Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (599)

Search Parameters:
Keywords = pyramid optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1304 KB  
Article
Conv-ScaleNet: A Multiscale Convolutional Model for Federated Human Activity Recognition
by Xian Wu Ting, Ying Han Pang, Zheng You Lim, Shih Yin Ooi and Fu San Hiew
AI 2025, 6(9), 218; https://doi.org/10.3390/ai6090218 - 8 Sep 2025
Viewed by 1
Abstract
Background: Artificial Intelligence (AI) techniques have been extensively deployed in sensor-based Human Activity Recognition (HAR) systems. Recent advances in deep learning, especially Convolutional Neural Networks (CNNs), have advanced HAR by enabling automatic feature extraction from raw sensor data. However, these models often struggle [...] Read more.
Background: Artificial Intelligence (AI) techniques have been extensively deployed in sensor-based Human Activity Recognition (HAR) systems. Recent advances in deep learning, especially Convolutional Neural Networks (CNNs), have advanced HAR by enabling automatic feature extraction from raw sensor data. However, these models often struggle to capture multiscale patterns in human activity, limiting recognition accuracy. Additionally, traditional centralized learning approaches raise data privacy concerns, as personal sensor data must be transmitted to a central server, increasing the risk of privacy breaches. Methods: To address these challenges, this paper introduces Conv-ScaleNet, a CNN-based model designed for multiscale feature learning and compatibility with federated learning (FL) environments. Conv-ScaleNet integrates a Pyramid Pooling Module to extract both fine-grained and coarse-grained features and employs sequential Global Average Pooling layers to progressively capture abstract global representations from inertial sensor data. The model supports federated learning by training locally on user devices, sharing only model updates rather than raw data, thus preserving user privacy. Results: Experimental results demonstrate that the proposed Conv-ScaleNet achieves approximately 98% and 96% F1-scores on the WISDM and UCI-HAR datasets, respectively, confirming its competitiveness in FL environments for activity recognition. Conclusions: The proposed Conv-ScaleNet model addresses key limitations of existing HAR systems by combining multiscale feature learning with privacy-preserving training. Its strong performance, data protection capability, and adaptability to decentralized environments make it a robust and scalable solution for real-world HAR applications. Full article
Show Figures

Figure 1

19 pages, 11410 KB  
Article
A Pool Drowning Detection Model Based on Improved YOLO
by Wenhui Zhang, Lu Chen and Jianchun Shi
Sensors 2025, 25(17), 5552; https://doi.org/10.3390/s25175552 - 5 Sep 2025
Viewed by 578
Abstract
Drowning constitutes the leading cause of injury-related fatalities among adolescents. In swimming pool environments, traditional manual surveillance exhibits limitations, while existing technologies suffer from poor adaptability of wearable devices. Vision models based on YOLO still face challenges in edge deployment efficiency, robustness in [...] Read more.
Drowning constitutes the leading cause of injury-related fatalities among adolescents. In swimming pool environments, traditional manual surveillance exhibits limitations, while existing technologies suffer from poor adaptability of wearable devices. Vision models based on YOLO still face challenges in edge deployment efficiency, robustness in complex water conditions, and multi-scale object detection. To address these issues, we propose YOLO11-LiB, a drowning object detection model based on YOLO11n, featuring three key enhancements. First, we design the Lightweight Feature Extraction Module (LGCBlock), which integrates the Lightweight Attention Encoding Block (LAE) and effectively combines Ghost Convolution (GhostConv) with dynamic convolution (DynamicConv). This optimizes the downsampling structure and the C3k2 module in the YOLO11n backbone network, significantly reducing model parameters and computational complexity. Second, we introduce the Cross-Channel Position-aware Spatial Attention Inverted Residual with Spatial–Channel Separate Attention module (C2PSAiSCSA) into the backbone. This module embeds the Spatial–Channel Separate Attention (SCSA) mechanism within the Inverted Residual Mobile Block (iRMB) framework, enabling more comprehensive and efficient feature extraction. Finally, we redesign the neck structure as the Bidirectional Feature Fusion Network (BiFF-Net), which integrates the Bidirectional Feature Pyramid Network (BiFPN) and Frequency-Aware Feature Fusion (FreqFusion). The enhanced YOLO11-LiB model was validated against mainstream algorithms through comparative experiments, and ablation studies were conducted. Experimental results demonstrate that YOLO11-LiB achieves a drowning class mean average precision (DmAP50) of 94.1%, with merely 2.02 M parameters and a model size of 4.25 MB. This represents an effective balance between accuracy and efficiency, providing a high-performance solution for real-time drowning detection in swimming pool scenarios. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

