Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = q-derivative (or q-difference) operator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 304 KB  
Article
Multi-Q Fermatean Hesitant Fuzzy Soft Sets and Their Application in Decision-Making
by Norah Rabeah Alrabeah and Kholood Mohammad Alsager
Symmetry 2025, 17(10), 1656; https://doi.org/10.3390/sym17101656 - 5 Oct 2025
Viewed by 157
Abstract
The concept of Multi Q-Fermatean hesitant fuzzy soft sets (MQFHFSS), derived from the integration of multi-Q fuzzy soft sets and Fermatean hesitant fuzzy sets, can be applied in practice to optimise the resolution of complex multi-criteria decision-making problems. The method exceeds traditional approaches [...] Read more.
The concept of Multi Q-Fermatean hesitant fuzzy soft sets (MQFHFSS), derived from the integration of multi-Q fuzzy soft sets and Fermatean hesitant fuzzy sets, can be applied in practice to optimise the resolution of complex multi-criteria decision-making problems. The method exceeds traditional approaches such as Fermatean hesitant fuzzy sets, fuzzy soft sets, and Pythagorean fuzzy sets in enhancing the ability to capture higher levels of uncertainty, hesitation, and symmetry in multi-criteria evaluations, thereby supporting more balanced judgments in complex decision-making situations. In this study, we investigate the novel MQFHFSS concept along with the associated operations. The fundamental characteristics of aggregation operators derived from MQFHFSS have been examined to address some complex decision-making issues. Moreover, we discuss some key algebraic features and their different cases, emphasizing the role of symmetry under the influence of MQFHFSS. Finally, we illustrate some numerical examples and solve the real-world decision-making problem by using the proposed technique. Full article
(This article belongs to the Section Mathematics)
19 pages, 2086 KB  
Article
Cord Blood Exosomal miRNAs from Small-for-Gestational-Age Newborns: Association with Measures of Postnatal Catch-Up Growth and Insulin Resistance
by Marta Díaz, Tania Quesada-López, Francesc Villarroya, Abel López-Bermejo, Francis de Zegher, Lourdes Ibáñez and Paula Casano-Sancho
Int. J. Mol. Sci. 2025, 26(14), 6770; https://doi.org/10.3390/ijms26146770 - 15 Jul 2025
Viewed by 534
Abstract
Small-for-gestational-age (SGA) infants who experience a marked postnatal catch-up, mainly in weight, are at risk for developing metabolic disorders; however, the underlying mechanisms are imprecise. Exosomes and their cargo (including miRNAs) mediate intercellular communication and may contribute to altered crosstalk among tissues. [...] Read more.
Small-for-gestational-age (SGA) infants who experience a marked postnatal catch-up, mainly in weight, are at risk for developing metabolic disorders; however, the underlying mechanisms are imprecise. Exosomes and their cargo (including miRNAs) mediate intercellular communication and may contribute to altered crosstalk among tissues. We assessed the miRNA profile in cord blood-derived exosomes from 10 appropriate-for-gestational-age (AGA) and 10 SGA infants by small RNA sequencing; differentially expressed miRNAs with a fold change ≥2.4 were validated by RT-qPCR in 40 AGA and 35 SGA infants and correlated with anthropometric, body composition (DXA) and endocrine–metabolic parameters at 4 and 12 mo. miR-1-3p, miR-133a-3p and miR-206 were down-regulated, whereas miR-372-3p, miR-519d-3p and miR-1299 were up-regulated in SGA infants. The target genes of these miRNAs related to insulin, RAP1, TGF beta and neurotrophin signaling. Receiver operating characteristic analysis disclosed that these miRNAs predicted with accuracy the 0–12 mo changes in body mass index and in total and abdominal fat and lean mass. In conclusion, the exosomal miRNA profile at birth differs between AGA and SGA infants and associates with measures of catch-up growth, insulin resistance and body composition through late infancy. Further follow-up of this population will disclose whether these associations persist into childhood, puberty and adolescence. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

