Next Article in Journal
COVID-19 Diagnosis by Extracting New Features from Lung CT Images Using Fractional Fourier Transform
Previous Article in Journal
Controllability of Mild Solution to Hilfer Fuzzy Fractional Differential Inclusion with Infinite Continuous Delay
Previous Article in Special Issue
Systems of Hilfer–Hadamard Fractional Differential Equations with Nonlocal Coupled Boundary Conditions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Solutions of Two Post-Quantum Fractional Generalized Sequential Navier Problems: An Application on the Elastic Beam

1
Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz 3751-71379, Iran
2
Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece
3
Department of Mathematics, University of Texas at San Antonio, San Antonio, TX 78249, USA
4
Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
*
Author to whom correspondence should be addressed.
Fractal Fract. 2024, 8(4), 236; https://doi.org/10.3390/fractalfract8040236
Submission received: 17 February 2024 / Revised: 13 April 2024 / Accepted: 15 April 2024 / Published: 17 April 2024

Abstract

:
Fractional calculus provides some fractional operators for us to model different real-world phenomena mathematically. One of these important study fields is the mathematical model of the elastic beam changes. More precisely, in this paper, based on the behavior patterns of an elastic beam, we consider the generalized sequential boundary value problems of the Navier difference equations by using the post-quantum fractional derivatives of the Caputo-like type. We discuss on the existence theory for solutions of the mentioned ( p ; q ) -difference Navier problems in two single-valued and set-valued versions. We use the main properties of the ( p ; q ) -operators in this regard. Application of the fixed points of the ρ - θ -contractions along with the endpoints of the multi-valued functions play a fundamental role to prove the existence results. Finally in two examples, we validate our models and theoretical results by giving numerical models of the generalized sequential ( p ; q ) -difference Navier problems.

1. Introduction

An important part of mathematics, which focuses on operators of arbitrary real orders and is known as fractional calculus, has brought significant theoretical and practical achievements and results in various fields of engineering and modeling. The main reason for emphasizing the importance of the results of this field can be found in various studies that have been conducted in recent years on topics such as the solutions of fractional differential equations (continuous and discrete) and their solution techniques and related algorithms. For example, fractional order techniques and models are abundantly seen in mathematical structures defined in economics, medical simulations, physics, image processing, clinical disciplines, etc., [1,2,3]. If we want to discuss examples, we can point out to the exact results of fractional algorithms and methods that clearly show their power in finding approximate numerical solutions and even the existence of analytical solutions of fractional equations. That is why fractional order modeling replaces integer order modeling and simulate solutions with the least error. We recommend some sources in this regard for finding more information [4,5,6,7,8,9,10].
In 1910, a mathematician named Jackson [11,12] began a systematic and classified study of quantum calculus, which was later abbreviated as q -calculus. In this new calculus, most of the basic operators are defined without using the concept of limit, an idea that opens a new path in mathematics. In the first step, q -calculus established its place in physics. For example, Fock [13] defined a kind of quantum difference equations and proved that hydrogen atoms are symmetric. Mathematicians then investigated various properties of q -series and q -operators, which led to the development of new concepts in the theory of quantum mechanics, orthogonal polynomials and hypergeometric functions and combinatorics [14,15]. Moreover, see other papers in this regard such as [16,17,18,19,20].
As the quantum calculus continued to develop and expand, a new calculus emerged that depends on two parameters 0 < q < p 1 and is known as post-quantum calculus or ( p ; q ) -calculus. Of course, this new calculus is not a real generalization of q -calculus and it cannot be obtained by placing q p instead of q , but its rules and concepts are defined in such a way that assuming p = 1 , we can achieve the concepts of q -calculus.
The early and fundamental studies of ( p ; q ) -calculus began with an article by Chakrabarti and Jagannathan [21]. Hypergeometric series [22], approximation methods [23,24], Bézier surfaces and curves [25], physical models [26], Lie groups are some of those theories in which ( p ; q ) -operators play an important role. In the following, Sadjang [27] proved the fundamental theorems of ( p ; q ) -calculus and introduced the Taylor’s ( p ; q ) -formula. In 2018 and 2019, Cheng et al. [28] and Milovanovic et al. [29] extended the ( p ; q ) -Gamma and ( p ; q ) -Beta functions, respectively. Soontharanon et al. combined ( p ; q ) -calculus with fractional calculus and established fractional ( p ; q ) -operators and their properties [30]. In the last three or four years, mathematicians have expanded their studies to the areas of existence theory, and with the help of the important tool of fixed point, they have proved the uniqueness of the solution for various types of post-quantum boundary value problems (BVPs) in the form of fractional ( p ; q ) -difference equations.
Soontharanon et al. [31], in 2020, continued their studies on solutions of an r -th order ( p ; q ) -integro-difference problem of the Riemann-Liouville-like type with the ( p ; q ) -Robin conditions given by
D ( p ; q ) r 0 R y ( t ) = E t , y ( t ) , I ( p ; q ) r 1 R ( f y ) ( t ) , D ( p ; q ) r 2 R y ( t ) , r 1 , r 2 ( 0 , 1 ] , t I ( p ; q ) T , r 0 ( 1 , 2 ] , α 1 y ( a ) + α 2 D ( p ; q ) r 3 R y ( a ) = h 1 ( y ( t ) ) , r 3 ( 0 , 1 ] , α 1 , α 2 R + , β 1 y ( T p ) + β 2 D ( p ; q ) r 3 R y ( T p ) = h 2 ( y ( t ) ) , β 1 , β 2 R + , 0 < q < p 1 ,
with a I ( p ; q ) T 0 , T p so that I ( p ; q ) T : = q j p j + 1 T : j N 0 { 0 } . Also, by assuming A = R 3 , they consider the nonlinear continuous function E : I ( p ; q ) T × A R and continuous functions h 1 , h 2 : C ( I ( p ; q ) T , R ) R and f : I ( p ; q ) T × I ( p ; q ) T [ 0 , ) so that
I ( p ; q ) r 1 R ( f y ) ( t ) = 1 Γ ( p ; q ) ( r 1 ) p r 1 2 0 t ( t qv ) ( p ; q ) ( r 1 1 ) f ( t , v ) y v p r 1 1 d ( p ; q ) v .
Moreover, D ( p ; q ) r * R is the r * -th order ( p ; q ) -derivative of the Riemann-Liouville-like type with r * = r i ( i = 0 , 2 , 3 ) .
Neang et al. [32] conducted another analysis on the existence results for a nonlinear r -th order ( p ; q ) -difference problem of the Caputo-like type with the separated boundary conditions, formulated by
D ( p ; q ) r c y ( t ) = E t , y ( p r t ) , r ( 1 , 2 ] , 0 t T p r , α 1 y ( 0 ) + β 1 D ( p ; q ) y ( 0 ) = γ 1 y ( w 1 ) , α 1 , β 1 , γ 1 R , α 2 y ( T ) + β 2 D ( p ; q ) y ( T p ) = γ 2 y ( w 2 ) , α 2 , β 2 , γ 2 R , 0 < q < p 1 ,
so that D ( p ; q ) and D ( p ; q ) r c are the 1st order and r -th order ( p ; q ) -difference and ( p ; q ) -derivative of the Caputo-like type, respectively, and E C ( [ 0 , T p r ] × R , R ) .
Once again in 2022, the same authors [33] defined a new function E C ( [ 0 , T ] × R , R ) to simplify the domain of it, and to study the existence theorems, modeled the r -th order ( p ; q ) -difference problem of the Caputo-like type as
D ( p ; q ) r c y ( t ) = E p r t , y ( p r t ) , r ( 1 , 2 ] , 0 t T , α 1 y ( 0 ) + α 2 D ( p ; q ) y ( 0 ) = α 3 , α 1 , α 2 , α 3 R , α 4 y ( T ) + α 5 D ( p ; q ) y ( p T ) = α 6 , α 4 , α 5 , α 6 R , 0 < q < p 1 ,
with the above notations and ( p ; q ) -operators. For more information on newly conducted studies in the context of ( p ; q ) -calculus, refer to [34,35,36,37,38,39].
In order to fully understand the nature and dynamics of phenomena in the real world, modern science needs mathematical models of these phenomena and processes. Based on such exact mathematical models that are defined by operators and other mathematical concepts, we can examine the dynamical and behavioral structure of various engineering, mechanical and physical systems in laboratory environments and generalize the results to real dimensions in the surrounding world [40,41,42].
One of the important mathematical models that has attracted the attention of engineers in recent years and is used for technical simulations in advanced and complex structures is the mathematical dynamical model based on elastic beam. In huge engineering structures such as building structures, towers, bridges, aviation industry, giant ocean-going ships and spaceships, the application of elastic beam technology is considered one of the basic necessities. Based on this, from a mathematical point of view, the boundary value problem including a fourth-order Navier differential equation and two-point boundary conditions was modeled by Reiss et al. [43] in 1976, who studied the dynamic behavior of elastic beam changes, and its form is as follows
y ( 4 ) ( t ) = E t , y ( t ) , y ( t ) , t I : = [ 0 , 1 ] , y ( 0 ) = y ( 1 ) = 0 = y ( 0 ) = y ( 1 ) ,
provided that the source function E : I × R 2 R is continuous. In 1986, Aftabizadeh [44] transformed (1) into a 2- nd order integro–differential equation by assuming E to be a bounded nonlinear function, and proved the existence theorems under the Schauder’s fixed point theorem. In 1997, Ma et al. [45] studied the Navier problem (1) and analyzed it based on the lower and upper solutions. Bai et al. [46], in 2004, adopted a monotone technique for the lower and upper solutions of the given beam elastic problem (1). Bachar et al. [47] extended the fractional version of the beam elastic problem (1) of the Riemann-Liouville type and completed their theoretical analysis on the existence and positivity of the unique solutions of the fractional Navier system given by
D r 1 R D r 2 R y ( t ) = E t , y ( t ) , D r 2 R y ( t ) , y ( 0 ) = y ( 1 ) = 0 = D r 2 R y ( 0 ) = D r 2 R y ( 1 ) ,
provided r 1 , r 2 ( 1 , 2 ] , D r 1 R and D r 2 R specify the fractional derivatives of the Riemann-Liouville type and E C ( I × R 2 , R ) . If r 1 = r 2 = 2 , then (2) reduces to integer order problem (1).
In 2021, Etemad et al. [48] discussd a new sequential generalized fractional q -Navier problem given by
D ( q ) r 1 c D ( q ) r 2 c y ( t ) = E t , y ( t ) , D ( q ) r 2 c y ( t ) , t I : = [ 0 , 1 ] , q ( 0 , 1 ) , γ y ( 0 ) = δ y ( 1 ) = λ D ( q ) r 2 c y ( 0 ) = β D ( q ) r 2 c y ( 1 ) = 0 ,
so that r 1 ( 1 , 2 ] , r 2 ( 1 , 2 ] and γ , δ , λ , β R + . Moreover, here D ( q ) ( · ) c is the fractional q -derivative of the Caputo-like type.
Based on the integer order Navier Equation (1) and other aforementioned models, we inspired to study a new sequential ( p ; q ) -model of the elastic beam with ( p ; q ) -Navier difference equation of the Caputo-like type
D ( p ; q ) r 1 c D ( p ; q ) r 2 c y ( t ) = E t , y ( t ) , D ( p ; q ) r 2 c y ( t ) , ( t I ( p ; q ) T = [ 0 , T p ] , 0 < q < p 1 ) , β y ( t ) | t = 0 = λ y ( t ) | t = T p = δ D ( p ; q ) r 2 c y ( t ) | t = 0 = γ D ( p ; q ) r 2 c y ( t ) | t = T p = 0 ,
and the ( p ; q ) -Navier difference inclusion of the Caputo-like type
D ( p ; q ) r 1 c D ( p ; q ) r 2 c y ( t ) E t , y ( t ) , D ( p ; q ) r 2 c y ( t ) , ( t I ( p ; q ) T = [ 0 , T p ] , 0 < q < p 1 ) , β y ( t ) | t = 0 = λ y ( t ) | t = T p = δ D ( p ; q ) r 2 c y ( t ) | t = 0 = γ D ( p ; q ) r 2 c y ( t ) | t = T p = 0 ,
where T > 0 , r 1 , r 2 ( 1 , 2 ] , β , λ , δ , γ R + , and the ( p ; q ) -derivative of the Caputo-like type is denoted by D ( p ; q ) ( · ) c . We consider E : [ 0 , T p ] × R 2 R and E : [ 0 , T p ] × R 2 P ( R ) as the continuous single-valued arbitrary function and multivalued arbitrary function, respectively, with some conditions.
The main contribution of this paper can be expressed as follows: here, we have extended the standard model of the elastic beam equation to two fractional structures of Navier ( p ; q ) -difference equation and ( p ; q ) -difference inclusion for the first time, and aslo, we have presented our numerical and theoretical results to study the existence of solutions for new sequential ( p ; q ) -models (4) and (5) of the elastic beam. It is clear that if r 1 = r 2 2 , p = 1 , q 1 and β = λ = δ = γ = 1 , we obtain the standard Navier model (1) of the elastic beam. Unlike many similar papers in the field of existence theory, we use a set of non-decreasing mappings and special contractions and endpoints to prove the existence of the solutions of the above two systems. The presented model of elastic beam based on the ( p ; q ) -operators helps us to study some behaviors of fractional difference systems without the limit notion, and this can be an important advantage for the fast and easy simulation of the real phenomena in the context of discrete-type ( p ; q ) -calculus.
We have prepared the next sections of the paper as follows: Section 2 aims to recall some basic notions of fractional q -calculus. Section 3 begins with a proposition for computing some ( p ; q ) -integrals, and then, continues with a lemma which formulates the solution of the generalized sequential ( p ; q ) -Navier problems (4) and (5) in the form of an ( p ; q ) -integral equation. In the following, this section uses the well known fixed point theorem attributed to Krasnoselskii [49] and a special set of the operators proposed by Samet et al. [50] to study the existence theory for the solutions of single-valued operators. Section 4 considers the generalized sequential ( p ; q ) -difference Navier inclusion problem (5) and examines the same existence theory for the solutions of (5), but this time, by applying the methods proposed by Mohammadi et al. [51] and also, by the approximate endpoint property. In Section 5, we assign our focus to validate the theorems proved in the previous Section 3 and Section 4. The last section concludes our study by giving some remarks and future ideas.