25 pages, 20160 KB  
Article
A Robust Framework Fusing Visual SLAM and 3D Gaussian Splatting with a Coarse-Fine Method for Dynamic Region Segmentation
by Zhian Chen, Yaqi Hu and Yong Liu
Sensors 2025, 25(17), 5539; https://doi.org/10.3390/s25175539 - 5 Sep 2025
Viewed by 630
Abstract
Existing visual SLAM systems with neural representations excel in static scenes but fail in dynamic environments where moving objects degrade performance. To address this, we propose a robust dynamic SLAM framework combining classic geometric features for localization with learned photometric features for dense [...] Read more.
Existing visual SLAM systems with neural representations excel in static scenes but fail in dynamic environments where moving objects degrade performance. To address this, we propose a robust dynamic SLAM framework combining classic geometric features for localization with learned photometric features for dense mapping. Our method first tracks objects using instance segmentation and a Kalman filter. We then introduce a cascaded, coarse-to-fine strategy for efficient motion analysis: a lightweight sparse optical flow method performs a coarse screening, while a fine-grained dense optical flow clustering is selectively invoked for ambiguous targets. By filtering features on dynamic regions, our system drastically improves camera pose estimation, reducing Absolute Trajectory Error by up to 95% on dynamic TUM RGB-D sequences compared to ORB-SLAM3, and generates clean dense maps. The 3D Gaussian Splatting backend, optimized with a Gaussian pyramid strategy, ensures high-quality reconstruction. Validations on diverse datasets confirm our system’s robustness, achieving accurate localization and high-fidelity mapping in dynamic scenarios while reducing motion analysis computation by 91.7% over a dense-only approach. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Graphical abstract

23 pages, 1476 KB  
Article
Dynamically Optimized Object Detection Algorithms for Aviation Safety
by Yi Qu, Cheng Wang, Yilei Xiao, Haijuan Ju and Jing Wu
Electronics 2025, 14(17), 3536; https://doi.org/10.3390/electronics14173536 - 4 Sep 2025
Viewed by 341
Abstract
Infrared imaging technology demonstrates significant advantages in aviation safety monitoring due to its exceptional all-weather operational capability and anti-interference characteristics, particularly in scenarios requiring real-time detection of aerial objects such as airport airspace management. However, traditional infrared target detection algorithms face critical challenges [...] Read more.
Infrared imaging technology demonstrates significant advantages in aviation safety monitoring due to its exceptional all-weather operational capability and anti-interference characteristics, particularly in scenarios requiring real-time detection of aerial objects such as airport airspace management. However, traditional infrared target detection algorithms face critical challenges in complex sky backgrounds, including low signal-to-noise ratio (SNR), small target dimensions, and strong background clutter, leading to insufficient detection accuracy and reliability. To address these issues, this paper proposes the AFK-YOLO model based on the YOLO11 framework: it integrates an ADown downsampling module, which utilizes a dual-branch strategy combining average pooling and max pooling to effectively minimize feature information loss during spatial resolution reduction; introduces the KernelWarehouse dynamic convolution approach, which adopts kernel partitioning and a contrastive attention-based cross-layer shared kernel repository to address the challenge of linear parameter growth in conventional dynamic convolution methods; and establishes a feature decoupling pyramid network (FDPN) that replaces static feature pyramids with a dynamic multi-scale fusion architecture, utilizing parallel multi-granularity convolutions and an EMA attention mechanism to achieve adaptive feature enhancement. Experiments demonstrate that the AFK-YOLO model achieves 78.6% mAP on a self-constructed aerial infrared dataset—a 2.4 percentage point improvement over the baseline YOLO11—while meeting real-time requirements for aviation safety monitoring (416.7 FPS), reducing parameters by 6.9%, and compressing weight size by 21.8%. The results demonstrate the effectiveness of dynamic optimization methods in improving the accuracy and robustness of infrared target detection under complex aerial environments, thereby providing reliable technical support for the prevention of mid-air collisions. Full article
(This article belongs to the Special Issue Computer Vision and AI Algorithms for Diverse Scenarios)
Show Figures