17 pages, 310 KB  
Article
A Study on q-Starlike Functions Connected with q-Extension of Hyperbolic Secant and Janowski Functions
by Pengfei Bai, Adeel Ahmad, Akhter Rasheed, Saqib Hussain, Huo Tang and Saima Noor
Mathematics 2025, 13(13), 2173; https://doi.org/10.3390/math13132173 - 3 Jul 2025
Cited by 1 | Viewed by 399 | Correction
Abstract
This study introduces a novel subclass of q-starlike functions that is defined by the application of the q-difference operator and q-analogue of hyperbolic secant function. By making certain variations to the parameter “q”, the geometric interpretation of the [...] Read more.
This study introduces a novel subclass of q-starlike functions that is defined by the application of the q-difference operator and q-analogue of hyperbolic secant function. By making certain variations to the parameter “q”, the geometric interpretation of the domain hyperbolic secant function has also been discussed. The primary objective is to investigate and establish key results on the differential subordination of various orders within this newly defined class. Furthermore, convolution properties are explored and coefficient bounds are derived for these functions. A deeper analysis of these coefficients bounds unveils intriguing geometric insights and significant mathematical problems. Full article
Show Figures

Figure 1

19 pages, 330 KB  
Article
On the Existence of (p,q)-Solutions for the Post-Quantum Langevin Equation: A Fixed-Point-Based Approach
by Mohammed Jasim Mohammed, Ali Ghafarpanah, Sina Etemad, Sotiris K. Ntouyas and Jessada Tariboon
Axioms 2025, 14(6), 474; https://doi.org/10.3390/axioms14060474 - 19 Jun 2025
Viewed by 459
Abstract
The two-parameter (p,q)-operators are a new family of operators in calculus that have shown their capabilities in modeling various systems in recent years. Following this path, in this paper, we present a new construction of the Langevin equation [...] Read more.
The two-parameter (p,q)-operators are a new family of operators in calculus that have shown their capabilities in modeling various systems in recent years. Following this path, in this paper, we present a new construction of the Langevin equation using two-parameter (p,q)-Caputo derivatives. For this new Langevin equation, equivalently, we obtain the solution structure as a post-quantum integral equation and then conduct an existence analysis via a fixed-point-based approach. The use of theorems such as the Krasnoselskii and Leray–Schauder fixed-point theorems will guarantee the existence of solutions to this equation, whose uniqueness is later proven by Banach’s contraction principle. Finally, we provide three examples in different structures and validate the results numerically. Full article
17 pages, 9097 KB  
Article
Dimensional Analysis of Hydrological Response of Sluice Gate Operations in Water Diversion Canals
by Hengchang Li, Zhenyong Cui, Jieyun Wang, Chunping Ning, Xiangyu Xu and Xizhi Nong
Water 2025, 17(11), 1662; https://doi.org/10.3390/w17111662 - 30 May 2025
Viewed by 926
Abstract
The hydrodynamics characteristics of artificial water diversion canals with long-distance and inter-basin multi-stage sluice gate regulations are prone to sudden increases and decreases, and sluice gate discharge differs from that of natural rivers. Research on the change characteristics of hydrological elements in artificial [...] Read more.
The hydrodynamics characteristics of artificial water diversion canals with long-distance and inter-basin multi-stage sluice gate regulations are prone to sudden increases and decreases, and sluice gate discharge differs from that of natural rivers. Research on the change characteristics of hydrological elements in artificial canals under the control of sluice gates is lacking, as are scientifically accurate calculations of sluice gate discharge. Therefore, addressing these gaps in long-distance artificial water transfer is of great importance. In this study, real-time operation data of 61 sluice gates, pertaining to the period from May 2019 to July 2021, including data on water levels, flow discharge, velocity, and sluice gate openings in the main canal of the Middle Route of the South-to-North Water Diversion Project of China, were analyzed. The discharge coefficient of each sluice gate was calculated by the dimensional analysis method, and the unit-width discharge was modeled as a function of gate opening (e), gravity acceleration (g), and energy difference (H). Through logarithmic transformation of the Buckingham Pi theorem-derived equation, a linear regression model was used. Data within the relative opening orifice flow regime were selected for fitting, yielding the discharge coefficients and stage–discharge relationships. The results demonstrate that during the study period, the water level, discharge, and velocity of the main canal showed an increasing trend year by year. The dimensional analysis results indicate that the stage–discharge response relationship followed a power function (Q(He)constant) and that there was a good linear relationship between lg(He) and lg(Ke) (R2 > 0.95, K=(q2/g)1/3). By integrating geometric, operational, and hydraulic parameters, the proposed method provides a practical tool and a scientific reference for analyzing sluice gates’ regulation and hydrological response characteristics, optimizing water allocation, enhancing ecological management, and improving operational safety in long-distance inter-basin water diversion projects. Full article
(This article belongs to the Special Issue Advance in Hydrology and Hydraulics of the River System Research 2025)
Show Figures