2. Preliminaries

In the next three subsections, we are going to state some definitions, lemmas and theorems on the context of q -calculus, ( p ; q ) -calculus, and fixed point theory as a reminder. Throughout this paper, let q ( 0 , 1 ) and 0 < q < p 1 .

2.1. q-Calculus

The q -power function is the q -analoge of ( s 1 s 2 ) m which is defined as
( s 1 s 2 ) ( q ) ( 0 ) = 1 , ( s 1 s 2 ) ( q ) ( m ) = a = 0 m 1 ( s 1 s 2 q a ) , s 1 , s 2 R , m N 0 ,
Ref. [52]. If m = r R , then generally we have
( s 1 s 2 ) ( q ) ( r ) = s 1 r a = 0 1 ( s 2 s 1 ) q a 1 ( s 2 s 1 ) q r + a ,
for s 1 0 . In a special case, ( s 1 ) ( q ) ( r ) = s 1 r if s 2 = 0 [52]. The q -number [ s ] ( q ) and q -Gamma function Γ ( q ) ( · ) , for s R and r R Z 0 , are given by
[ 0 ] ( q ) = 0 , [ s ] ( q ) = q s 1 + + q + 1 = 1 q s 1 q ( s 0 ) , Γ ( q ) ( r ) = ( 1 q ) ( q ) ( r 1 ) ( 1 q ) r 1 .
Moreover, Γ ( q ) ( r + 1 ) = [ r ] ( q ) Γ ( q ) ( r ) [52].
Definition 1
([53]). The q -derivative of the function y is defined as
D ( q ) y ( t ) = d d t ( q ) y ( t ) = y ( t ) y ( qt ) ( 1 q ) t .
For the highr orders, we define D ( q ) m y ( t ) = D ( q ) ( D ( q ) m 1 y ( t ) ) for each m N and also, define D ( q ) 0 y ( t ) = y ( t ) [53].
Definition 2
([54,55]). The r -th order q -integral of the Riemann-Liouville-like type for the function y C ( [ 0 , + ) , R ) is given by
I ( q ) r R y ( t ) = 1 Γ ( q ) ( r ) 0 t ( t qv ) ( q ) ( r 1 ) y ( v ) d ( q ) v , r > 0 , y ( t ) , r = 0 ,
provided the integral converges.
Definition 3
([54,55]). Let λ = [ r ] + 1 . The r -th order q -derivative of the Caputo-like type for y C ( λ ) ( [ 0 , + ) , R ) is defined by
D ( q ) r c y ( t ) = 1 Γ ( q ) ( λ r ) 0 t ( t qv ) ( q ) ( λ r 1 ) D ( q ) λ y ( v ) d ( q ) v ,
provided the integral converges.

2.2. (p; q)-Calculus

All definitions of this subsection can be transformed into the aforementioned definitions in the previous subsections if p = 1 .
The ( p ; q ) -power function is the ( p ; q ) -analogue of ( s 1 s 2 ) m which is given by
( s 1 s 2 ) ( p ; q ) ( 0 ) = 1 , ( s 1 s 2 ) ( p ; q ) ( m ) = a = 0 m 1 ( s 1 p a s 2 q a ) , s 1 , s 2 R , m N 0 ,
Ref. [30]. If m = r R , then generally, we have
( s 1 s 2 ) ( p ; q ) ( r ) = s 1 r a = 0 1 p r 1 ( s 2 s 1 ) ( q p ) a 1 ( s 2 s 1 ) ( q p ) r + a ,
for s 1 0 . Also, if s 2 = 0 , then ( s 1 ) ( p ; q ) ( r ) = 1 p r s 1 r [30]. The ( p ; q ) -number [ s ] ( p ; q ) and ( p ; q ) -Gamma function Γ ( p ; q ) ( · ) , for s R and r R Z 0 , are given by
[ 0 ] ( p ; q ) = 0 , [ s ] ( p ; q ) = p s 1 [ s ] q p = p s q s p q , Γ ( p ; q ) ( r ) = ( p q ) ( p ; q ) ( r 1 ) ( p q ) r 1 ,
and also, Γ ( p ; q ) ( r + 1 ) = [ r ] ( p ; q ) Γ ( p ; q ) ( r ) [30]. Furthermore, the ( p ; q ) -Beta function B ( p ; q ) ( · , · ) is defined as
B ( p ; q ) ( r , r ˜ ) = 0 1 v r 1 ( 1 qv ) ( p ; q ) ( r ˜ 1 ) d ( p ; q ) v = Γ ( p ; q ) ( r ) Γ ( p ; q ) ( r ˜ ) Γ ( p ; q ) ( r + r ˜ ) p 1 2 ( r ˜ 1 ) ( 2 r + r ˜ 2 ) , r , r ˜ > 0 .
Definition 4
([30]). The ( p ; q ) -derivative of the function y is given by
D ( p ; q ) y ( t ) = y ( pt ) y ( qt ) ( p q ) t .
If p = 1 , then D ( 1 ; q ) y ( t ) = D ( q ) y ( t ) , and if q 1 , then D ( 1 ; q 1 ) y ( t ) = y ( t ) .
Definition 5
([30]). The ( p ; q ) -integral of y C ( [ 0 , T ] , R ) is defined by
I ( p ; q ) y ( t ) = 0 t y ( v ) d ( p ; q ) v = ( p q ) t a = 0 q a p a + 1 y q a p a + 1 t .
Definition 6
([30]). The r -th order ( p ; q ) -integral of the Riemann-Liouville-like type for the function y C ( [ 0 , T ] , R ) is defined by
I ( p ; q ) r R y ( t ) = 1 Γ ( p ; q ) ( r ) p r 2 0 t ( t qv ) ( p ; q ) ( r 1 ) y v p r 1 d ( p ; q ) v , r > 0 , y ( t ) , r = 0 ,
if the integral converges.
If p = 1 , then I ( 1 ; q ) r R y ( t ) = I ( q ) r R y ( t ) which has been defined in Definition 2.
Definition 7
([30]). Let λ = [ r ] + 1 . The r -th order ( p ; q ) -derivative of the Caputo-like type for y C ( λ ) ( [ 0 , T ] , R ) is defined by
D ( p ; q ) r c y ( t ) = I ( p ; q ) λ r R D ( p ; q ) λ y ( t ) = 1 Γ ( p ; q ) ( λ r ) p λ r 2 0 t ( t qv ) ( p ; q ) ( λ r 1 ) D ( p ; q ) λ y v p λ r 1 d ( p ; q ) v ,
if the integral converges.
If p = 1 , then D ( 1 ; q ) r c y ( t ) = D ( q ) r c y ( t ) which has been defined in Definition 3.
In the following, some important properties are recalled taken from [30].
Lemma 1
([30]). Let r , r ˜ > 0 . Then
  • ( A ( p ; q ) ) I ( p ; q ) r R I ( p ; q ) r ˜ R y ( t ) = I ( p ; q ) r ˜ R I ( p ; q ) r R y ( t ) = I ( p ; q ) r + r ˜ R y ( t ) .
  • ( B ( p ; q ) ) D ( p ; q ) r c I ( p ; q ) r R y ( t ) = y ( t ) .
Lemma 2
([30]). Let r , r ˜ > 0 and y ( t ) = t r ˜ . Then
  • ( C ( p ; q ) ) I ( p ; q ) r R y ( t ) = Γ ( p ; q ) ( r ˜ + 1 ) Γ ( p ; q ) ( r ˜ + r + 1 ) t r ˜ + r .
  • ( D ( p ; q ) ) D ( p ; q ) r c y ( t ) = p r Γ ( p ; q ) ( r ˜ + 1 ) Γ ( p ; q ) ( r ˜ r + 1 ) t r ˜ r , r ˜ > r .
  • ( E ( p ; q ) ) 0 t ( t qv ) ( p ; q ) ( r 1 ) v r ˜ d ( p ; q ) v = B ( p ; q ) ( r ˜ + 1 , r ) t r + r ˜ .
Theorem 1
([30]). Let λ = [ r ] + 1 . Then
I ( p ; q ) r R D ( p ; q ) r c y ( t ) = y ( t ) a = 0 λ 1 D ( p ; q ) a y ( 0 ) Γ ( p ; q ) ( a + 1 ) p r 2 t a .
In the simplified form, we have
I ( p ; q ) r R D ( p ; q ) r c y ( t ) = y ( t ) + k 0 * + k 1 * t + + k λ 1 * t λ 1 ,
where k a * R ; a = 0 , 1 , , λ 1 .

