Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = pyranopyrazoles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10170 KB  
Article
Discovery of Pyrano[2,3-c]pyrazole Derivatives as Novel Potential Human Coronavirus Inhibitors: Design, Synthesis, In Silico, In Vitro, and ADME Studies
by Abdou K. Allayeh, Aliaa H. El-boghdady, Mohamed A. Said, Mahmoud G. A. Saleh, Mohammed T. Abdel-Aal and Mohamed G. Abouelenein
Pharmaceuticals 2024, 17(2), 198; https://doi.org/10.3390/ph17020198 - 2 Feb 2024
Cited by 20 | Viewed by 4022
Abstract
The SARS-CoV-2 pandemic at the end of 2019 had major worldwide health and economic consequences. Until effective vaccination approaches were created, the healthcare sectors endured a shortage of operative treatments that might prevent the infection’s spread. As a result, academia and the pharmaceutical [...] Read more.
The SARS-CoV-2 pandemic at the end of 2019 had major worldwide health and economic consequences. Until effective vaccination approaches were created, the healthcare sectors endured a shortage of operative treatments that might prevent the infection’s spread. As a result, academia and the pharmaceutical industry prioritized the development of SARS-CoV2 antiviral medication. Pyranopyrazoles have been shown to play a prominent function in pharmaceutical chemistry and drug sighting because of their significant bioactive properties. We provide herein a novel sequence of pyranopyrazoles and their annulated systems whose antiviral efficacy and cytotoxicity were explored versus human coronavirus 229E (HCoV-229E) Vero-E6 cell lines as a model for the Coronaviridae family. Fifteen synthetic congeners pointed out miscellaneous antiviral efficacies against HCoV-229E with variable inhibition degrees. Compound 18 showed a high selectivity index (SI = 12.6) that established spectacular inhibitory capacity against human coronavirus 229E. Compounds 6, 7, and 14 exposed moderate efficacies. Compounds 6, 7, 14, and 18 exhibited substantial antiviral action through the replication phase with reduction percentages extending from 53.6%, 60.7%, and 55% to 82.2%, correspondingly. Likewise, when assessed to the positive control tipranavir (88.6%), the inhibitory efficiency of compounds 6, 7, 14, and 18 versus the SARS-CoV2 Mpro provided high percentages of 80.4%, 73.1%, 81.4% and up to 84.5%, respectively. In silico studies were performed to investigate further the biological activity and the target compounds’ physical and chemical features, including molecular dynamic (MD) simulations, protein–ligand docking, ADME studies, and density functional theory (DFT) calculations. These inquiries demonstrated that this series of metabolically stable pyranopyrazoles and their annulated systems are effective human coronavirus inhibitors that inhibit the viral Mpro protein and may have emerged as a novel COVID-19 curative option. Full article
Show Figures

Figure 1

19 pages, 7627 KB  
Article
Nano-Zirconium Dioxide Catalyzed Multicomponent Synthesis of Bioactive Pyranopyrazoles That Target Cyclin Dependent Kinase 1 in Human Breast Cancer Cells
by Basappa Basappa, Lisha K. Poonacha, Zhang Xi, Divakar Vishwanath, Ji-Rui Yang, Omantheswara Nagaraja, Ananda Swamynayaka, Mahendra Madegowda, Arunachalam Chinnathambi, Sulaiman Ali Alharbi, Doddahosuru Mahadevappa Gurudatt, Vijay Pandey, Nanjundaswamy Shivananju, Kwang Seok Ahn, Gautam Sethi, Peter E. Lobie and Priya Babu Shubha
Biomedicines 2023, 11(1), 172; https://doi.org/10.3390/biomedicines11010172 - 10 Jan 2023
Cited by 6 | Viewed by 3151
Abstract
Small molecules are being used to inhibit cyclin dependent kinase (CDK) enzymes in cancer treatment. There is evidence that CDK is a drug-target for cancer therapy across many tumor types because it catalyzes the transfer of the terminal phosphate of ATP to a [...] Read more.
Small molecules are being used to inhibit cyclin dependent kinase (CDK) enzymes in cancer treatment. There is evidence that CDK is a drug-target for cancer therapy across many tumor types because it catalyzes the transfer of the terminal phosphate of ATP to a protein that acts as a substrate. Herein, the identification of pyranopyrazoles that were CDK inhibitors was attempted, whose synthesis was catalyzed by nano-zirconium dioxide via multicomponent reaction. Additionally, we performed an in-situ analysis of the intermediates of multicomponent reactions, for the first-time, which revealed that nano-zirconium dioxide stimulated the reaction, as estimated by Gibbs free energy calculations of spontaneity. Functionally, the novel pyranopyrazoles were tested for a loss of cell viability using human breast cancer cells (MCF-7). It was observed that compounds 5b and 5f effectively produced loss of viability of MCF-7 cells with IC50 values of 17.83 and 23.79 µM, respectively. In vitro and in silico mode-of-action studies showed that pyranopyrazoles target CDK1 in human breast cancer cells, with lead compounds 5b and 5f having potent IC50 values of 960 nM and 7.16 μM, respectively. Hence, the newly synthesized bioactive pyranopyrazoles could serve as better structures to develop CDK1 inhibitors against human breast cancer cells. Full article
Show Figures