Figure 1

22 pages, 378 KB  
Article
A Novel Family of Starlike Functions Involving Quantum Calculus and a Special Function
by Baseer Gul, Daniele Ritelli, Reem K. Alhefthi and Muhammad Arif
Fractal Fract. 2025, 9(3), 179; https://doi.org/10.3390/fractalfract9030179 - 14 Mar 2025
Cited by 2 | Viewed by 727
Abstract
The intent of quantum calculus, briefly q-calculus, is to find q-analogues of mathematical entities so that the original object is achieved when a certain limit is taken. In the case of q-analogue of the ordinary derivative, the limit is [...] Read more.
The intent of quantum calculus, briefly q-calculus, is to find q-analogues of mathematical entities so that the original object is achieved when a certain limit is taken. In the case of q-analogue of the ordinary derivative, the limit is q1. Also, the study of integral as well as differential operators has remained a significant field of inquiry from the early developments of function theory. In the present article, a subclass Sscμ,q of functions being analytic in D=zC:z<1 is introduced. The definition of Sscμ,q involves the concepts of subordination, that of q-derivative and q-Ruscheweyh operators. Since coefficient estimates and coefficient functionals provide insights into different geometric properties of analytic functions, for this newly defined subclass, we investigate coefficient estimates up to a4, in which both bounds for |a2| and |a3| are sharp, while that of |a4| is sharp in one case. We also discuss the sharp Fekete–Szegö functional for the said class. In addition, Toeplitz determinant bounds up to T32 (sharp in some cases) and sufficient condition are obtained. Several consequences derived from our above-mentioned findings are also part of the discussion. Full article
11 pages, 279 KB  
Article
Convolution Results with Subclasses of p-Valent Meromorphic Function Connected with q-Difference Operator
by Ekram E. Ali, Rabha M. El-Ashwah, Abeer M. Albalahi, Rabab Sidaoui, Marwa Ennaceur and Miguel Vivas-Cortez
Mathematics 2024, 12(22), 3548; https://doi.org/10.3390/math12223548 - 13 Nov 2024
Viewed by 812
Abstract
Applying the operator of q-difference, we examine the convolution properties of the subclasses MSζ,qr,p(A,B) and MKζ,qr,p(A,B) of p-valent [...] Read more.
Applying the operator of q-difference, we examine the convolution properties of the subclasses MSζ,qr,p(A,B) and MKζ,qr,p(A,B) of p-valent meromorphic functions defined in the punctured open-unit disc. We derived specific inclusion features and coefficient estimates for functions that fall into these subclasses. Additionally, connections between the results presented here and those discovered in earlier papers are emphasized. Full article
(This article belongs to the Special Issue Complex Analysis and Geometric Function Theory, 2nd Edition)
24 pages, 353 KB  
Article
On the Generalized (p,q)-ϕ-Calculus with Respect to Another Function
by Sina Etemad, Ivanka Stamova, Sotiris K. Ntouyas and Jessada Tariboon
Mathematics 2024, 12(20), 3290; https://doi.org/10.3390/math12203290 - 20 Oct 2024
Cited by 4 | Viewed by 1097
Abstract
In the present paper, we generalized some of the operators defined in (p,q)-calculus with respect to another function. More precisely, the generalized (p,q)-ϕ-derivatives and (p,q)-ϕ [...] Read more.
In the present paper, we generalized some of the operators defined in (p,q)-calculus with respect to another function. More precisely, the generalized (p,q)-ϕ-derivatives and (p,q)-ϕ-integrals were introduced with respect to the strictly increasing function ϕ with the help of different orders of the q-shifting, p-shifting, and (q/p)-shifting operators. Then, after proving some related properties, and as an application, we considered a generalized (p,q)-ϕ-difference problem and studied the existence property for its unique solutions with the help of the Banach contraction mapping principle. Full article
(This article belongs to the Special Issue Nonlinear Equations: Theory, Methods, and Applications III)
21 pages, 14008 KB  
Article
The Pore Structure Multifractal Evolution of Vibration-Affected Tectonic Coal and the Gas Diffusion Response Characteristics
by Maoliang Shen, Zhonggang Huo, Longyong Shu, Qixian Li, Pengxin Zhang and Weihua Wang
Processes 2024, 12(8), 1701; https://doi.org/10.3390/pr12081701 - 14 Aug 2024
Cited by 2 | Viewed by 1130
Abstract
Vibrations caused by downhole operations often induce coal and gas outburst accidents in tectonic zone coal seams. To clarify how vibration affects the pore structure, gas desorption, and diffusion capacity of tectonic coal, isothermal adsorption-desorption experiments under different vibration frequencies were carried out. [...] Read more.
Vibrations caused by downhole operations often induce coal and gas outburst accidents in tectonic zone coal seams. To clarify how vibration affects the pore structure, gas desorption, and diffusion capacity of tectonic coal, isothermal adsorption-desorption experiments under different vibration frequencies were carried out. In this study, high-pressure mercury intrusion experiments and low-pressure liquid nitrogen adsorption experiments were conducted to determine the pore structures of tectonic coal before and after vibration. The pore distribution of vibration-affected tectonic coal, including local concentration, heterogeneity, and connectivity, was analyzed using multifractal theory. Further, a correlation analysis was performed between the desorption diffusion characteristic parameters and the pore fractal characteristic parameters to derive the intrinsic relationship between the pore fractal evolution characteristics and the desorption diffusion characteristics. The results showed that the vibration increased the pore volume of the tectonic coal, and the pore volume increased as the vibration frequency increased in the 50 Hz range. The pore structure of the vibration-affected tectonic coal showed multifractal characteristics, and the multifractal parameters affected the gas desorption and diffusion capacity by reflecting the density, uniformity, and connectivity of the pore distribution in the coal. The increases in the desorption amount (Q), initial desorption velocity (V0), initial diffusion coefficient (D0), and initial effective diffusion coefficient (De) of the tectonic coal due to vibration indicated that the gas desorption and diffusion capacity of the tectonic coal were improved at the initial desorption stage. Q, V0, D0, and De had significant positive correlations with pore volume and the Hurst index, and V0, D0, and De had negative correlations with the Hausdorff dimension. To a certain extent, vibration reduced the local density regarding the pore distribution in the coal. As a result, the pore size distribution was more uniform, and the pore connectivity was improved, thereby enhancing the gas desorption and diffusion capacity of the coal. Full article
Show Figures

