusing on various types of pulmonary devices and nanomaterials. Furthermore, this paper discusses significant challenges in translating the discoveries of inhalable nanomaterials into clinical care for lung cancer and shares strategies to overcome these issues. Full article
Show Figures

Graphical abstract

19 pages, 2622 KB  
Article
Three-Compartment Pharmacokinetics of Inhaled and Injected Sinapine Thiocyanate Manifest Prolonged Retention and Its Therapeutics in Acute Lung Injury
by Zixin Li, Caifen Wang, Huipeng Xu, Qian Wu, Ningning Peng, Lu Zhang, Hui Wang, Li Wu, Zegeng Li, Qinjun Yang and Jiwen Zhang
Pharmaceutics 2025, 17(7), 909; https://doi.org/10.3390/pharmaceutics17070909 - 14 Jul 2025
Viewed by 535
Abstract
Background: Acute lung injury (ALI) is driven by inflammatory cascades and reactive oxygen species (ROS) generation, with the progression to severe cases markedly increasing mortality. Sinapine thiocyanate (ST), a bioactive natural compound isolated from Sinapis Semen Albae (SSA), demonstrates both anti-inflammatory and [...] Read more.
Background: Acute lung injury (ALI) is driven by inflammatory cascades and reactive oxygen species (ROS) generation, with the progression to severe cases markedly increasing mortality. Sinapine thiocyanate (ST), a bioactive natural compound isolated from Sinapis Semen Albae (SSA), demonstrates both anti-inflammatory and antioxidant pharmacological activities. However, no monotherapeutic formulation of ST has been developed to date. A dry powder inhaler (DPI) enables targeted pulmonary drug delivery with excellent stability profiles and high inhalation efficiency. Methods: ST was purified and prepared as inhalable dry powder particles via an antisolvent crystallization technique. The therapeutic mechanisms of ST against ALI were elucidated by network pharmacology and pharmacokinetic analyses, with the therapeutic efficacy of the ST DPI in ALI mitigation being validated using LPS-induced rat models. Results: The ST DPI showed ideal aerodynamic characteristics. Notably, ST exhibited a three-compartment (triexponential) pharmacokinetic profile following both intravenous tail vein injection and inhalation administration. Furthermore, the inhaled formulation displayed a prolonged systemic residence time, which confers therapeutic advantages for pulmonary disease management. Furthermore, the inhalation administration of ST demonstrated a 2.7-fold increase in AUC compared with oral gavage, with a corresponding enhancement in systemic exposure. The ST DPI formulation demonstrated significant therapeutic efficacy against ALI in rats by downregulating inflammatory cytokines and modulating oxidative stress levels, mechanistically achieved through the MAPK-mediated regulation of cellular apoptosis via a positive feedback loop. Conclusions: The unique triexponential plasma level profiles of an ST DPI provide a promising pharmacokinetics-based therapeutic strategy for ALI, leveraging its marked efficacy in attenuating inflammation, oxidative stress, and pulmonary injury. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

39 pages, 4547 KB  
Review
Inhalable Nanotechnology-Based Drug Delivery Systems for the Treatment of Inflammatory Lung Diseases
by Doaa Elsayed Mahmoud, Seyedeh Hanieh Hosseini, Hassaan Anwer Rathore, Alaaldin M. Alkilany, Andreas Heise and Abdelbary Elhissi
Pharmaceutics 2025, 17(7), 893; https://doi.org/10.3390/pharmaceutics17070893 - 9 Jul 2025
Viewed by 1255
Abstract
This review explores recent advancements in inhaled nanoparticle formulations and inhalation devices, with a focus on various types of nanoparticles used for inhalation to treat inflammatory lung diseases and the types of devices used in their delivery. Medical nebulizers have been found to [...] Read more.
This review explores recent advancements in inhaled nanoparticle formulations and inhalation devices, with a focus on various types of nanoparticles used for inhalation to treat inflammatory lung diseases and the types of devices used in their delivery. Medical nebulizers have been found to be the most appropriate type of inhalation devices for the pulmonary delivery of nanoparticles, since formulations can be prepared using straightforward techniques, with no need for liquefied propellants as in the case of pressurized metered dose inhalers (pMDIs), or complicated preparation procedures as in the case of dry powder inhalers (DPIs). We demonstrated examples of how formulations should be designed considering the operation mechanism of nebulizers, and how an interplay of factors can affect the aerosol characteristics of nanoparticle formulations. Overall, nanoparticle-based formulations offer promising potential for the treatment of inflammatory lung diseases due to their unique physicochemical properties and ability to provide localized drug delivery in the lung following inhalation. Full article
(This article belongs to the Special Issue Recent Advances in Pulmonary Inhalation of Nanoformulations)
Show Figures