Figure 1

20 pages, 2152 KB  
Article
EBiDNet: A Character Detection Algorithm for LCD Interfaces Based on an Improved DBNet Framework
by Kun Wang, Yinchuan Wu and Zhengguo Yan
Symmetry 2025, 17(9), 1443; https://doi.org/10.3390/sym17091443 - 3 Sep 2025
Viewed by 287
Abstract
Characters on liquid crystal display (LCD) interfaces often appear densely arranged, with complex image backgrounds and significant variations in target appearance, posing considerable challenges for visual detection. To improve the accuracy and robustness of character detection, this paper proposes an enhanced character detection [...] Read more.
Characters on liquid crystal display (LCD) interfaces often appear densely arranged, with complex image backgrounds and significant variations in target appearance, posing considerable challenges for visual detection. To improve the accuracy and robustness of character detection, this paper proposes an enhanced character detection algorithm based on the DBNet framework, named EBiDNet (EfficientNetV2 and BiFPN Enhanced DBNet). This algorithm integrates machine vision with deep learning techniques and introduces the following architectural optimizations. It employs EfficientNetV2-S, a lightweight, high-performance backbone network, to enhance feature extraction capability. Meanwhile, a bidirectional feature pyramid network (BiFPN) is introduced. Its distinctive symmetric design ensures balanced feature propagation in both top-down and bottom-up directions, thereby enabling more efficient multiscale contextual information fusion. Experimental results demonstrate that, compared with the original DBNet, the proposed EBiDNet achieves a 9.13% increase in precision and a 14.17% improvement in F1-score, while reducing the number of parameters by 17.96%. In summary, the proposed framework maintains lightweight design while achieving high accuracy and strong robustness under complex conditions. Full article
(This article belongs to the Special Issue Symmetry and Its Applications in Computer Vision)
Show Figures

Figure 1

22 pages, 1243 KB  
Article
ProCo-NET: Progressive Strip Convolution and Frequency- Optimized Framework for Scale-Gradient-Aware Semantic Segmentation in Off-Road Scenes
by Zihang Liu, Donglin Jing and Chenxiang Ji
Symmetry 2025, 17(9), 1428; https://doi.org/10.3390/sym17091428 - 2 Sep 2025
Viewed by 346
Abstract
In off-road scenes, segmentation targets exhibit significant scale progression due to perspective depth effects from oblique viewing angles, meaning that the size of the same target undergoes continuous, boundary-less progressive changes along a specific direction. This asymmetric variation disrupts the geometric symmetry of [...] Read more.
In off-road scenes, segmentation targets exhibit significant scale progression due to perspective depth effects from oblique viewing angles, meaning that the size of the same target undergoes continuous, boundary-less progressive changes along a specific direction. This asymmetric variation disrupts the geometric symmetry of targets, causing traditional segmentation networks to face three key challenges: (1) inefficientcapture of continuous-scale features, where pyramid structures and multi-scale kernels struggle to balance computational efficiency with sufficient coverage of progressive scales; (2) degraded intra-class feature consistency, where local scale differences within targets induce semantic ambiguity; and (3) loss of high-frequency boundary information, where feature sampling operations exacerbate the blurring of progressive boundaries. To address these issues, this paper proposes the ProCo-NET framework for systematic optimization. Firstly, a Progressive Strip Convolution Group (PSCG) is designed to construct multi-level receptive field expansion through orthogonally oriented strip convolution cascading (employing symmetric processing in horizontal/vertical directions) integrated with self-attention mechanisms, enhancing perception capability for asymmetric continuous-scale variations. Secondly, an Offset-Frequency Cooperative Module (OFCM) is developed wherein a learnable offset generator dynamically adjusts sampling point distributions to enhance intra-class consistency, while a dual-channel frequency domain filter performs adaptive high-pass filtering to sharpen target boundaries. These components synergistically solve feature consistency degradation and boundary ambiguity under asymmetric changes. Experiments show that this framework significantly improves the segmentation accuracy and boundary clarity of multi-scale targets in off-road scene segmentation tasks: it achieves 71.22% MIoU on the standard RUGD dataset (0.84% higher than the existing optimal method) and 83.05% MIoU on the Freiburg_Forest dataset. Among them, the segmentation accuracy of key obstacle categories is significantly improved to 52.04% (2.7% higher than the sub-optimal model). This framework effectively compensates for the impact of asymmetric deformation through a symmetric computing mechanism. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