Figure 1

12 pages, 1548 KB  
Article
Aberrantly Expressed tRNA-Val Fragments Can Distinguish Canine Hepatocellular Carcinoma from Canine Hepatocellular Adenoma
by Saki Hashimoto, MD Nazmul Hasan, Mohammad Arif, Nobuhiro Nozaki, Al Asmaul Husna, Yu Furusawa, Takeshi Sogawa, Kaori Takahashi, Tomohide Kuramoto, Aki Noguchi, Masashi Takahashi, Osamu Yamato, Md Mahfuzur Rahman and Naoki Miura
Genes 2024, 15(8), 1024; https://doi.org/10.3390/genes15081024 - 4 Aug 2024
Viewed by 1779
Abstract
Hepatocellular adenoma (HCA) and hepatocellular carcinoma (HCC) can be difficult to differentiate but must be diagnosed correctly as treatment and prognosis for these tumors differ markedly. Relevant diagnostic biomarkers are thus needed, and those identified in dogs may have utility in human medicine [...] Read more.
Hepatocellular adenoma (HCA) and hepatocellular carcinoma (HCC) can be difficult to differentiate but must be diagnosed correctly as treatment and prognosis for these tumors differ markedly. Relevant diagnostic biomarkers are thus needed, and those identified in dogs may have utility in human medicine because of the similarities between human and canine HCA and HCC. A tRNA-derived fragment (tRF), tRNA-Val, is a promising potential biomarker for canine mammary gland tumors but has not previously been investigated in hepatic tumors. Accordingly, we aimed to elucidate the potential utility of tRNA-Val as a biomarker for canine HCA and HCC using clinical samples (tumor tissue and plasma extracellular vesicles [EVs]) and tumor cell lines with qRT-PCR assays. We also investigated relevant functions and signaling pathways with bioinformatic analyses (Gene Ontology and Kyoto Encyclopedia of Genes and Genomes). tRNA-Val was markedly downregulated in HCC tumor tissue versus HCA tumor tissue and normal liver tissue, and a similar trend was shown in plasma EVs and HCC cell lines versus healthy controls. Based on areas under the receiver operating characteristic curves (AUCs), tRNA-Val significantly distinguished HCC (AUC = 1.00, p = 0.001) from healthy controls in plasma EVs and HCC from HCA (AUC = 0.950, p = 0.01). Bioinformatics analysis revealed that tRNA-Val may be primarily involved in DNA repair, mRNA processing, and splicing and may be linked to the N-glycan and ubiquitin-mediated proteasome pathways. This is the first report on the expression of tRNA-Val in canine HCC and HCA and its possible functions and signaling pathways. We suggest that tRNA-Val could be a promising novel biomarker to distinguish canine HCC from HCA. This study provides evidence for a greater understanding of the role played by tRNA-Val in the development of canine HCC. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 4937 KB  
Article
Antioxidant Profile, Amino Acids Composition, and Physicochemical Characteristics of Cherry Tomatoes Are Associated with Their Color
by Min Woo Baek, Jong Hwan Lee, Chang Eun Yeo, Su Ho Tae, Se Min Chang, Han Ryul Choi, Do Su Park, Shimeles Tilahun and Cheon Soon Jeong
Antioxidants 2024, 13(7), 785; https://doi.org/10.3390/antiox13070785 - 28 Jun 2024
Cited by 7 | Viewed by 2204
Abstract
This study was conducted to characterize different colored lines of cherry tomatoes and derive information regarding their metabolite accumulation. Different colored cherry tomato cultivars, namely ‘Jocheong’, ‘BN Satnolang’, ‘Gold Chance’, ‘Black Q’, and ‘Snacktom’, were assessed for their firmness, taste characteristics, and nutritional [...] Read more.