Graphical abstract

17 pages, 10252 KB  
Proceeding Paper
Graphitic Carbon Nitride-Supported L-Arginine: Synthesis, Charachterization, and Catalytic Activity in Multi-Component Reactions
by Fatemeh Bijari, Maryam Talebi, Hossein Ghafuri, Zeinab Tajik and Peyman Hanifehnejad
Chem. Proc. 2022, 12(1), 50; https://doi.org/10.3390/ecsoc-26-13708 - 18 Nov 2022
Cited by 2 | Viewed by 2321
Abstract
Graphitic carbon nitride-supported L-arginine (g-C3N4@L-arginine) has been prepared as a heterogeneous catalyst for synthesizing heterocyclic compounds such as pyranopyrazole and acridinedione derivatives. High efficiency, short reaction time, and easy separation are significant features that are reasons for using g-C [...] Read more.
Graphitic carbon nitride-supported L-arginine (g-C3N4@L-arginine) has been prepared as a heterogeneous catalyst for synthesizing heterocyclic compounds such as pyranopyrazole and acridinedione derivatives. High efficiency, short reaction time, and easy separation are significant features that are reasons for using g-C3N4@L-arginine as a catalyst in one-pot multicomponent reactions. Synthesized nanocatalyst was detected by numerous analyses, such as FE-SEM (Field Emission Scanning Electron Microscopy), EDX (Energy Dispersive X-ray spectroscopy), XRD (X-Ray Diffraction analysis), TGA (Thermo Gravimetric Analysis), and FT-IR (Fourier Transform Infrared Spectroscopy). G-C3N4@L-arginine nanocatalyst was reused 5 times in the reaction with no apparent decrease in reaction yield, which shows acceptable recyclability. Full article
Show Figures

Figure 1

32 pages, 39102 KB  
Review
Advances in Pyranopyrazole Scaffolds’ Syntheses Using Sustainable Catalysts—A Review
by Ravi Kumar Ganta, Nagaraju Kerru, Suresh Maddila and Sreekantha B. Jonnalagadda
Molecules 2021, 26(11), 3270; https://doi.org/10.3390/molecules26113270 - 28 May 2021
Cited by 52 | Viewed by 6588
Abstract
Heterogeneous catalysis plays a crucial role in many chemical processes, including advanced organic preparations and the design and synthesis of new organic moieties. Efficient and sustainable catalysts are vital to ecological and fiscal viability. This is why green multicomponent reaction (MCR) approaches have [...] Read more.
Heterogeneous catalysis plays a crucial role in many chemical processes, including advanced organic preparations and the design and synthesis of new organic moieties. Efficient and sustainable catalysts are vital to ecological and fiscal viability. This is why green multicomponent reaction (MCR) approaches have gained prominence. Owing to a broad range of pharmacological applications, pyranopyrazole syntheses (through the one-pot strategy, employing sustainable heterogeneous catalysts) have received immense attention. This review aimed to emphasise recent developments in synthesising nitrogen-based fused heterocyclic ring frameworks, exploring diverse recyclable catalysts. The article focused on the synthetic protocols used between 2010 and 2020 using different single, bi- and tri-metallic materials and nanocomposites as reusable catalysts. This review designated the catalysts’ efficacy and activity in product yields, reaction time, and reusability. The MCR green methodologies (in conjunction with recyclable catalyst materials) proved eco-friendly and ideal, with a broad scope that could feasibly lead to advancements in organic synthesis. Full article
Show Figures