20 pages, 7201 KB  
Article
Thin-Layer Siliceous Dolomite Prediction Based on Post-Stack Seismic Data Mining and Optimization
by Shimin Liu, Lu Zhou, Baoshou Zhang, Ruixue Dai, Peng Lu, Changxingyue He, Yong Wu and Chunyong Ni
Appl. Sci. 2025, 15(17), 9631; https://doi.org/10.3390/app15179631 - 1 Sep 2025
Viewed by 277
Abstract
Siliceous dolomite is developed at the top of the fourth member of Dengying Formation in Penglai gas field, Sichuan Province, and can be used as a good cap rock to seal oil and gas. In this study, based on post-stack seismic data mining [...] Read more.
Siliceous dolomite is developed at the top of the fourth member of Dengying Formation in Penglai gas field, Sichuan Province, and can be used as a good cap rock to seal oil and gas. In this study, based on post-stack seismic data mining and optimization, sensitive logging curve analysis is found to be the optimal prediction method, subdividing small layers to finely characterize thin-layer siliceous dolomite. It is found that the navigation-pyramid two-stage classification seismic data and the waveform indication simulation method based on RXO parameters have a good recognition effect on the characterization of thin-layer siliceous dolomite. Studies have shown that faults can provide ascending channels for deep silicon-rich hydrothermal fluids, resulting in the development of siliceous dolomite mostly near the fault zone. The siliceous dolomite in the upper sub-member of the fourth member of Dengying Formation in Penglai area mainly develops two sets of siliceous dolomite in the vertical direction, and the lower siliceous rock develops on a larger scale. In the lateral direction, it is mainly distributed in the JT1-PS7-P8-PS9 well area in the north, in a continuous sheet shape. In the south, the development scale of siliceous dolomite is small and distributed in the shape of a strip. Full article
(This article belongs to the Special Issue Advances in Reservoir Geology and Exploration and Exploitation)
Show Figures

Figure 1

17 pages, 16767 KB  
Article
AeroLight: A Lightweight Architecture with Dynamic Feature Fusion for High-Fidelity Small-Target Detection in Aerial Imagery
by Hao Qiu, Xiaoyan Meng, Yunjie Zhao, Liang Yu and Shuai Yin
Sensors 2025, 25(17), 5369; https://doi.org/10.3390/s25175369 - 30 Aug 2025
Viewed by 544
Abstract
Small-target detection in Unmanned Aerial Vehicle (UAV) aerial images remains a significant and unresolved challenge in aerial image analysis, hampered by low target resolution, dense object clustering, and complex, cluttered backgrounds. In order to cope with these problems, we present AeroLight, a novel [...] Read more.
Small-target detection in Unmanned Aerial Vehicle (UAV) aerial images remains a significant and unresolved challenge in aerial image analysis, hampered by low target resolution, dense object clustering, and complex, cluttered backgrounds. In order to cope with these problems, we present AeroLight, a novel and efficient detection architecture that achieves high-fidelity performance in resource-constrained environments. AeroLight is built upon three key innovations. First, we have optimized the feature pyramid at the architectural level by integrating a high-resolution head specifically designed for minute object detection. This design enhances sensitivity to fine-grained spatial details while streamlining redundant and computationally expensive network layers. Second, a Dynamic Feature Fusion (DFF) module is proposed to adaptively recalibrate and merge multi-scale feature maps, mitigating information loss during integration and strengthening object representation across diverse scales. Finally, we enhance the localization precision of irregular-shaped objects by refining bounding box regression using a Shape-IoU loss function. AeroLight is shown to improve mAP50 and mAP50-95 by 7.5% and 3.3%, respectively, on the VisDrone2019 dataset, while reducing the parameter count by 28.8% when compared with the baseline model. Further validation on the RSOD dataset and Huaxing Farm Drone dataset confirms its superior performance and generalization capabilities. AeroLight provides a powerful and efficient solution for real-world UAV applications, setting a new standard for lightweight, high-precision object recognition in aerial imaging scenarios. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