This study was conducted to characterize different colored lines of cherry tomatoes and derive information regarding their metabolite accumulation. Different colored cherry tomato cultivars, namely ‘Jocheong’, ‘BN Satnolang’, ‘Gold Chance’, ‘Black Q’, and ‘Snacktom’, were assessed for their firmness, taste characteristics, and nutritional metabolites at the commercial ripening stage. The cultivars demonstrated firmness to withstand impacts during harvesting and postharvest operations. The significant variations in the Brix to acid ratio (BAR) and the contents of phenylalanine, glutamic acid, and aspartic acid highlight the distinct taste characteristics among the cultivars, and the nutritional metabolites are associated with the color of the cultivars. The cultivar choices would be the black-colored ‘Black Q’ for chlorophylls, β-carotene, total flavonoids, and anthocyanins; the red-colored ‘Snacktom’ for lycopene; the orange-colored ‘Gold Chance’ for total phenolics; and the green-colored ‘Jocheong’ for chlorophylls, vitamin C, GABA, glutamic acid, essential amino acids, and total free amino acids. The antioxidant capacity varied among the cultivars, with ‘Gold Chance’ consistently exhibiting the highest activity across the four assays, followed by ‘Snacktom’. This study emphasizes the importance of screening cultivars to support breeding programs for improving the nutritional content and encourages the inclusion of a diverse mix of different colored cherry tomatoes in packaging to obtain the cumulative or synergistic effects of secondary metabolites. Full article
Show Figures

Figure 1

17 pages, 5988 KB  
Article
A Phase Error Correction System for Bioimpedance Measurement Circuits
by Ifeabunike I. Nwokoye and Iasonas F. Triantis
Appl. Sci. 2024, 14(12), 5202; https://doi.org/10.3390/app14125202 - 14 Jun 2024
Cited by 2 | Viewed by 2201
Abstract
Bioimpedance sensing is widely used across a spectrum of biomedical applications. Among the different system architectures for measuring tissue impedance, synchronous detection or demodulation (SD) stands out for its lock-in amplifier utilising in-phase (I) and quadrature (Q) demodulation signals to derive real and [...] Read more.
Bioimpedance sensing is widely used across a spectrum of biomedical applications. Among the different system architectures for measuring tissue impedance, synchronous detection or demodulation (SD) stands out for its lock-in amplifier utilising in-phase (I) and quadrature (Q) demodulation signals to derive real and imaginary impedance components. Typically, the current injected into the tissue is controlled by a voltage-controlled current source (VCCS). However, the VCCS can introduce phase shifts leading to discrepancies in real/imaginary outputs, especially at the highest end of the operating frequency bandwidth. Such discrepancies can significantly impact diagnostic accuracy in applications reliant on precise tissue phase profiling, such as cancer and neuromuscular evaluations. In the present work, we propose an automatic phase error compensation stage for bioimpedance measurement systems to minimise this systematic error. Our experimental findings demonstrated a considerable reduction in phase error, with the Phase Error Compensated Synchronous Detection (PECSD) system exhibiting a maximum phase error of 2° (≤5% error) compared with the uncompensated SD system where error exceeded 20%. The improvements made by our proposed SD system hold great potential for enhancing the accuracy of impedance measurements, particularly in clinical diagnosis and disease detection. Full article
(This article belongs to the Special Issue Advances in Biosignal Processing)
Show Figures