Figure 1

18 pages, 5213 KB  
Article
Lung Delivery of Lactose-Free Microparticles Loaded with Azithromycin for the Treatment of Bacterial Infections
by Gracia Molina, Dolores R. Serrano, María Auxiliadora Dea-Ayuela, Carmina Rodriguez, Elena González-Burgos and Brayan J. Anaya
Pharmaceutics 2025, 17(6), 770; https://doi.org/10.3390/pharmaceutics17060770 - 11 Jun 2025
Viewed by 640
Abstract
Background/Objectives: Respiratory bacterial infections remain a significant global health challenge, with effective drug delivery to the lungs being crucial for successful treatment. This study aimed to develop a lactose-free dry powder inhaler (DPI) formulation containing azithromycin (AZM) microparticles for enhanced pulmonary delivery. Methods: [...] Read more.
Background/Objectives: Respiratory bacterial infections remain a significant global health challenge, with effective drug delivery to the lungs being crucial for successful treatment. This study aimed to develop a lactose-free dry powder inhaler (DPI) formulation containing azithromycin (AZM) microparticles for enhanced pulmonary delivery. Methods: Using a quality-by-design approach, an optimized formulation (4% AZM, 20% leucine, and 76% mannitol) was achieved. Results: The formulation demonstrated excellent aerodynamic properties with a mass median aerodynamic diameter (MMAD) of 2.72 μm ± 0.01 μm and fine particle fraction (FPF) (<5 μm) of 65.42% ± 5.12%. AZM-loaded microparticles exhibited enhanced efficacy against Pseudomonas aeruginosa with a two-fold reduction in the minimum bactericidal concentration (7.81 μg/mL vs. 15.62 μg/mL) compared to unprocessed AZM, while maintaining activity against Streptococcus pneumoniae. AZM microparticles demonstrated good biocompatibility with red blood cells and bronchial epithelial cells at therapeutic concentrations. Conclusions: These findings establish a promising lactose-free antibiotic formulation for targeted pulmonary delivery with enhanced antimicrobial efficacy. Full article
(This article belongs to the Special Issue Inhaled Treatment of Respiratory Infections, 2nd Edition)
Show Figures