25 pages, 73925 KB  
Article
Attention-Guided Edge-Optimized Network for Real-Time Detection and Counting of Pre-Weaning Piglets in Farrowing Crates
by Ning Kong, Tongshuai Liu, Guoming Li, Lei Xi, Shuo Wang and Yuepeng Shi
Animals 2025, 15(17), 2553; https://doi.org/10.3390/ani15172553 - 30 Aug 2025
Viewed by 364
Abstract
Accurate, real-time, and cost-effective detection and counting of pre-weaning piglets are critical for improving piglet survival rates. However, achieving this remains technically challenging due to high computational demands, frequent occlusion, social behaviors, and cluttered backgrounds in commercial farming environments. To address these challenges, [...] Read more.
Accurate, real-time, and cost-effective detection and counting of pre-weaning piglets are critical for improving piglet survival rates. However, achieving this remains technically challenging due to high computational demands, frequent occlusion, social behaviors, and cluttered backgrounds in commercial farming environments. To address these challenges, this study proposes a lightweight and attention-enhanced piglet detection and counting network based on an improved YOLOv8n architecture. The design includes three key innovations: (i) the standard C2f modules in the backbone were replaced with an efficient novel Multi-Scale Spatial Pyramid Attention (MSPA) module to enhance the multi-scale feature representation while a maintaining low computational cost; (ii) an improved Gather-and-Distribute (GD) mechanism was incorporated into the neck to facilitate feature fusion and accelerate inference; and (iii) the detection head and the sample assignment strategy were optimized to align the classification and localization tasks better, thereby improving the overall performance. Experiments on the custom dataset demonstrated the model’s superiority over state-of-the-art counterparts, achieving 88.5% precision and a 93.8% mAP0.5. Furthermore, ablation studies showed that the model reduced the parameters, floating point operations (FLOPs), and model size by 58.45%, 46.91% and 56.45% compared to those of the baseline YOLOv8n, respectively, while achieving a 2.6% improvement in the detection precision and a 4.41% reduction in the counting MAE. The trained model was deployed on a Raspberry Pi 4B with ncnn to verify the effectiveness of the lightweight design, reaching an average inference speed of <87 ms per image. These findings confirm that the proposed method offers a practical, scalable solution for intelligent pig farming, combining a high accuracy, efficiency, and real-time performance in resource-limited environments. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

15 pages, 1690 KB  
Article
OTB-YOLO: An Enhanced Lightweight YOLO Architecture for UAV-Based Maize Tassel Detection
by Yu Han, Xingya Wang, Luyan Niu, Song Shi, Yingbo Gao, Kuijie Gong, Xia Zhang and Jiye Zheng
Plants 2025, 14(17), 2701; https://doi.org/10.3390/plants14172701 - 29 Aug 2025
Viewed by 438
Abstract
To tackle the challenges posed by substantial variations in target scale, intricate background interference, and the likelihood of missing small targets in multi-temporal UAV maize tassel imagery, an optimized lightweight detection model derived from YOLOv11 is introduced, named OTB-YOLO. Here, “OTB” is an [...] Read more.
To tackle the challenges posed by substantial variations in target scale, intricate background interference, and the likelihood of missing small targets in multi-temporal UAV maize tassel imagery, an optimized lightweight detection model derived from YOLOv11 is introduced, named OTB-YOLO. Here, “OTB” is an acronym derived from the initials of the model’s core improved modules: Omni-dimensional dynamic convolution (ODConv), Triplet Attention, and Bi-directional Feature Pyramid Network (BiFPN). This model integrates the PaddlePaddle open-source maize tassel recognition benchmark dataset with the public Multi-Temporal Drone Corn Dataset (MTDC). Traditional convolutional layers are substituted with omni-dimensional dynamic convolution (ODConv) to mitigate computational redundancy. A triplet attention module is incorporated to refine feature extraction within the backbone network, while a bidirectional feature pyramid network (BiFPN) is engineered to enhance accuracy via multi-level feature pyramids and bidirectional information flow. Empirical analysis demonstrates that the enhanced model achieves a precision of 95.6%, recall of 92.1%, and mAP@0.5 of 96.6%, marking improvements of 3.2%, 2.5%, and 3.1%, respectively, over the baseline model. Concurrently, the model’s computational complexity is reduced to 6.0 GFLOPs, rendering it appropriate for deployment on UAV edge computing platforms. Full article
Show Figures