2.3. Fixed Point Theory

Now, we continue our preliminaries based on fixed point theory. We first begin by introducing some needed collections of sets.
Remark 1.
Let ( X * , · X * ) be a normed space. The collections P B ( X * ) , P CL ( X * ) , P CM ( X * ) and P CX ( X * ) contain all bounded, closed, compact and convex sets in X * , respectively.
By Θ , we consider a subcollection of all operators θ : [ 0 , ) [ 0 , ) (which are non-decreasing) with
a = 1 θ a ( t ) < , θ ( t ) < t , for all t > 0 .
Definition 8
([50]). Let E : X * X * and ρ : X * 2 R 0 . Then
(a) 
E is ρ - θ -contraction if
ρ ( y 1 , y 2 ) d ( E y 1 , E y 2 ) θ ( d ( y 1 , y 2 ) ) , y 1 , y 2 X * .
(b) 
E is ρ -admissible if ρ ( E y 1 , E y 2 ) 1 whenever ρ ( y 1 , y 2 ) 1 .
Definition 9
([56]). Let E : X * P ( X * ) be a multi-valued function.
(c) 
y X * is an endpoint of E if E ( y ) = { y } .
(d) 
E has an approximate endpoint property if
inf y 1 X * sup y 2 E ( y 1 ) d ( y 1 , y 2 ) = 0 .
Definition 10
([51]). Assume E : X P CL , B ( X ) , ρ : X 2 [ 0 , + ) and θ Θ . Let H d be the Pompeiu-Hausdorff metric. Then
(e) 
E is ρ -admissible if for every y 1 X and y 2 E y 1 ,
ρ ( y 1 , y 2 ) 1 ρ ( y 2 , y 3 ) 1 , for all y 3 E y 2 .
(f) 
E is an ρ - θ -contraction if
ρ ( y 1 , y 2 ) H d ( E y 1 , E y 2 ) θ ( d ( y 1 , y 2 ) ) , for all y 1 , y 2 X .
In the following, we recall needed fixed point and endpoint theorems as a reminder.
Theorem 2
([50]). Let a metric space ( X * , d ) be complete, ρ : X * × X * R , and θ Θ . Let E : X * X * be ρ - θ -contraction. Moreover,
(1) 
E is ρ -admissible on X * ;
(2) 
y 0 X * s.t. ρ ( y 0 , E y 0 ) 1 ;
(3) 
For every sequence { y i } in X * with y i y , if ρ ( y i , y i + 1 ) 1 for all i 1 , then ρ ( y i , y ) 1 for each i 1 .
Then E has a fixed point.
Theorem 3
([49]). Let Y X * be a non-empty bounded, closed, convex set, and E 1 and E 2 be defined on Y so that
(1) 
E 1 y 1 + E 2 y 2 Y , for all y 1 , y 2 Y ;
(2) 
The continuous function E 1 is compact;
(3) 
E 2 is contraction.
Then, y Y so that y = E 1 y + E 2 y (Krasnoselskii’s fixed point theorem).
Theorem 4
([51]). Let a metric space ( X * , d ) be complete, θ Θ , and ρ : X * × A * [ 0 , ) be strictly increasing. Let E : X * P CL , B ( X * ) be an ρ - θ -contraction. Moreover,
1. 
E is ρ -admissible;
2. 
ρ ( y 0 , y 1 ) 1 for some y 0 A * and y 1 E y 0 ;
3. 
For every sequence { y i } in X * with ρ ( y i , y i + 1 ) 1 and y i y for all i N , there is a subsequence { y i r } of { y i } so that ρ ( y i r , y ) 1 for each r N .
Then, E has a fixed point.
Theorem 5
([56]). Let a metric space ( X * , d ) be complete. Moreover,
1. 
The upper semi-continuous function θ : [ 0 , ) [ 0 , ) is so that lim inf t ( t θ ( t ) ) > 0 and θ ( t ) < t for all t > 0 ;
2. 
E : X * P CL , B ( X * ) is so that H d ( E y 1 , E y 2 ) θ ( d ( y 1 , y 2 ) ) for each y 1 , y 2 X * .
Then E has a unique endpoint if and only if it has an approximate endpoint property.