Figure 1

25 pages, 27580 KB  
Article
Enhancing Quadcopter Autonomy: Implementing Advanced Control Strategies and Intelligent Trajectory Planning
by Samira Hadid, Razika Boushaki, Fatiha Boumchedda and Sabrina Merad
Automation 2024, 5(2), 151-175; https://doi.org/10.3390/automation5020010 - 14 Jun 2024
Cited by 4 | Viewed by 2554
Abstract
In this work, an in-depth investigation into enhancing quadcopter autonomy and control capabilities is presented. The focus lies on the development and implementation of three conventional control strategies to regulate the behavior of quadcopter UAVs: a proportional–integral–derivative (PID) controller, a sliding mode controller, [...] Read more.
In this work, an in-depth investigation into enhancing quadcopter autonomy and control capabilities is presented. The focus lies on the development and implementation of three conventional control strategies to regulate the behavior of quadcopter UAVs: a proportional–integral–derivative (PID) controller, a sliding mode controller, and a fractional-order PID (FOPID) controller. Utilizing careful adjustments and fine-tuning, each control strategy is customized to attain the desired dynamic response and stability during quadcopter flight. Additionally, an approach called Dyna-Q learning for obstacle avoidance is introduced and seamlessly integrated into the control system. Leveraging MATLAB as a powerful tool, the quadcopter is empowered to autonomously navigate complex environments, adeptly avoiding obstacles through real-time learning and decision-making processes. Extensive simulation experiments and evaluations, conducted in MATLAB 2018a, precisely compare the performance of the different control strategies, including the Dyna-Q learning-based obstacle avoidance technique. This comprehensive analysis allows us to understand the strengths and limitations of each approach, guiding the selection of the most effective control strategy for specific application scenarios. Overall, this research presents valuable insights and solutions for optimizing flight stability and enabling secure and efficient operations in diverse real-world scenarios. Full article
Show Figures

Figure 1

24 pages, 365 KB  
Article
Existence of Solutions to a System of Fractional q-Difference Boundary Value Problems
by Alexandru Tudorache and Rodica Luca
Mathematics 2024, 12(9), 1335; https://doi.org/10.3390/math12091335 - 27 Apr 2024
Cited by 1 | Viewed by 1451
Abstract
We are investigating the existence of solutions to a system of two fractional q-difference equations containing fractional q-integral terms, subject to multi-point boundary conditions that encompass q-derivatives and fractional q-derivatives of different orders. In our main results, we rely [...] Read more.
We are investigating the existence of solutions to a system of two fractional q-difference equations containing fractional q-integral terms, subject to multi-point boundary conditions that encompass q-derivatives and fractional q-derivatives of different orders. In our main results, we rely on various fixed point theorems, such as the Leray–Schauder nonlinear alternative, the Schaefer fixed point theorem, the Krasnosel’skii fixed point theorem for the sum of two operators, and the Banach contraction mapping principle. Finally, several examples are provided to illustrate our findings. Full article
29 pages, 464 KB  
Article
On Solutions of Two Post-Quantum Fractional Generalized Sequential Navier Problems: An Application on the Elastic Beam
by Sina Etemad, Sotiris K. Ntouyas, Ivanka Stamova and Jessada Tariboon
Fractal Fract. 2024, 8(4), 236; https://doi.org/10.3390/fractalfract8040236 - 17 Apr 2024
Cited by 9 | Viewed by 1719
Abstract
Fractional calculus provides some fractional operators for us to model different real-world phenomena mathematically. One of these important study fields is the mathematical model of the elastic beam changes. More precisely, in this paper, based on the behavior patterns of an elastic beam, [...] Read more.
Fractional calculus provides some fractional operators for us to model different real-world phenomena mathematically. One of these important study fields is the mathematical model of the elastic beam changes. More precisely, in this paper, based on the behavior patterns of an elastic beam, we consider the generalized sequential boundary value problems of the Navier difference equations by using the post-quantum fractional derivatives of the Caputo-like type. We discuss on the existence theory for solutions of the mentioned (p;q)-difference Navier problems in two single-valued and set-valued versions. We use the main properties of the (p;q)-operators in this regard. Application of the fixed points of the ρ-θ-contractions along with the endpoints of the multi-valued functions play a fundamental role to prove the existence results. Finally in two examples, we validate our models and theoretical results by giving numerical models of the generalized sequential (p;q)-difference Navier problems. Full article
Back to TopTop