Figure 1

26 pages, 23082 KB  
Article
SPyramidLightNet: A Lightweight Shared Pyramid Network for Efficient Underwater Debris Detection
by Yi Luo and Osama Eljamal
Appl. Sci. 2025, 15(17), 9404; https://doi.org/10.3390/app15179404 - 27 Aug 2025
Viewed by 382
Abstract
Underwater debris detection plays a crucial role in marine environmental protection. However, existing object detection algorithms generally suffer from excessive model complexity and insufficient detection accuracy, making it difficult to meet the real-time detection requirements in resource-constrained underwater environments. To address this challenge, [...] Read more.
Underwater debris detection plays a crucial role in marine environmental protection. However, existing object detection algorithms generally suffer from excessive model complexity and insufficient detection accuracy, making it difficult to meet the real-time detection requirements in resource-constrained underwater environments. To address this challenge, this paper proposes a novel lightweight object detection network named the Shared Pyramid Lightweight Network (SPyramidLightNet). The network adopts an improved architecture based on YOLOv11 and achieves an optimal balance between detection performance and computational efficiency by integrating three core innovative modules. First, the Split–Merge Attention Block (SMAB) employs a dynamic kernel selection mechanism and split–merge strategy, significantly enhancing feature representation capability through adaptive multi-scale feature fusion. Second, the C3 GroupNorm Detection Head (C3GNHead) introduces a shared convolution mechanism and GroupNorm normalization strategy, substantially reducing the computational complexity of the detection head while maintaining detection accuracy. Finally, the Shared Pyramid Convolution (SPyramidConv) replaces traditional pooling operations with a parameter-sharing multi-dilation-rate convolution architecture, achieving more refined and efficient multi-scale feature aggregation. Extensive experiments on underwater debris datasets demonstrate that SPyramidLightNet achieves 0.416 on the mAP@0.5:0.95 metric, significantly outperforming mainstream algorithms including Faster-RCNN, SSD, RT-DETR, and the YOLO series. Meanwhile, compared to the baseline YOLOv11, the proposed algorithm achieves an 11.8% parameter compression and a 17.5% computational complexity reduction, with an inference speed reaching 384 FPS, meeting the stringent requirements for real-time detection. Ablation experiments and visualization analyses further validate the effectiveness and synergistic effects of each core module. This research provides important theoretical guidance for the design of lightweight object detection algorithms and lays a solid foundation for the development of automated underwater debris recognition and removal technologies. Full article
Show Figures