3. On the Generalized ( p ; q ) -Difference Navier Problem (4)

To conduct an analysis on the solutions of the generalized sequential ( p ; q ) -difference Navier problem (4), we introduce X * = y ( t ) : y ( t ) , D ( p ; q ) r 2 c y ( t ) C R ( I ( p ; q ) T ) as a spece containing all real-valued functions on I ( p ; q ) T , which is a Banach space with the norm
y X * = sup t I ( p ; q ) T | y ( t ) | + sup t I ( p ; q ) T | D ( p ; q ) r 2 c y ( t ) | ,
for each y X * .
In the following, we provide a lemma under which the structure of the solutions related to the proposed generalized sequential ( p ; q ) -difference Navier problem (4) is determined in the context of an integral equation.
Lemma 3.
Let g C R ( I ( p ; q ) T ) , r 1 ( 1 , 2 ] , r 2 ( 1 , 2 ] and β , λ , δ , γ R + . Then y * is a solution to the generalized ( p ; q ) -difference Navier problem
D ( p ; q ) r 1 c D ( p ; q ) r 2 c y ( t ) = g ( t ) , ( t [ 0 , T p ] , 0 < q < p 1 , T > 0 ) , β y ( t ) | t = 0 = λ y ( t ) | t = T p = δ D ( p ; q ) r 2 c y ( t ) | t = 0 = γ D ( p ; q ) r 2 c y ( t ) | t = T p = 0 ,
if and only if it is satisfied the ( p ; q ) -integral equation
y ( t ) = 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) g v p r 1 + r 2 1 d ( p ; q ) v pt T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) g v p r 1 + r 2 1 d ( p ; q ) v + p 2 ( T p ) r 2 + 1 t p T t r 2 + 1 T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) g v p r 1 1 d ( p ; q ) v .
Proof. 
Let y * be a solution of the generalized ( p ; q ) -Navier problem (17). Simply, we see that
D ( p ; q ) r 1 c D ( p ; q ) r 2 c y * ( t ) = g ( t ) .
Since r 1 ( 1 , 2 ] , by applying the r 1 -th order ( p ; q ) -integral of the Riemann-Liouville-like type, we get
D ( p ; q ) r 2 c y * ( t ) = 1 Γ ( p ; q ) ( r 1 ) p r 1 2 0 t ( t qv ) ( p ; q ) ( r 1 1 ) g v p r 1 1 d ( p ; q ) v + c 0 * + c 1 * t ,
for each the constants c 0 * , c 1 * R . The third condition, i.e., δ D ( p ; q ) r 2 c y ( t ) | t = 0 = 0 , gives c 0 * = 0 immediately. Thus, we have
D ( p ; q ) r 2 c y * ( t ) = 1 Γ ( p ; q ) ( r 1 ) p r 1 2 0 t ( t qv ) ( p ; q ) ( r 1 1 ) g v p r 1 1 d ( p ; q ) v + c 1 * t .
Now, in view of (19) and by the fourth condition, i.e., γ D ( p ; q ) r 2 c y ( t ) | t = T p = 0 , we obtain
γ Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) g v p r 1 1 d ( p ; q ) v + γ c 1 * T p = 0 ,
and accordingly,
c 1 * = p T Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) g v p r 1 1 d ( p ; q ) v .
In the following, by (20), the Equation (19) becomes
D ( p ; q ) r 2 c y * ( t ) = 1 Γ ( p ; q ) ( r 1 ) p r 1 2 0 t ( t qv ) ( p ; q ) ( r 1 1 ) g v p r 1 1 d ( p ; q ) v pt T Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) g v p r 1 1 d ( p ; q ) v .
Similarly, since r 2 ( 1 , 2 ] , by taking the r 2 -th order ( p ; q ) -integral of the Riemann-Liouville-like type on (21), we may write
y * ( t ) = 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) g v p r 1 + r 2 1 d ( p ; q ) v p t 1 + r 2 T Γ ( p ; q ) ( 2 + r 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) g v p r 1 1 d ( p ; q ) v + c 0 * * + c 1 * * t ,
for each the constants c 0 * * , c 1 * * R . The first condition, i.e., β y ( t ) | t = 0 = 0 , yields c 0 * * = 0 immediately. Hence,
y * ( t ) = 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) g v p r 1 + r 2 1 d ( p ; q ) v p t 1 + r 2 T Γ ( p ; q ) ( 2 + r 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) g v p r 1 1 d ( p ; q ) v + c 1 * * t .
Next, the second condition, i.e., λ y ( t ) | t = T p = 0 , gives
c 1 * * = p T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) g v p r 1 + r 2 1 d ( p ; q ) v + p 2 T p 1 + r 2 T 2 Γ ( p ; q ) ( 2 + r 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) g v p r 1 1 d ( p ; q ) v .
Put c 1 * * into (22). Therefore,
y * ( t ) = 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) g v p r 1 + r 2 1 d ( p ; q ) v pt T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) g v p r 1 + r 2 1 d ( p ; q ) v + p 2 ( T p ) r 2 + 1 t p T t r 2 + 1 T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) g v p r 1 1 d ( p ; q ) v ,
and this shows that y * is satisfied ( p ; q ) -integral Equation (18). We can prove the converse by direct computation and this completes the proof. □
Based on the previous lemma, a new operator G : X * X * is defined by
G y ( t ) = 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) E v p r 1 + r 2 1 , y v p r 1 + r 2 1 , D ( p ; q ) r 2 c y v p r 1 + r 2 1 d ( p ; q ) v pt T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) E v p r 1 + r 2 1 , y v p r 1 + r 2 1 , D ( p ; q ) r 2 c y v p r 1 + r 2 1 d ( p ; q ) v + p 2 ( T p ) r 2 + 1 t p T t r 2 + 1 T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) E v p r 1 1 , y v p r 1 1 , D ( p ; q ) r 2 c y v p r 1 1 d ( p ; q ) v .
The function y * as a solution of the generalized ( p ; q ) -difference Navier problem (4) is a fixed point of the newly defined operator G.
Before proving the main results, we recall a double ( p ; q ) -integral in the following proposition which is used later.
Proposition 1
([30]). Let r 1 , r 2 R . Then
I = 0 t 0 v p 1 r 2 ( t qv ) ( p ; q ) ( 1 r 2 ) v p ( 1 r 2 ) q w ( p ; q ) ( r 1 + r 2 5 ) d ( p ; q ) w d ( p ; q ) v = p 2 r 2 2 + r 1 + r 2 4 2 Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 1 + r 2 4 ) Γ ( p ; q ) ( r 1 1 ) t r 1 2 .
Also, keep in mind the following notations for simplicity:
L 1 = 2 ( T p ) r 1 + r 2 Γ ( p ; q ) ( r 1 + r 2 + 1 ) + 2 ( T p ) r 1 + r 2 Γ ( p ; q ) ( r 1 + 1 ) Γ ( p ; q ) ( r 2 + 2 ) , L 2 = ( T p ) r 1 2 Γ ( p ; q ) ( r 1 1 ) + p r 2 ( T p ) r 1 Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 1 + r 2 + 1 ) + 1 + Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 2 + 2 ) p r 2 ( T p ) r 1 Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 + 1 ) ,
and
L 3 = ( T p ) r 1 + r 2 Γ ( p ; q ) ( r 1 + r 2 + 1 ) + 2 ( T p ) r 1 + r 2 Γ ( p ; q ) ( r 1 + 1 ) Γ ( p ; q ) ( r 2 + 2 ) , L 4 = p r 2 ( T p ) r 1 Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 1 + r 2 + 1 ) + 1 + Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 2 + 2 ) p r 2 ( T p ) r 1 Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 + 1 ) .
We start our first existence theorem as follows, with the help of the ρ - θ -contractions and ρ -admissible functions.
Theorem 6.
Let Λ : R 2 × R 2 R , E C ( [ 0 , T p ] × X * 2 , X * ) and θ Θ . Moreover,
( P 1 )
For each y 1 , y 2 , x 1 , x 2 X * and t [ 0 , T p ] , we have
| E ( t , y 1 , x 1 ) E ( t , y 2 , x 2 ) | L ˜ θ ( | y 1 y 2 | + | x 1 x 2 | ) ,
and
Λ y 1 ( t ) , x 1 ( t ) , y 2 ( t ) , x 2 ( t ) 0 ,
so that L ˜ = 1 L 1 + L 2 ;
( P 2 )
Some y 0 X * exists s.t. t [ 0 , T p ] ,
Λ y 0 ( t ) , D ( p ; q ) r 2 c y 0 ( t ) , G y 0 ( t ) , D ( p ; q ) r 2 c G y 0 ( t ) 0 ,
and also, we have
Λ y 1 ( t ) , D ( p ; q ) r 2 c y 1 ( t ) , y 2 ( t ) , D ( p ; q ) r 2 c y 2 ( t ) 0 ,
which gives
Λ G y 1 ( t ) , D ( p ; q ) r 2 c G y 1 ( t ) , G y 2 ( t ) , D ( p ; q ) r 2 c G y 2 ( t ) 0 ,
for each y 1 , y 2 X * and all t [ 0 , T p ] ;
( P 3 )
For every sequence { y i } i 1 X * converging to y , the inequality
Λ y i ( t ) , D ( p ; q ) r 2 c y i ( t ) , y i + 1 ( t ) , D ( p ; q ) r 2 c y i + 1 ( t ) 0 ,
gives
Λ y i ( t ) , D ( p ; q ) r 2 c y i ( t ) , y ( t ) , D ( p ; q ) r 2 c y ( t ) 0 ,
for each i and t [ 0 , T p ] .
Then, the generalized sequential ( p ; q ) -difference Navier problem (4) has a solution on [ 0 , T p ] .
Proof. 
Let y 1 , y 2 X * be arbitrary so that
Λ y 1 ( t ) , D ( p ; q ) r 2 c y 1 ( t ) , y 2 ( t ) , D ( p ; q ) r 2 c y 2 ( t ) 0 ,
for all t [ 0 , T p ] . For simplicity in the computations, we put
E t , p r 1 , r 2 ( y ) = E t p r 1 + r 2 1 , y t p r 1 + r 2 1 , D ( p ; q ) r 2 c y t p r 1 + r 2 1 , ( t [ 0 , T p ] ) , E t , p r 1 ( y ) = E t p r 1 1 , y t p r 1 1 , D ( p ; q ) r 2 c y t p r 1 1 , ( t [ 0 , T p ] ) .
By the hypotheses, we clearly have
| E t , p r 1 , r 2 ( y 1 ) E t , p r 1 , r 2 ( y 2 ) | = | E t p r 1 + r 2 1 , y 1 t p r 1 + r 2 1 , D ( p ; q ) r 2 c y 1 t p r 1 + r 2 1 E t p r 1 + r 2 1 , y 2 t p r 1 + r 2 1 , D ( p ; q ) r 2 c y 2 t p r 1 + r 2 1 | L ˜ θ | y 1 t p r 1 + r 2 1 y 2 t p r 1 + r 2 1 | + | D ( p ; q ) r 2 c y 1 t p r 1 + r 2 1 D ( p ; q ) r 2 c y 2 t p r 1 + r 2 1 | L ˜ θ ( y 1 y 2 X * ) .
Similarly,
| E t , p r 1 ( y 1 ) E t , p r 1 ( y 2 ) | L ˜ θ | y 1 t p r 1 1 y 2 t p r 1 1 | + | D ( p ; q ) r 2 c y 1 t p r 1 1 D ( p ; q ) r 2 c y 2 t p r 1 1 | L ˜ θ ( y 1 y 2 X * ) .
Now, by (26), we may write
| G y 1 ( t )   G y 2 ( t ) | 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) | E v , p r 1 , r 2 ( y 1 ) E v , p r 1 , r 2 ( y 2 ) | d ( p ; q ) v + pt T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) | E v , p r 1 , r 2 ( y 1 ) E v , p r 1 , r 2 ( y 2 ) | d ( p ; q ) v + | p 2 ( T p ) r 2 + 1 t | + | p T t r 2 + 1 | T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) | E v , p r 1 ( y 1 ) E v , p r 1 ( y 2 ) | d ( p ; q ) v L ˜ θ ( y 1 y 2 X * ) Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) d ( p ; q ) v + pt L ˜ θ ( y 1 y 2 X * ) T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) d ( p ; q ) v + | p 2 ( T p ) r 2 + 1 t | + | p T t r 2 + 1 | L ˜ θ ( y 1 y 2 X * ) T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) d ( p ; q ) v 2 ( T p ) r 1 + r 2 Γ ( p ; q ) ( r 1 + r 2 + 1 ) L ˜ θ ( y 1 y 2 X * ) + 2 ( T p ) r 1 + r 2 Γ ( p ; q ) ( r 1 + 1 ) Γ ( p ; q ) ( r 2 + 2 ) L ˜ θ ( y 1 y 2 X * ) = L ˜ L 1 θ ( y 1 y 2 X * ) .
Also, we have
| ( D ( p ; q ) r 2 c G y 1 ) ( t ) D ( p ; q ) r 2 c G y 2 ( t ) | ( T p ) r 1 2 Γ ( p ; q ) ( r 1 1 ) L ˜ θ ( y 1 y 2 X * ) + p r 2 ( T p ) r 1 Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 1 + r 2 + 1 ) L ˜ θ ( y 1 y 2 X * ) + 1 + Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 2 + 2 ) p r 2 ( T p ) r 1 Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 + 1 ) L ˜ θ ( y 1 y 2 X * ) = L ˜ L 2 θ ( y 1 y 2 X * ) .
These give G y 1 G y 2 X * ( L 1 + L 2 ) L ˜ θ ( y 1 y 2 X * ) = θ ( y 1 y 2 X * ) . Now, define ρ : X * × X * [ 0 , ) by
ρ ( y 1 , y 2 ) = 1 , if Λ y 1 ( t ) , D ( p ; q ) r 2 c y 1 ( t ) , y 2 ( t ) , D ( p ; q ) r 2 c y 2 ( t ) 0 , 0 , otherwise ,
for each y 1 , y 2 X * . Then, by using these arbitrary members y 1 , y 2 X * , we get