Figure 1

34 pages, 2275 KB  
Review
A State-of-the-Art Review on Recent Biomedical Application of Polysaccharide-Based Niosomes as Drug Delivery Systems
by Andreea-Teodora Iacob, Andra Ababei-Bobu, Oana-Maria Chirliu, Florentina Geanina Lupascu, Ioana-Mirela Vasincu, Maria Apotrosoaei, Bianca-Stefania Profire, Georgiana-Roxana Tauser, Dan Lupascu and Lenuta Profire
Polymers 2025, 17(11), 1566; https://doi.org/10.3390/polym17111566 - 4 Jun 2025
Cited by 1 | Viewed by 1378
Abstract
The development of nanocarriers for drug delivery has drawn a lot of attention due to the possibility for tailored delivery to the ill region while preserving the neighboring healthy tissue. In medicine, delivering drugs safely and effectively has never been easy; therefore, the [...] Read more.
The development of nanocarriers for drug delivery has drawn a lot of attention due to the possibility for tailored delivery to the ill region while preserving the neighboring healthy tissue. In medicine, delivering drugs safely and effectively has never been easy; therefore, the creation of surfactant-based vesicles (niosomes) to enhance medication delivery has gained attention in the past years. Niosomes (NIOs) are versatile drug delivery systems that facilitate applications varying from transdermal transport to targeted brain delivery. These self-assembling vesicular nano-carriers are formed by hydrating cholesterol, non-ionic surfactants, and other amphiphilic substances. The focus of the review is to report on the latest NIO-type formulations which also include biopolymers from the polysaccharide class, highlighting their role in the development of these drug delivery systems (DDSs). The NIO and polysaccharide types, together with the recent pharmaceutical applications such as ocular, oral, nose-to brain, pulmonary, cardiac, and transdermal drug delivery, are all thoroughly summarized in this review, which offers a comprehensive compendium of polysaccharide-based niosomal research to date. Lastly, this delivery system’s limits and prospects are also examined. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials, 3rd Edition)
Show Figures

Graphical abstract

18 pages, 4037 KB  
Article
Voriconazole-Loaded Nanohydrogels Towards Optimized Antifungal Therapy for Cystic Fibrosis Patients
by Shaul D. Cemal, María F. Ladetto, Katherine Hermida Alava, Gila Kazimirsky, Marcela Cucher, Romina J. Glisoni, María L. Cuestas and Gerardo Byk
Pharmaceutics 2025, 17(6), 725; https://doi.org/10.3390/pharmaceutics17060725 - 30 May 2025
Viewed by 716
Abstract
Background/Objectives: Filamentous fungi, in particular the species Aspergillus, Scedosporium, and Exophiala, frequently colonize the lungs of cystic fibrosis (CF) patients. Chronic colonization is linked to hypersensitivity reactions and persistent infections leading to a significant long-term decline in lung function. [...] Read more.
Background/Objectives: Filamentous fungi, in particular the species Aspergillus, Scedosporium, and Exophiala, frequently colonize the lungs of cystic fibrosis (CF) patients. Chronic colonization is linked to hypersensitivity reactions and persistent infections leading to a significant long-term decline in lung function. Azole antifungal therapy such as voriconazole (VRC) slows disease progression, particularly in patients with advanced CF; however, excessive mucus production in CF lungs poses a diffusional barrier to effective treatment. Methods: Here, biodegradable nanohydrogels (NHGs) recently developed as nanocarriers were evaluated for formulating VRC as a platform for treating fungal infections in CF lungs. The NHGs entrapped up to about 30 μg/mg of VRC, and physicochemical properties were investigated via dynamic laser light scattering and nanoparticle tracking analysis. Diameters were 100–400 nm, and excellent colloidal stability was demonstrated in interstitial fluids, indicating potential for pulmonary delivery. Nano-formulations exhibited high in vitro cytocompatibility in A549 and HEK293T cells and were tested for the release of VRC under two different sink conditions. Results: Notably, the antifungal activity of VRC-loaded nanohydrogels was up to eight-fold greater than an aqueous suspension drug against different fungal species isolated from CF sputum, regardless of the presence of a CF artificial mucus layer. Conclusions: These findings support the development of potent VRC nano-formulations for treating fungal disorders in CF lungs. Full article
(This article belongs to the Special Issue Nanoparticle-Mediated Targeted Drug Delivery Systems)
Show Figures