Figure 1

30 pages, 10140 KB  
Article
High-Accuracy Cotton Field Mapping and Spatiotemporal Evolution Analysis of Continuous Cropping Using Multi-Source Remote Sensing Feature Fusion and Advanced Deep Learning
by Xiao Zhang, Zenglu Liu, Xuan Li, Hao Bao, Nannan Zhang and Tiecheng Bai
Agriculture 2025, 15(17), 1814; https://doi.org/10.3390/agriculture15171814 - 25 Aug 2025
Viewed by 450
Abstract
Cotton is a globally strategic crop that plays a crucial role in sustaining national economies and livelihoods. To address the challenges of accurate cotton field extraction in the complex planting environments of Xinjiang’s Alaer reclamation area, a cotton field identification model was developed [...] Read more.
Cotton is a globally strategic crop that plays a crucial role in sustaining national economies and livelihoods. To address the challenges of accurate cotton field extraction in the complex planting environments of Xinjiang’s Alaer reclamation area, a cotton field identification model was developed that integrates multi-source satellite remote sensing data with machine learning methods. Using imagery from Sentinel-2, GF-1, and Landsat 8, we performed feature fusion using principal component, Gram–Schmidt (GS), and neural network techniques. Analyses of spectral, vegetation, and texture features revealed that the GS-fused blue bands of Sentinel-2 and Landsat 8 exhibited optimal performance, with a mean value of 16,725, a standard deviation of 2290, and an information entropy of 8.55. These metrics improved by 10,529, 168, and 0.28, respectively, compared with the original Landsat 8 data. In comparative classification experiments, the endmember-based random forest classifier (RFC) achieved the best traditional classification performance, with a kappa value of 0.963 and an overall accuracy (OA) of 97.22% based on 250 samples, resulting in a cotton-field extraction error of 38.58 km2. By enhancing the deep learning model, we proposed a U-Net architecture that incorporated a Convolutional Block Attention Module and Atrous Spatial Pyramid Pooling. Using the GS-fused blue band data, the model achieved significantly improved accuracy, with a kappa coefficient of 0.988 and an OA of 98.56%. This advancement reduced the area estimation error to 25.42 km2, representing a 34.1% decrease compared with that of the RFC. Based on the optimal model, we constructed a digital map of continuous cotton cropping from 2021 to 2023, which revealed a consistent decline in cotton acreage within the reclaimed areas. This finding underscores the effectiveness of crop rotation policies in mitigating the adverse effects of large-scale monoculture practices. This study confirms that the synergistic integration of multi-source satellite feature fusion and deep learning significantly improves crop identification accuracy, providing reliable technical support for agricultural policy formulation and sustainable farmland management. Full article
(This article belongs to the Special Issue Computers and IT Solutions for Agriculture and Their Application)
Show Figures

Figure 1

39 pages, 4783 KB  
Article
Sparse-MoE-SAM: A Lightweight Framework Integrating MoE and SAM with a Sparse Attention Mechanism for Plant Disease Segmentation in Resource-Constrained Environments
by Benhan Zhao, Xilin Kang, Hao Zhou, Ziyang Shi, Lin Li, Guoxiong Zhou, Fangying Wan, Jiangzhang Zhu, Yongming Yan, Leheng Li and Yulong Wu
Plants 2025, 14(17), 2634; https://doi.org/10.3390/plants14172634 - 24 Aug 2025
Viewed by 422
Abstract
Plant disease segmentation has achieved significant progress with the help of artificial intelligence. However, deploying high-accuracy segmentation models in resource-limited settings faces three key challenges, as follows: (A) Traditional dense attention mechanisms incur quadratic computational complexity growth (O(n2d)), rendering [...] Read more.
Plant disease segmentation has achieved significant progress with the help of artificial intelligence. However, deploying high-accuracy segmentation models in resource-limited settings faces three key challenges, as follows: (A) Traditional dense attention mechanisms incur quadratic computational complexity growth (O(n2d)), rendering them ill-suited for low-power hardware. (B) Naturally sparse spatial distributions and large-scale variations in the lesions on leaves necessitate models that concurrently capture long-range dependencies and local details. (C) Complex backgrounds and variable lighting in field images often induce segmentation errors. To address these challenges, we propose Sparse-MoE-SAM, an efficient framework based on an enhanced Segment Anything Model (SAM). This deep learning framework integrates sparse attention mechanisms with a two-stage mixture of experts (MoE) decoder. The sparse attention dynamically activates key channels aligned with lesion sparsity patterns, reducing self-attention complexity while preserving long-range context. Stage 1 of the MoE decoder performs coarse-grained boundary localization; Stage 2 achieves fine-grained segmentation by leveraging specialized experts within the MoE, significantly enhancing edge discrimination accuracy. The expert repository—comprising standard convolutions, dilated convolutions, and depthwise separable convolutions—dynamically routes features through optimized processing paths based on input texture and lesion morphology. This enables robust segmentation across diverse leaf textures and plant developmental stages. Further, we design a sparse attention-enhanced Atrous Spatial Pyramid Pooling (ASPP) module to capture multi-scale contexts for both extensive lesions and small spots. Evaluations on three heterogeneous datasets (PlantVillage Extended, CVPPP, and our self-collected field images) show that Sparse-MoE-SAM achieves a mean Intersection-over-Union (mIoU) of 94.2%—surpassing standard SAM by 2.5 percentage points—while reducing computational costs by 23.7% compared to the original SAM baseline. The model also demonstrates balanced performance across disease classes and enhanced hardware compatibility. Our work validates that integrating sparse attention with MoE mechanisms sustains accuracy while drastically lowering computational demands, enabling the scalable deployment of plant disease segmentation models on mobile and edge devices. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