ρ ( y 1 , y 2 ) d ( G y 1 , G y 2 ) θ ( d ( y 1 , y 2 ) ) .
This inequality confirms that G is an ρ - θ -contraction. Moreover, G can be proved easily to be ρ -admissible and ρ ( y 0 , G y 0 ) 1 . Finally, consider { y i } i 1 X * converging to y and let ρ ( y i , y i + 1 ) 1 for all i. Based on the definition of the non-negative function ρ , one can write
Λ y i ( t ) , D ( p ; q ) r 2 c y i ( t ) , y i + 1 ( t ) , D ( p ; q ) r 2 c y i + 1 ( t ) 0 .
So the hypothesis of theorem implies that
Λ y i ( t ) , D ( p ; q ) r 2 c y i ( t ) , y ( t ) , D ( p ; q ) r 2 c y ( t ) 0 .
Therefore, ρ ( y i , y ) 1 for all i. Since all hypotheses of Theorem 2 are fulfilled, so G ( y * * ) = y * * X * . That means that y * * is a solution of the generalized sequential ( p ; q ) -difference Navier problem (4). □
The next existence theorem gets help from the standard contractions along with the compact operators used in the Krasnoselskii’s fixed point theorem.
Theorem 7.
Let E C ( [ 0 , T p ] × X * 2 , X * ) . Moreover,
( P 4 )
k C ( [ 0 , T p ] , R ) s.t. t [ 0 , T p ] and y 1 , y 2 , x 1 , x 2 X * ,
| E ( t , y 1 , x 1 ) E ( t , y 2 , x 2 ) |     k ( t ) ( | y 1 y 2 | + | x 1 x 2 | ) ;
( P 5 )
f C ( [ 0 , T p ] , R + ) and there is a non-decreasing function θ C ( R + , R + ) s.t. for all t [ 0 , T p ] and each y 1 , y 2 X * ,
| E ( t , y 1 , y 2 ) |     f ( t ) θ ( | y 1 | + | y 2 | ) .
Then, the generalized sequential ( p ; q ) -difference Navier problem (4) has at least one solution if
L = k ( L 3 + L 4 ) < 1 ,
where k = sup t [ 0 , T p ] | k ( t ) | and L 3 , L 4 are supposed in (24).
Proof. 
Set f = sup t [ 0 , T p ] | f ( t ) | and choose an approximate value ε > 0 so that
ε θ ( y X * ) f ( L 1 + L 2 ) ,
where L 1 and L 2 are assumed in (23), and also, define Y ε = { y X * : y X * ε } . This non-empty set is bounded, closed and convex in X * . Two operators G 1 and G 2 can be defined on Y ε as
G 1 y ( t ) = 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) E v , p r 1 , r 2 ( y ) d ( p ; q ) v ,
and
G 2 y ( t ) = pt T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) E v , p r 1 , r 2 ( y ) d ( p ; q ) v + p 2 ( T p ) r 2 + 1 t p T t r 2 + 1 T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) E v , p r 1 ( y ) d ( p ; q ) v ,
for all t [ 0 , T p ] . Put θ ^ = sup y X * θ ( y X * ) . For each y 1 , y 2 Y ε , the following inequalities are satisfied as follow
| ( G 1 y 1 +   G 2 y 2 ) ( t ) | 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) | E v , p r 1 , r 2 ( y 1 ) | d ( p ; q ) v + pt T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) | E v , p r 1 , r 2 ( y 2 ) | d ( p ; q ) v + | p 2 ( T p ) r 2 + 1 t | + | p T t r 2 + 1 | T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) | E v , p r 1 ( y 2 ) | d ( p ; q ) v 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) f ( v ) θ | y 1 ( v ) | + | D ( p ; q ) r 2 c y 1 ( v ) | d ( p ; q ) v + pt T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) f ( v ) θ | y 2 ( v ) | + | D ( p ; q ) r 2 c y 2 ( v ) | d ( p ; q ) v + | p 2 ( T p ) r 2 + 1 t | + | p T t r 2 + 1 | T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) f ( v ) θ | y 2 ( v ) | + | D ( p ; q ) r 2 c y 2 ( v ) | d ( p ; q ) v θ ^ f 2 ( T p ) r 1 + r 2 Γ ( p ; q ) ( r 1 + r 2 + 1 ) + 2 ( T p ) r 1 + r 2 Γ ( p ; q ) ( r 1 + 1 ) Γ ( p ; q ) ( r 2 + 2 ) = θ ^ f L 1 ,
and
| D ( p ; q ) r 2 c G 1 y 1 + D ( p ; q ) r 2 c G 2 y 2 ( t ) | θ ^ f [ ( T p ) r 1 Γ ( p ; q ) ( r 1 1 ) + p r 2 ( T p ) r 1 Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 1 + r 2 + 1 ) +   1 + Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 2 + 2 ) p r 2 ( T p ) r 1 Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 + 1 ) ] = θ ^ f L 2 .
Therefore, G 1 y 1 + G 2 y 2 X * θ ^ f ( L 1 + L 2 ) ε . That is,
( G 1 y 1 + G 2 y 2 ) Y ε .
The continuity property for the single-valued function E follows that G 1 is continuous too. So, on the set Y ε and for each member y in it, we estimate
| G 1 y ( t ) | 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) × | E v p r 1 + r 2 1 , y v p r 1 + r 2 1 , D ( p ; q ) r 2 c y v p r 1 + r 2 1 | d ( p ; q ) v ( T p ) r 1 + r 2 Γ ( p ; q ) ( r 1 + r 2 + 1 ) f θ ( y X * ) ,
and
| D ( p ; q ) r 2 c G 1 y ( t ) | 1 Γ ( p ; q ) ( r 1 + r 2 4 ) Γ ( p ; q ) ( 2 r 2 ) p r 1 + r 2 4 2 + 2 r 2 2 × 0 t 0 v p 1 r 2 ( t qv ) ( p ; q ) ( 1 r 2 ) v p ( 1 r 2 ) q w ( p ; q ) ( r 1 + r 2 5 ) × | E w p r 1 + r 2 5 , y w p r 1 + r 2 5 , D ( p ; q ) r 2 c y w p r 1 + r 2 5 | d ( p ; q ) w d ( p ; q ) v ( T p ) r 1 2 Γ ( p ; q ) ( r 1 1 ) f θ ( y X * ) .
Thus,
G 1 y X * ( T p ) r 1 + r 2 Γ ( p ; q ) ( r 1 + r 2 + 1 ) + ( T p ) r 1 2 Γ ( p ; q ) ( r 1 1 ) f θ ( ε ) .
Immediately, and from the above inequality, one can find the uniform boundedness of G 1 on Y ε . To survey the compactness of G 1 on Y ε , let t 1 , t 2 [ 0 , T p ] be chosen arbitrarily so that t 1 < t 2 . Then, by the notation (25), estimate
| G 1 y ( t 2 ) G 1 y ( t 1 ) | = | 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t 2 ( t 2 qv ) ( p ; q ) ( r 1 + r 2 1 ) E v , p r 1 , r 2 ( y ) d ( p ; q ) v 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 1 2 0 t 1 ( t 1 qv ) ( p ; q ) ( r 1 + r 2 1 ) E v , p r 1 , r 2 ( y ) d ( p ; q ) v | | 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t 1 ( t 2 qv ) ( p ; q ) ( r 1 + r 2 1 ) ( t 1 qv ) ( p ; q ) ( r 1 + r 2 1 ) E v , p r 1 , r 2 ( y ) d ( p ; q ) v | + | 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 1 2 t 1 t 2 ( t 2 qv ) ( p ; q ) ( r 1 + r 2 1 ) E v , p r 1 , r 2 ( y ) d ( p ; q ) v | 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t 1 ( t 2 qv ) ( p ; q ) ( r 1 + r 2 1 ) ( t 1 qv ) ( p ; q ) ( r 1 + r 2 1 ) | E v , p r 1 , r 2 ( y ) | d ( p ; q ) v + 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 1 2 t 1 t 2 ( t 2 qv ) ( p ; q ) ( r 1 + r 2 1 ) | E v , p r 1 , r 2 ( y ) | d ( p ; q ) v f θ ( ε ) [ 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t 1 ( t 2 qv ) ( p ; q ) ( r 1 + r 2 1 ) ( t 1 qv ) ( p ; q ) ( r 1 + r 2 1 ) d ( p ; q ) v + 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 1 2 t 1 t 2 ( t 2 qv ) ( p ; q ) ( r 1 + r 2 1 ) d ( p ; q ) v ] .
The last inequality (its right-hand side) is independent of y . So | G 1 y ( t 2 ) G 1 y ( t 1 ) | tends to zero as t 1 tends to t 2 . Also,
| D ( p ; q ) r 2 c G 1 y ( t 2 ) D ( p ; q ) r 2 c G 1 y ( t 1 ) | | 1 Γ ( p ; q ) ( r 1 + r 2 4 ) Γ ( p ; q ) ( 2 r 2 ) p r 1 + r 2 4 2 + 2 r 2 2 × 0 t 2 0 v p 1 r 2 ( t 2 qv ) ( p ; q ) ( 1 r 2 ) v p ( 1 r 2 ) q w ( p ; q ) ( r 1 + r 2 5 ) E w , p r 1 , r 2 ( y ) d ( p ; q ) w d ( p ; q ) v 1 Γ ( p ; q ) ( r 1 + r 2 4 ) Γ ( p ; q ) ( 2 r 2 ) p r 1 + r 2 4 2 + 2 r 2 2 × 0 t 1 0 v p 1 r 2 ( t 1 qv ) ( p ; q ) ( 1 r 2 ) v p ( 1 r 2 ) q w ( p ; q ) ( r 1 + r 2 5 ) E w , p r 1 , r 2 ( y ) d ( p ; q ) w d ( p ; q ) v | 1 Γ ( p ; q ) ( r 1 + r 2 4 ) Γ ( p ; q ) ( 2 r 2 ) p r 1 + r 2 4 2 + 2 r 2 2 × 0 t 1 0 v p 1 r 2 ( t 2 qv ) ( p ; q ) ( 1 r 2 ) ( t 1 qv ) ( p ; q ) ( 1 r 2 ) × v p ( 1 r 2 ) q w ( p ; q ) ( r 1 + r 2 5 ) | E w , p r 1 , r 2 ( y ) | d ( p ; q ) w d ( p ; q ) v + 1 Γ ( p ; q ) ( r 1 + r 2 4 ) Γ ( p ; q ) ( 2 r 2 ) p r 1 + r 2 4 2 + 2 r 2 2 × t 1 t 2 0 v p 1 r 2 ( t 2 qv ) ( p ; q ) ( 1 r 2 ) v p ( 1 r 2 ) q w ( p ; q ) ( r 1 + r 2 5 ) | E w , p r 1 , r 2 ( y ) | d ( p ; q ) w d ( p ; q ) v f θ ( ε ) [ 1 Γ ( p ; q ) ( r 1 + r 2 4 ) Γ ( p ; q ) ( 2 r 2 ) p r 1 + r 2 4 2 + 2 r 2 2 × 0 t 1 0 v p 1 r 2 ( t 2 qv ) ( p ; q ) ( 1 r 2 ) ( t 1 qv ) ( p ; q ) ( 1 r 2 ) v p ( 1 r 2 ) q w ( p ; q ) ( r 1 + r 2 5 ) d ( p ; q ) w d ( p ; q ) v + 1 Γ ( p ; q ) ( r 1 + r 2 4 ) Γ ( p ; q ) ( 2 r 2 ) p r 1 + r 2 4 2 + 2 r 2 2 × t 1 t 2 0 v p 1 r 2 ( t 2 qv ) ( p ; q ) ( 1 r 2 ) v p ( 1 r 2 ) q w ( p ; q ) ( r 1 + r 2 5 ) d ( p ; q ) w d ( p ; q ) v ] .
Once again, the last inequality (its right-hand side) is independent of y and so,
| D ( p ; q ) r 2 c G 1 y ( t 2 ) D ( p ; q ) r 2 c G 1 y ( t 1 ) | 0 ,
as t 1 t 2 . Therefore,
G 1 y ( t 2 ) G 1 y ( t 1 ) X * 0 ,
as t 1 t 2 . Hence, the equi-continuity of the operator G 1 is proved. By the Arzelá-Ascoli theorem, the compactness of G 1 is to be held on Y ε . Lastly, it is showed that G 2 is a contraction. For each y 1 , y 2 Y ε , we have
| ( G 2 y 1 ) ( t ) G 2 y 2 ( t ) | p | t | T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) | E v , p r 1 , r 2 ( y 1 ) E v , p r 1 , r 2 ( y 2 ) | d ( p ; q ) v + p 2 ( T p ) r 2 + 1 | t | + p T | t r 2 + 1 | T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) | E v , p r 1 ( y 1 ) E v , p r 1 ( y 2 ) | d ( p ; q ) v p | t | T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) × k ( v ) θ | y 1 ( v ) y 2 ( v ) | + | D ( p ; q ) r 2 c y 1 ( v ) D ( p ; q ) r 2 c y 2 ( v ) | d ( p ; q ) v + p 2 ( T p ) r 2 + 1 | t | + p T | t r 2 + 1 | T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) × k ( v ) θ | y 1 ( v ) y 2 ( v ) | + | D ( p ; q ) r 2 c y 1 ( v ) D ( p ; q ) r 2 c y 2 ( v ) | d ( p ; q ) v ( T p ) r 1 + r 2 Γ ( p ; q ) ( r 1 + r 2 + 1 ) k y 1 y 2 X * + 2 ( T p ) r 1 + r 2 Γ ( p ; q ) ( r 1 + 1 ) Γ ( p ; q ) ( r 2 + 2 ) k y 1 y 2 X * = k L 3 y 1 y 2 X * ,
and
| ( D ( p ; q ) r 2 c G 2 y 1 ) ( t ) D ( p ; q ) r 2 c G 2 y 2 ( t ) | p 1 + r 2 | t 1 r 2 | T Γ ( p ; q ) ( r 1 + r 2 ) Γ ( p ; q ) ( 2 r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) × k ( v ) θ | y 1 ( v ) y 2 ( v ) | + | D ( p ; q ) r 2 c y 1 ( v ) D ( p ; q ) r 2 c y 2 ( v ) | d ( p ; q ) v + p 2 + r 2 ( T p ) r 2 + 1 | t 1 r 2 | + p 1 + r 2 T Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( 2 r 2 ) | t | T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) × k ( v ) θ | y 1 ( v ) y 2 ( v ) | + | D ( p ; q ) r 2 c y 1 ( v ) D ( p ; q ) r 2 c y 2 ( v ) | d ( p ; q ) v p r 2 ( T p ) r 1 Γ ( p ; q ) ( r 1 + r 2 + 1 ) Γ ( p ; q ) ( 2 r 2 ) k y 1 y 2 X * + 1 + Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 2 + 2 ) p r 2 ( T p ) r 1 Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 + 1 ) k y 1 y 2 X * = k L 4 y 1 y 2 X * .
Thus,
G 2 y 1 G 2 y 2 X * k ( L 3 + L 4 ) y 1 y 2 X * = L y 1 y 2 X * ,
where L < 1 , and under this Lipschitz constant, G 2 is a contraction on Y ε . The conclusion of Theorem 3 implies the existence of solution for the generalized sequential ( p ; q ) -difference Navier problem (4). □