Figure 1

6 pages, 902 KB  
Abstract
Magnetized Dextrin: Eco-Friendly Effective Nanocatalyst for the Synthesis of Dihydropyrano[2,3-c]pyrazole Derivatives
by Zeinab Amiri-Khamakani, Fereshte Hassanzadeh-Afruzi and Ali Maleki
Chem. Proc. 2021, 3(1), 101; https://doi.org/10.3390/ecsoc-24-08285 - 14 Nov 2020
Cited by 7 | Viewed by 2213
Abstract
Dextrin is a water soluble polysaccharide obtained by hydrolysis of starch and glycogen. This low molecular weight biopolymer with valuable properties such as biodegradability, biocompatibility, good availability, and high reactivity can be an appropriate substance to fabricate the environmentally friendly catalysts. The magnetized [...] Read more.
Dextrin is a water soluble polysaccharide obtained by hydrolysis of starch and glycogen. This low molecular weight biopolymer with valuable properties such as biodegradability, biocompatibility, good availability, and high reactivity can be an appropriate substance to fabricate the environmentally friendly catalysts. The magnetized dextrin was prepared via facile co-precipitation procedure of iron salts in the presences of dextrin under alkaline condition. Then, it was characterized by different conventional analyses. Eventually, the catalytic application of obtained nanocomposite was evaluated for the synthesis dihydropyrano[2,3-c]pyrazole derivatives through multicomponent reaction of hydrazine hydrate, ethyl acetoacetate, aromatic aldehydes, and malononitrile. Biocompatible nanocatalyst, simple procedure, short reaction times, and catalyst reusability after four consecutive runs with negligible decrease in catalytic efficiency are some merits of the presented method. Full article
Show Figures

Figure 1

33 pages, 6952 KB  
Review
Merged Tacrine-Based, Multitarget-Directed Acetylcholinesterase Inhibitors 2015–Present: Synthesis and Biological Activity
by Todd J. Eckroat, Danielle L. Manross and Seth C. Cowan
Int. J. Mol. Sci. 2020, 21(17), 5965; https://doi.org/10.3390/ijms21175965 - 19 Aug 2020
Cited by 42 | Viewed by 5360
Abstract
Acetylcholinesterase is an important biochemical enzyme in that it controls acetylcholine-mediated neuronal transmission in the central nervous system, contains a unique structure with two binding sites connected by a gorge region, and it has historically been the main pharmacological target for treatment of [...] Read more.
Acetylcholinesterase is an important biochemical enzyme in that it controls acetylcholine-mediated neuronal transmission in the central nervous system, contains a unique structure with two binding sites connected by a gorge region, and it has historically been the main pharmacological target for treatment of Alzheimer’s disease. Given the large projected increase in Alzheimer’s disease cases in the coming decades and its complex, multifactorial nature, new drugs that target multiple aspects of the disease at once are needed. Tacrine, the first acetylcholinesterase inhibitor used clinically but withdrawn due to hepatotoxicity concerns, remains an important starting point in research for the development of multitarget-directed acetylcholinesterase inhibitors. This review highlights tacrine-based, multitarget-directed acetylcholinesterase inhibitors published in the literature since 2015 with a specific focus on merged compounds (i.e., compounds where tacrine and a second pharmacophore show significant overlap in structure). The synthesis of these compounds from readily available starting materials is discussed, along with acetylcholinesterase inhibition data, relative to tacrine, and structure activity relationships. Where applicable, molecular modeling, to elucidate key enzyme-inhibitor interactions, and secondary biological activity is highlighted. Of the numerous compounds identified, there is a subset with promising preliminary screening results, which should inspire further development and future research in this field. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

5 pages, 350 KB  
Proceeding Paper
Halloysite Nanotubes Modified by Chitosan as an Efficient and Eco-Friendly Heterogeneous Nanocatalyst for the Synthesis of Heterocyclic Compounds
by Diana Fallah Jelodar, Zoleikha Hajizadeh and Ali Maleki
Proceedings 2019, 41(1), 59; https://doi.org/10.3390/ecsoc-23-06615 - 14 Nov 2019
Cited by 1 | Viewed by 1585
Abstract
In this study, halloysite nanotubes (HNTs) are modified by chitosan as a natural cationic amino polysaccharide. Halloysite nanotubes/chitosan (HNTs/Chit) were characterized by Fourier transform infrared (FT-IR) spectroscopy and energy dispersive X-ray (EDX) analysis. Also, its performance as a heterogeneous catalyst was investigated in [...] Read more.
In this study, halloysite nanotubes (HNTs) are modified by chitosan as a natural cationic amino polysaccharide. Halloysite nanotubes/chitosan (HNTs/Chit) were characterized by Fourier transform infrared (FT-IR) spectroscopy and energy dispersive X-ray (EDX) analysis. Also, its performance as a heterogeneous catalyst was investigated in the synthesis of pyranopyrazole derivatives. Being a reusable and easily recoverable catalyst, eco-friendliness, high efficiency, and mild reaction conditions are some advantages of the present work. Full article
Show Figures