19 pages, 4580 KB  
Article
Rapidly Dissolving Microneedles Incorporating Lidocaine Hydrochloride: A PVP/PVA-Based Approach for Local Anesthesia
by Su Young Jin, Eugene Jae-Jin Park, Sae Min Kwon, Hyoung-Seok Jung and Dong Wuk Kim
Pharmaceutics 2025, 17(9), 1100; https://doi.org/10.3390/pharmaceutics17091100 - 23 Aug 2025
Viewed by 635
Abstract
Background/Objectives: Lidocaine is a widely used local anesthetic, but injections and topical creams are often painful or slow in onset. This study aimed to develop dissolving microneedles incorporating lidocaine hydrochloride for rapid and convenient local anesthesia. Methods: Six formulations were prepared with polyvinylpyrrolidone [...] Read more.
Background/Objectives: Lidocaine is a widely used local anesthetic, but injections and topical creams are often painful or slow in onset. This study aimed to develop dissolving microneedles incorporating lidocaine hydrochloride for rapid and convenient local anesthesia. Methods: Six formulations were prepared with polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) and evaluated for mechanical strength, skin insertion, drug release, and transdermal permeability. Results: Sharp pyramidal microneedles were successfully fabricated, with PVP–PVA mixtures producing stronger needles than single polymers. The optimized F5 formulation showed high strength (>32 N), efficient skin insertion (four parafilm layers), and rapid release (>80% within 15 min). In ex vivo studies, F5 delivered >600 µg/mL lidocaine in 15 min, over three times the therapeutic level and much faster than Emla cream (5%). Conclusions: PVP–PVA microneedles represent a promising platform for painless, rapid local anesthesia, combining the benefits of injections and topical creams while minimizing their drawbacks. Full article
Show Figures

Graphical abstract

29 pages, 23079 KB  
Article
An Aircraft Skin Defect Detection Method with UAV Based on GB-CPP and INN-YOLO
by Jinhong Xiong, Peigen Li, Yi Sun, Jinwu Xiang and Haiting Xia
Drones 2025, 9(9), 594; https://doi.org/10.3390/drones9090594 - 22 Aug 2025
Viewed by 320
Abstract
To address the problems of low coverage rate and low detection accuracy in UAV-based aircraft skin defect detection under complex real-world conditions, this paper proposes a method combining a Greedy-based Breadth-First Search Coverage Path Planning (GB-CPP) approach with an improved YOLOv11 architecture (INN-YOLO). [...] Read more.
To address the problems of low coverage rate and low detection accuracy in UAV-based aircraft skin defect detection under complex real-world conditions, this paper proposes a method combining a Greedy-based Breadth-First Search Coverage Path Planning (GB-CPP) approach with an improved YOLOv11 architecture (INN-YOLO). GB-CPP generates collision-free, near-optimal flight paths on the 3D aircraft surface using a discrete grid map. INN-YOLO enhances detection capability by reconstructing the neck with the BiFPN (Bidirectional Feature Pyramid Network) for better feature fusion, integrating the SimAM (Simple Attention Mechanism) with convolution for efficient small-target extraction, as well as employing RepVGG within the C3k2 layer to improve feature learning and speed. The model is deployed on a Jetson Nano for real-time edge inference. Results show that GB-CPP achieves 100% surface coverage with a redundancy rate not exceeding 6.74%. INN-YOLO was experimentally validated on three public datasets (10,937 images) and a self-collected dataset (1559 images), achieving mAP@0.5 scores of 42.30%, 84.10%, 56.40%, and 80.30%, representing improvements of 10.70%, 2.50%, 3.20%, and 6.70% over the baseline models, respectively. The proposed GB-CPP and INN-YOLO framework enables efficient, high-precision, and real-time UAV-based aircraft skin defect detection. Full article
(This article belongs to the Section Artificial Intelligence in Drones (AID))
Show Figures

Figure 1

Back to TopTop