4. On the Generalized ( p ; q ) -Difference Navier Problem (5)

The existence theorems for the generalized sequential ( p ; q ) -difference Navier inclusion problem (5) are established in this section.
For the generalized sequential ( p ; q ) -difference Navier inclusion problem (5), we call y C X * ( I ( p ; q ) T , X * ) as a solution if the given boundary conditions are satisfied for y and also, there is some F ¯ L 1 ( I ( p ; q ) T ) so that F ¯ ( t ) E t , y ( t ) , D ( p ; q ) r 2 c y ( t ) for almost all t I ( p ; q ) T and
y ( t ) = 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) F ¯ v p r 1 + r 2 1 d ( p ; q ) v pt T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) F ¯ v p r 1 + r 2 1 d ( p ; q ) v + p 2 ( T p ) r 2 + 1 t p T t r 2 + 1 T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) F ¯ v p r 1 1 d ( p ; q ) v ,
for all t I ( p ; q ) T . The set of all selections of the multi-valued function E is given by
( S ) E , y = F ¯ L 1 ( I ( p ; q ) T ) : F ¯ ( t ) E t , y ( t ) , D ( p ; q ) r 2 c y ( t ) for all t I ( p ; q ) T ,
for each y X * . Moreover, the operator F : X * P ( X * ) is considered as
F ( y ) = { X * : there exists F ¯ ( S ) E , y : ( t ) = g ˇ ( t ) for all t I ( p ; q ) T } ,
where
g ˇ ( t ) = 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) F ¯ v p r 1 + r 2 1 d ( p ; q ) v pt T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) F ¯ v p r 1 + r 2 1 d ( p ; q ) v + p 2 ( T p ) r 2 + 1 t p T t r 2 + 1 T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) F ¯ v p r 1 1 d ( p ; q ) v .
For simplicity, put
α 1 = α L 1 and α 2 = α L 2 .
In this step, we are going to use the special multi-valued functions of the ρ - θ -contractive type and ρ -admissible type for proving the existence result related to solutions of the generalized sequential ( p ; q ) -difference Navier inclusion problem (5).
Theorem 8.
Let E : I ( p ; q ) T × X * 2 P CM ( X * ) . Moreover,
( P 6 )
E is bounded and integrable so that E ( · , y 1 , y 2 ) : I ( p ; q ) T P CM is measurable for each y 1 , y 2 X * ;
( P 7 )
There are α C ( I ( p ; q ) T , [ 0 , ) ) and θ Θ so that
H d E ( t , y 1 , y 2 ) , E ( t , y 1 ˜ , y 2 ˜ ) α ( t ) L ˜ α θ ( | y 1 y 1 ˜ | + | y 2 y 2 ˜ | ) ,
for all t I ( p ; q ) T and each y 1 , y 2 , y 1 ˜ , y 2 ˜ X * , where sup t I ( p ; q ) T | α ( t ) | = α , L ˜ = 1 L 1 + L 2 and L 1 , L 2 are the constants assumed in (23);
( P 8 )
There is Λ : R 2 × R 2 R so that Λ ( ( y 1 , y 2 ) , ( y 1 ˜ , y 2 ˜ ) ) 0 for each y 1 , y 2 , y 1 ˜ , y 2 ˜ X * ;
( P 9 )
There is a sequence { y i } i 1 X * converging to y so that the inequality
Λ y i ( t ) , D ( p ; q ) r 2 c y i ( t ) , y i + 1 ( t ) , D ( p ; q ) r 2 c y i + 1 ( t ) 0 , t I ( p ; q ) T , i 1 ,
implies the existence of a subsequence { y i r } r 1 of { y i } with
Λ y i r ( t ) , D ( p ; q ) r 2 c y i r ( t ) , y ( t ) , D ( p ; q ) r 2 c y ( t ) 0 ,
for all t I ( p ; q ) T and r 1 ;
( P 10 )
There are y 0 X * and F ( y 0 ) so that
Λ y 0 ( t ) , D ( p ; q ) r 2 c y 0 ( t ) , ( t ) , D ( p ; q ) r 2 c ( t ) 0 ,
for all t I ( p ; q ) T , where F : X * P ( X * ) is defined by (29);
( P 11 )
For each y X * and F ( y ) such that
Λ y ( t ) , D ( p ; q ) r 2 c y ( t ) , ( t ) , D ( p ; q ) r 2 c ( t ) 0 ,
there is some g ˇ F ( y ) so that
Λ ( t ) , D ( p ; q ) r 2 c ( t ) , g ˇ ( t ) , D ( p ; q ) r 2 c g ˇ ( t ) 0 ,
for all t I ( p ; q ) T .
Then, the generalized sequential ( p ; q ) -difference Navier inclusion problem (5) has a solution.
Proof. 
It is known that a fixed point of F : X * P ( X * ) is the solution of the generalized sequential ( p ; q ) -difference Navier inclusion problem (5). The closed-valued multi-valued function t E t , y ( t ) , D ( p ; q ) r 2 c y ( t ) is measurable for each y X * . So, E has also a measurable selection; that is, ( S ) E , y .
In the next step, we establish that F ( y ) X * is closed for each y X * . Let { y i } i 1 be a sequence in F ( y ) so that y i y . For every i, F ¯ i ( S ) E , y so that
y i ( t ) = 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) F ¯ i v p r 1 + r 2 1 d ( p ; q ) v pt T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) F ¯ i v p r 1 + r 2 1 d ( p ; q ) v + p 2 ( T p ) r 2 + 1 t p T t r 2 + 1 T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) F ¯ i v p r 1 1 d ( p ; q ) v ,
for almost all t I ( p ; q ) T . Note that E is compact-valued. Hence, a subsequence { F ¯ i } i 1 exists so that converges to some F ¯ L 1 ( I ( p ; q ) T ) . Immediately, we find that F ¯ ( S ) E , y and
y i ( t ) y ( t ) = 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) F ¯ v p r 1 + r 2 1 d ( p ; q ) v pt T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) F ¯ v p r 1 + r 2 1 d ( p ; q ) v + p 2 ( T p ) r 2 + 1 t p T t r 2 + 1 T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) F ¯ v p r 1 1 d ( p ; q ) v ,
for all t I ( p ; q ) T . Consequently, y F ( y ) and F possesses the closed values. Again, since E has the compact values, clearly one can show that F ( y ) is bounded for every y X * .
In this step, we establish that F is an ρ - θ -contraction. First, define a non-negative function ρ on X * × X * as
ρ ( y , y ˜ ) = 1 if Λ y ( t ) , D ( p ; q ) r 2 c y ( t ) , y ˜ ( t ) , D ( p ; q ) r 2 c y ˜ ( t ) 0 , 0 otherwise ,
for each y , y ˜ X * . Let y , y ˜ X * and 1 F ( y ˜ ) . Choose F ¯ 1 ( S ) E , y ˜ so that
1 ( t ) = 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) F ¯ 1 v p r 1 + r 2 1 d ( p ; q ) v pt T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) F ¯ 1 v p r 1 + r 2 1 d ( p ; q ) v + p 2 ( T p ) r 2 + 1 t p T t r 2 + 1 T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) F ¯ 1 v p r 1 1 d ( p ; q ) v ,
for all t I ( p ; q ) T . From (31), one may write
H d E t , y , D ( p ; q ) r 2 c y , E t , y ˜ , D ( p ; q ) r 2 c y ˜ α ( t ) L ˜ α θ | y y ˜ | + | D ( p ; q ) r 2 c y D ( p ; q ) r 2 c y ˜ | ,
for every y , y ˜ X * with
Λ y ( t ) , D ( p ; q ) r 2 c y ( t ) , y ˜ ( t ) , D ( p ; q ) r 2 c y ˜ ( t ) 0 ,
for almost all t I ( p ; q ) T . There is some g ˇ E t , y ( t ) , D ( p ; q ) r 2 c y ( t ) so that
| F ¯ 1 ( t ) g ˇ |     α ( t ) L ˜ α θ | y ( t ) y ˜ ( t ) | + | D ( p ; q ) r 2 c y ( t ) D ( p ; q ) r 2 c y ˜ ( t ) | .
Define F : I ( p ; q ) T P ( X * ) by
F ( t ) = g ˇ X * : | F ¯ 1 ( t ) g ˇ | α ( t ) L ˜ α θ | y ( t ) y ˜ ( t ) | + | D ( p ; q ) r 2 c y ( t ) D ( p ; q ) r 2 c y ˜ ( t ) | ,
for all t I ( p ; q ) T . Note that F ¯ 1 and ω = α L ˜ α θ | y y ˜ | + | D ( p ; q ) r 2 c y D ( p ; q ) r 2 c y ˜ | are measurable. Therefore, F ( · ) E · , y ( · ) , D ( p ; q ) r 2 c y ( · ) is measurable. This time, we choose F ¯ 2 E t , y ( t ) , D ( p ; q ) r 2 c y ( t ) so that for all t I ( p ; q ) T ,
| F ¯ 1 ( t ) F ¯ 2 ( t ) | α ( t ) L ˜ α θ | y ( t ) y ˜ ( t ) | + | D ( p ; q ) r 2 c y ( t ) D ( p ; q ) r 2 c y ˜ ( t ) | .
Consider 2 F ( y ) as
2 ( t ) = 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) F ¯ 2 v p r 1 + r 2 1 d ( p ; q ) v pt T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) F ¯ 2 v p r 1 + r 2 1 d ( p ; q ) v + p 2 ( T p ) r 2 + 1 t p T t r 2 + 1 T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) F ¯ 2 v p r 1 1 d ( p ; q ) v ,