Figure 1

13 pages, 1014 KB  
Article
Novel Pyranopyrazoles: Synthesis and Theoretical Studies
by Ahmed A. Al-Amiery, Redah I. Al-Bayati, Fouad M. Saed, Wassan B. Ali, Abdul Amir H. Kadhum and Abu Bakar Mohamad
Molecules 2012, 17(9), 10377-10389; https://doi.org/10.3390/molecules170910377 - 30 Aug 2012
Cited by 35 | Viewed by 6533
Abstract
A series of pyranopyrazoles, namely, 7-(2-aminoethyl)-3,4-dimethyl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-6(7H)-one (2), (Z)-3,4-dimethyl-1-(4-((4-nitrobenzylidene)amino)phenyl)pyrano[2,3-c]pyrazol-6(1H)-one (5), 1-(4-(3,4-dimethyl-6-oxopyrano[2,3-c]pyrazol-1(6H)-yl)phenyl)-3-(naphthalen-1-yl)urea (6), (Z)-ethyl 4-((3,4-dimethyl-6-oxo-1,6-dihydropyrano[2,3-c]pyrazol-5-yl)diazenyl)benzoate (8) and 3,4-dimethyl-N-(naphthalen-1-yl)-6-oxopyrano[2,3-c]pyrazole-1(6H)-carboxamide (9) were synthesized [...] Read more.
A series of pyranopyrazoles, namely, 7-(2-aminoethyl)-3,4-dimethyl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-6(7H)-one (2), (Z)-3,4-dimethyl-1-(4-((4-nitrobenzylidene)amino)phenyl)pyrano[2,3-c]pyrazol-6(1H)-one (5), 1-(4-(3,4-dimethyl-6-oxopyrano[2,3-c]pyrazol-1(6H)-yl)phenyl)-3-(naphthalen-1-yl)urea (6), (Z)-ethyl 4-((3,4-dimethyl-6-oxo-1,6-dihydropyrano[2,3-c]pyrazol-5-yl)diazenyl)benzoate (8) and 3,4-dimethyl-N-(naphthalen-1-yl)-6-oxopyrano[2,3-c]pyrazole-1(6H)-carboxamide (9) were synthesized and characterized by means of their UV-VIS, FT-IR, 1H-NMR and 13C-NMR spectral data. Density Functional Theory calculations of the synthesized pyranopyrazoles were performed using molecular structures with optimized geometries. Molecular orbital calculations have provided detail description of the orbitals, including spatial characteristics, nodal patterns, and the contributions of individual atoms. Full article
Show Figures

Figure 1

11 pages, 151 KB  
Article
Green One Pot Solvent-Free Synthesis of Pyrano[2,3-c]-Pyrazoles and Pyrazolo[1,5-a]Pyrimidines
by Hamad M. Al-Matar, Khaled D. Khalil, Aisha Y. Adam and Mohamed H. Elnagdi
Molecules 2010, 15(9), 6619-6629; https://doi.org/10.3390/molecules15096619 - 20 Sep 2010
Cited by 95 | Viewed by 15246
Abstract
Pyrano[2,3-c]pyrazoles are obtained via mixing ethyl acetoacetate, hydrazine hydrate, aldehydes or ketones and malononitrile in the absence of solvent. These same products were also obtained by reacting arylidenemalononitriles 3 with 3-methyl-2-pyrazolin-5-ones. NOE difference experiments confirmed that these products exist solely in [...] Read more.
Pyrano[2,3-c]pyrazoles are obtained via mixing ethyl acetoacetate, hydrazine hydrate, aldehydes or ketones and malononitrile in the absence of solvent. These same products were also obtained by reacting arylidenemalononitriles 3 with 3-methyl-2-pyrazolin-5-ones. NOE difference experiments confirmed that these products exist solely in the 2H form. Similar treatments of 3-amino-2-pyrazolin-5-one with arylidene-malononitrile afforded adduct 6. Similarly mixing ethyl cyanoacetate, hydrazine hydrate, aldehydes, with malononitrile gave the same product 6. A novel synthesis of 4-oxo-4H-pyrano[2,3-c]pyrazole (8) could be achieved via reacting 3-methyl-2-pyrazolin-5-one with a mixture of cyanoacetic acid and acetic anhydride. Similar treatment of 3-aminopyrazole 11 with the benzylidene-malononitrile produced the pyrazolo[2,3-a]pyrimidines 12a,b. Full article
Show Figures

Figure 1

Back to TopTop