Figure 1

15 pages, 3766 KB  
Article
Improving Pulmonary Delivery of Budesonide Suspensions Nebulized with Constant-Output Vibrating Mesh Nebulizers by Using Valved Holding Chamber
by Tomasz R. Sosnowski, Izabela Kazimierczak, Aleksandra Sawczuk, Kamil Janeczek and Andrzej Emeryk
Pharmaceutics 2025, 17(6), 696; https://doi.org/10.3390/pharmaceutics17060696 - 26 May 2025
Viewed by 800
Abstract
Background: Vibrating mesh nebulizers (VMNs) are not only used to deliver typical pulmonary drugs but are also a promising platform for novel formulations and therapeutic applications. Typically, these devices operate continuously or on demand and are directly connected to the outflow interface [...] Read more.
Background: Vibrating mesh nebulizers (VMNs) are not only used to deliver typical pulmonary drugs but are also a promising platform for novel formulations and therapeutic applications. Typically, these devices operate continuously or on demand and are directly connected to the outflow interface (mouthpiece or mask) without valving systems that could spare the drug during exhalation. This paper examines the possibility of increasing the delivery of inhaled budesonide aerosol by attaching a valved holding chamber (VHC) to selected VMNs. Methods: A laboratory in vitro study was conducted for seven budesonide (BUD) nebulization products (0.25 mg/mL). The rates of aerosol delivery from VMNs alone or VMN + VHC systems were determined gravimetrically for a simulated breathing cycle, while droplet size distributions in mists were measured by laser diffraction. Results: The VMN + VHC systems increased the amount of aerosol available for inhalation and the fraction of fine particles that could penetrate the pulmonary region. Depending on the VMN and BUD product, a relative increase of 30–300% in the total drug delivery (T) and 50–350% in the pulmonary drug availability (P) was obtained. The results are explained by the reduction in aerosol losses during exhalation (the fugitive emission) by the VHC and the simultaneous elimination of the largest droplets due to coalescence and deposition in the chamber. Both VMN and BUD affected the aerosol’s properties and discharge mass and thus the actual benefits of the VHC. Conclusions: While the results confirm the superiority of VMN + VHC over VMNs alone in nebulizing BUD suspensions, they also show that it is difficult to predict the effects quantitatively without testing the individual nebulizer–chamber–drug combination. Full article
Show Figures

Graphical abstract

19 pages, 3400 KB  
Article
Preparation of Carrier-Free Inhalable Dry Powder of Rivaroxaban Using Two-Step Milling for Lung-Targeted Delivery
by Young-Jin Kim, Jaewoon Son, Chang-Soo Han and Chun-Woong Park
Pharmaceutics 2025, 17(5), 634; https://doi.org/10.3390/pharmaceutics17050634 - 9 May 2025
Viewed by 751
Abstract
Background/Objectives: This study aimed to develop a dry powder inhalation (DPI) formulation of rivaroxaban (RVX) using a combination of bead milling (BM) and jet milling (JM) to enhance lung-targeted delivery for the effective treatment of pulmonary embolism while minimizing systemic exposure. Methods [...] Read more.
Background/Objectives: This study aimed to develop a dry powder inhalation (DPI) formulation of rivaroxaban (RVX) using a combination of bead milling (BM) and jet milling (JM) to enhance lung-targeted delivery for the effective treatment of pulmonary embolism while minimizing systemic exposure. Methods: A carrier-free DPI formulation of RVX was developed using sequential BM and JM, with L-leucine incorporated at various concentrations (1%, 5%, and 10%) as a force control agent. The formulations were characterized for particle morphology, size distribution, crystallinity, and thermal properties. The in-vitro aerodynamic performance was evaluated using a next-generation impactor, while ex-vivo studies assessed anticoagulant activity. Pharmacokinetic and tissue distribution studies were carried out in Sprague Dawley rats following intratracheal administration, and the effects of inhaled RVX were compared with those of oral administration. Results: The optimized BM-JM-5L formulation achieved a Dv50 of 2.58 ± 0.01 µm and a fine particle fraction of 72.10 ± 2.46%, indicating suitability for pulmonary delivery. The two-step milling effectively reduced particle size and enhanced dispersibility without altering RVX’s physicochemical properties. Ex-vivo anticoagulation tests confirmed maintained or improved activity. In-vivo studies showed that pulmonary administration (5 mg/kg) led to a 493-fold increase in lung drug concentration and 2.56-fold higher relative bioavailability vs. oral dosing, with minimal heart tissue accumulation, confirming targeted lung delivery. Conclusions: The two-step milled RVX DPI formulations, particularly BM-JM-5L with 5% leucine, demonstrated significant potential for pulmonary administration by achieving high local drug concentrations, rapid onset, and improved bioavailability at lower doses. These findings highlight the feasibility of RVX as a DPI formulation for pulmonary delivery in treating pulmonary embolism. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