for all t I ( p ; q ) T . Then,
| 1 ( t ) 2 ( t ) | 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) | F ¯ 1 v p r 1 + r 2 1 F ¯ 2 v p r 1 + r 2 1 | d ( p ; q ) v + pt T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) | F ¯ 1 v p r 1 + r 2 1 F ¯ 2 v p r 1 + r 2 1 | d ( p ; q ) v + | p 2 ( T p ) r 2 + 1 t | + | p T t r 2 + 1 | T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) | F ¯ 1 v p r 1 1 F ¯ 2 v p r 1 1 | d ( p ; q ) v 2 ( T p ) r 1 + r 2 Γ ( p ; q ) ( r 1 + r 2 + 1 ) α L ˜ α θ ( y y ˜ X * ) + 2 ( T p ) r 1 + r 2 Γ ( p ; q ) ( r 1 + 1 ) Γ ( p ; q ) ( r 2 + 2 ) α L ˜ α θ ( y y ˜ X * ) 2 ( T p ) r 1 + r 2 Γ ( p ; q ) ( r 1 + r 2 + 1 ) + 2 ( T p ) r 1 + r 2 Γ ( p ; q ) ( r 1 + 1 ) Γ ( p ; q ) ( r 2 + 2 ) α L ˜ α θ ( y y ˜ X * ) = L ˜ L 1 θ ( y y ˜ X * ) ,
and
| D ( p ; q ) r 2 c 1 ( t ) D ( p ; q ) r 2 c 2 ( t ) | [ ( T p ) r 1 2 Γ ( p ; q ) ( r 1 1 ) + p r 2 ( T p ) r 1 Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 1 + r 2 + 1 ) + 1 + Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 2 + 2 ) p r 2 ( T p ) r 1 Γ ( p ; q ) ( 2 r 2 ) Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 + 1 ) ] × α L ˜ α θ y y ˜ X * = L ˜ L 2 θ y y ˜ X * ,
for all t I ( p ; q ) T . Thus,
1 2 X * = sup t I ( p ; q ) T | 1 ( t ) 2 ( t ) | + sup t I ( p ; q ) T | D ( p ; q ) r 2 c 1 ( t ) D ( p ; q ) r 2 c 2 ( t ) | ( L 1 + L 2 ) L ˜ θ ( y y ˜ X * ) = θ ( y y ˜ X * ) .
Hence,
ρ ( y , y ˜ ) H d F ( y ) F ( y ˜ ) θ ( y y ˜ X * ) ,
is fulfilled for each y , y ˜ X * . This means that F is an ρ - θ -contraction.
Now, let y X * and y ˜ F ( y ) so that ρ ( y , y ˜ ) 1 and
Λ y ( t ) , D ( p ; q ) r 2 c y ( t ) , y ˜ ( t ) , D ( p ; q ) r 2 c y ˜ ( t ) 0 .
There is some g ˇ F ( y ˜ ) so that
Λ y ˜ ( t ) , D ( p ; q ) r 2 c y ˜ ( t ) , g ˇ ( t ) , D ( p ; q ) r 2 c g ˇ ( t ) 0 .
This implies that ρ ( y ˜ , g ˇ ) 1 establishing the fact that F is ρ -admissible. Next, consider y 0 X * and y ˜ F ( y 0 ) so that t I ( p ; q ) T ,
Λ y 0 ( t ) , D ( p ; q ) r 2 c y 0 ( t ) , y ˜ ( t ) , D ( p ; q ) r 2 c y ˜ ( t ) 0 .
Clearly, ρ ( y 0 , y ˜ ) 1 . Let { y i } i 1 X * be a sequence converging to y and let, for all i, ρ ( y i , y i + 1 ) 1 . Then,
Λ y i ( t ) , D ( p ; q ) r 2 c y i ( t ) , y i + 1 ( t ) , D ( p ; q ) r 2 c y i + 1 ( t ) 0 .
By ( P 9 ) , there is a subsequence { y i r } r 1 of { y i } so that
Λ y i r ( t ) , D ( p ; q ) r 2 c y i r ( t ) , y ( t ) , D ( p ; q ) r 2 c y ( t ) 0
for all t I ( p ; q ) T . We find that ρ ( y i r , y ) 1 for all r. By considering the above statements, all hypotheses of Theorem 4 are fulfilled. The existence of some fixed point for F is proved, and so, the generalized sequential ( p ; q ) -difference Navier inclusion problem (5) involves a solution. □
The last existence theorem is related to the existence of an endpoint for the given multi-valued function by using the approximate endpoint property.
Theorem 9.
Let E : I ( p ; q ) T × X * 2 P CM ( X * ) . Moreover,
( P 12 )
There is θ : [ 0 , ) [ 0 , ) so that lim inf t ( t θ ( t ) ) 0 and θ ( t ) t , t > 0 . Here, θ is non-decreasing and upper semi-continuous;
( P 13 )
E : I ( p ; q ) T × X * 2 P CM ( X * ) is bounded and integrable such that E ( · , y 1 , y 2 ) : I ( p ; q ) T P CM ( X * ) is measurable for each y 1 , y 2 X * ;
( P 14 )
There is some α C ( I ( p ; q ) T , [ 0 , ) ) so that
H d E ( t , y 1 , y 2 ) , E ( t , y 1 ˜ , y 2 ˜ ) α ( t ) L ˜ θ ( | y 1 y 1 ˜ | + | y 2 y 2 ˜ | )
holds for each t I ( p ; q ) T and y 1 , y 2 , y 1 ˜ , y 2 ˜ X * , where L ˜ = 1 α 1 + α 2 and α 1 , α 2 are assumed in (30);
( P 15 )
F , given by (29), has the approximate endpoint property.
Then, the generalized sequential ( p ; q ) -difference Navier inclusion problem (5) has a solution.
Proof. 
Here, we shall prove that F : X * P ( X * ) has an endpoint. As the first step, we establish that F ( y ) X * is closed for each y X * . Note that the multi-valued function t E t , y ( t ) , D ( p ; q ) r 2 c y ( t ) possesses the closed values and is measurable for every y X * . Hence, there is a measurable selection for E , and accordingly, ( S ) E , y . Immediately, similar to the proof of Theorem 8, one can easily prove that F ( y ) admits the closed values. Also, F ( y ) is bounded for every y X * because E has the compact values.
In the following, we focus on the establishment of the inequality
H d F ( y ) , F ( g ˇ ) θ ( y g ˇ X * ) .
For finding this purpose, let y , g ˇ X * , 1 F ( g ˇ ) and select F ¯ 1 ( S ) E , g ˇ so that
1 ( t ) = 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) F ¯ 1 v p r 1 + r 2 1 d ( p ; q ) v pt T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) F ¯ 1 v p r 1 + r 2 1 d ( p ; q ) v + p 2 ( T p ) r 2 + 1 t p T t r 2 + 1 T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) F ¯ 1 v p r 1 1 d ( p ; q ) v ,
for almost all t I ( p ; q ) T . From (32), we get
H d ( E t , y ( t ) , D ( p ; q ) r 2 c y ( t ) , E t , g ˇ ( t ) , D ( p ; q ) r 2 c g ˇ ( t ) ) α ( t ) L ˜ θ | y ( t ) g ˇ ( t ) | + | D ( p ; q ) r 2 c y ( t ) D ( p ; q ) r 2 c g ˇ ( t ) | ,
for all t I ( p ; q ) T . There is some μ ¯ E t , y ( t ) , D ( p ; q ) r 2 c y ( t ) so that
| F ¯ 1 ( t )     μ ¯ | α ( t ) L ˜ θ | y ( t ) g ˇ ( t ) | + | D ( p ; q ) r 2 c y ( t ) D ( p ; q ) r 2 c g ˇ ( t ) | .
Define σ : I ( p ; q ) T P ( X * ) by
σ ( t ) = μ ¯ X * : | F ¯ 1 ( t ) μ ¯ | α ( t ) L ˜ θ | y ( t ) g ˇ ( t ) | + | D ( p ; q ) r 2 c y ( t ) D ( p ; q ) r 2 c g ˇ ( t ) | ,
for all t I ( p ; q ) T . Notice that F ¯ 1 and b * = α L ˜ θ | y g ˇ | + | D ( p ; q ) r 2 c y D ( p ; q ) r 2 c g ˇ | are measurable. Therefore, σ ( · ) E · , y ( · ) , D ( p ; q ) r 2 c y ( · ) is measurable.
This time, take F ¯ 2 E t , y ( t ) , D ( p ; q ) r 2 c y ( t ) so that
| F ¯ 1 ( t ) F ¯ 2 ( t ) | α ( t ) L ˜ θ | y ( t ) g ˇ ( t ) | + | D ( p ; q ) r 2 c y ( t ) D ( p ; q ) r 2 c g ˇ ( t ) | ,
for all t I ( p ; q ) T . Also, take 2 F ( y ) so that
2 ( t ) = 1 Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 t ( t qv ) ( p ; q ) ( r 1 + r 2 1 ) F ¯ 2 v p r 1 + r 2 1 d ( p ; q ) v pt T Γ ( p ; q ) ( r 1 + r 2 ) p r 1 + r 2 2 0 T p ( T p qv ) ( p ; q ) ( r 1 + r 2 1 ) F ¯ 2 v p r 1 + r 2 1 d ( p ; q ) v + p 2 ( T p ) r 2 + 1 t p T t r 2 + 1 T 2 Γ ( p ; q ) ( r 2 + 2 ) Γ ( p ; q ) ( r 1 ) p r 1 2 0 T p ( T p qv ) ( p ; q ) ( r 1 1 ) F ¯ 2 v p r 1 1 d ( p ; q ) v ,
for all t I ( p ; q ) T . If we continue the implemented steps in Theorem 8, we have
1 2 X * = sup t I ( p ; q ) T | 1 ( t ) 2 ( t ) | + sup t I ( p ; q ) T | D ( p ; q ) r 2 c 1 ( t ) D ( p ; q ) r 2 c 2 ( t ) | ( α 1 + α 2 ) L ˜ θ ( y g ˇ X * ) = θ ( y g ˇ X * ) .
Therefore,
H d F ( y ) , F ( g ˇ ) θ ( y g ˇ X * ) ,
for every y , g ˇ X * . On the other hand, F has the approximate endpoint property by the hypothesis ( P 15 ) . Accordingly, the existence of y * * X * is established by Theorem 5 so that F ( y * * ) = { y * * } ; that is, as we expected, y * * is an endpoint for F . Therefore, the generalized sequential ( p ; q ) -difference Navier inclusion problem (5) has a solution y * * . □