16 pages, 2538 KB  
Article
Impact of pH-Responsive Cisplatin/Ribavirin-Loaded Monodispersed Magnetic Silica Nanocomposite on A549 Lung Cancer Cells
by Dana Almohazey, Vijaya Ravinayagam, Hatim Dafalla and Rabindran Jermy Balasamy
Pharmaceutics 2025, 17(5), 631; https://doi.org/10.3390/pharmaceutics17050631 - 9 May 2025
Viewed by 714
Abstract
Background/Objectives: Nanocarrier particle design for treating chronic pulmonary diseases presents several challenges, including anatomical and physiological barriers. Drug-repurposing technology using monodispersed spherical silica is one of the innovative ways to deliver drugs. In the present study, the anticancer potential of combinational cisplatin/ribavirin [...] Read more.
Background/Objectives: Nanocarrier particle design for treating chronic pulmonary diseases presents several challenges, including anatomical and physiological barriers. Drug-repurposing technology using monodispersed spherical silica is one of the innovative ways to deliver drugs. In the present study, the anticancer potential of combinational cisplatin/ribavirin was explored for targeted lung cancer therapeutics. Methods: Monodispersed spherical silica (80 nm) capable of diffusing into the tracheal mucus region was chosen and doped with 10 wt% superparamagnetic iron oxide nanoparticles (SPIONs). Subsequently, it was wrapped with chitosan (Chi, 0.6 wt/vol%), functionalized with 5% wt/wt cisplatin (Cp)/ribavarin (Rib) and angiotensin-converting enzyme 2 (ACE-2) (1.0 μL/mL). Formulations are based on monodispersed spherical silica or halloysite and are termed as (S/MSSiO2/Chi/Cp/Rib) or (S/Hal/Chi/Cp/Rib), respectively. Results: X-ray diffraction (XRD) and diffuse reflectance UV-visible spectroscopy (DRS-UV-vis) analysis of S/MSSiO2/Chi/Cp/Rib confirmed the presence of SPION nanoclusters on the silica surface (45% coverage). The wrapping of chitosan on the silica was confirmed with a Fourier transformed infrared (FTIR) stretching band at 670 cm−1 and ascribed to the amide group of the polymer. The surface charge by zetasizer and saturation magnetization by vibrating sample magnetometer (VSM) were found to be −15.3 mV and 8.4 emu/g. The dialysis membrane technique was used to study the Cp and Rib release between the tumor microenvironment and normal pH ranges from 5.5 to 7.4. S/MSSiO2/Chi formulation demonstrated pH-responsive Cp and Rib at acidic pH (5.6) and normal pH (7.4). Cp and Rib showed release of ~27% and ~17% at pH 5.6, which decreases to ~14% and ~3.2% at pH 7.4, respectively. To assess the compatibility and cytotoxic effect of our nanocomposites, the cell viability assay (MTT) was conducted on cancer lung cells A549 and normal HEK293 cells. Conclusions: The study shows that the designed nanoformulations with multifunctional capabilities are able to diffuse into the lung cells bound with dual drugs and the ACE-2 receptor. Full article
(This article belongs to the Special Issue Hybrid Nanoparticles for Cancer Therapy)
Show Figures

Figure 1

Back to TopTop