5. Examples

Analysis of some numerical examples are conducted here, to validate the theoretical results in the previous sections.
Example 1.
We model the following generalized sequential ( p ; q ) -difference Navier problem of the elastic beam as
D ( 0.5 ; 0.45 ) 1.56 c D ( 0.5 ; 0.45 ) 1.79 c y ( t ) = t | tan 1 ( y ( t ) ) | 40 + 40 | tan 1 ( y ( t ) ) | + 0.025 t D ( 0.5 ; 0.45 ) 1.79 c y ( t ) , 3.5 y ( 0 ) = 8.2 y ( 0.5 ) = 12.24 D ( 0.5 ; 0.45 ) 1.79 c y ( 0 ) = 2.2 D ( 0.5 ; 0.45 ) 1.79 c y ( 0.5 ) = 0 ,
where p = 0.5 , q = 0.45 , r 1 = 1.56 , r 2 = 1.79 , β = 3.5 , λ = 8.2 , δ = 12.24 , γ = 2.2 , and T = 0.25 with T p = 0.5 and t I ( 0.5 ; 0.45 ) 0.25 = [ 0 , 0.5 ] . Moreover, the continuous nonlinear function E : [ 0 , 0.5 ] × R 2 R is defined by
E t , y ( t ) , w ( t ) = t | tan 1 ( y ( t ) ) | 40 + 40 | tan 1 ( y ( t ) ) | + 0.025 t w ( t ) .
For each y 1 , y 2 , w 1 , w 2 R , we can estimate
| E t , y 1 ( t ) , w 1 ( t ) E t , y 2 ( t ) , w 2 ( t ) | 0.025 t ( | tan 1 ( y 1 ( t ) ) tan 1 ( y 2 ( t ) ) | + | w 1 ( t ) w 2 ( t ) | ) 0.025 t ( | y 1 ( t ) y 2 ( t ) | + | w 1 ( t ) w 2 ( t ) | ) .
Put k ( t ) = 0.025 t for all t . Then, k = sup t [ 0 , 0.5 ] | 0.025 t | = 0.0125 . Now, the nondecreasing function θ : R + R + is defined by θ ( ς ) = ς for each ς R + . Then,
| E t , y ( t ) , D ( 0.5 ; 0.45 ) 1.79 c y ( t ) | 0.025 t | y ( t ) | + | D ( 0.5 ; 0.45 ) 1.79 c y ( t ) | = 0.025 t θ | y ( t ) | + | D 0.57 ( 0.5 ; 0.45 ) 1.79 c y ( t ) | .
Obviously, f : I ( 0.5 ; 0.45 ) 0.25 = [ 0 , 0.5 ] R + given by f ( t ) = 0.025 t is continuous. By (24), we compute
L 3 = 0.098 Γ ( 0.5 ; 0.45 ) ( 4.35 ) + 0.196 Γ ( 0.5 ; 0.45 ) ( 2.56 ) Γ ( 0.5 ; 0.45 ) ( 3.79 ) 0.019204 , L 4 = 0.098 Γ ( 0.5 ; 0.45 ) ( 0.21 ) Γ ( 0.5 ; 0.45 ) ( 4.35 ) + 1 + Γ ( 0.5 ; 0.45 ) ( 0.21 ) Γ ( 0.5 ; 0.45 ) ( 3.79 ) 0.098 Γ ( 0.5 ; 0.45 ) ( 0.21 ) Γ ( 0.5 ; 0.45 ) ( 3.79 ) Γ ( 0.5 ; 0.45 ) ( 2.56 ) 0.058137 .
By (27), we have L 0.0009667625 < 1 . Hence, Theorem 7 concludes that the generalized sequential ( p ; q ) -difference Navier problem (33) has at least one solution on I ( 0.5 ; 0.45 ) 0.25 .
The next example deals with the inclusion version of the Navier ( p ; q ) -difference equation.
Example 2.
By using the given parameters in the previous example, i.e., p = 0.5 , q = 0.45 , r 1 = 1.56 , r 2 = 1.79 , β = 3.5 , λ = 8.2 , δ = 12.24 , γ = 2.2 , and T = 0.25 with T p = 0.5 and t I ( 0.5 ; 0.45 ) 0.25 = [ 0 , 0.5 ] , we model the generalized sequential ( p ; q ) -difference Navier inclusion problem of the elastic beam as
D ( 0.5 ; 0.45 ) 1.56 c D ( 0.5 ; 0.45 ) 1.79 c y ( t ) = 0 , t | sin ( y ( t ) ) | 48 ( 1 + t 2 ) ( 1 + | sin ( y ( t ) ) | ) + 2 t | D ( 0.5 ; 0.45 ) 1.79 c y ( t ) | 96 ( 1 + 2 t ) 1 + | D ( 0.5 ; 0.45 ) 1.79 c y ( t ) | , 3.5 y ( 0 ) = 8.2 y ( 0.5 ) = 12.24 D ( 0.5 ; 0.45 ) 1.79 c y ( 0 ) = 2.2 D ( 0.5 ; 0.45 ) 1.79 c y ( 0.5 ) = 0 ,
Define E : I ( 0.5 ; 0.45 ) 0.25 = [ 0 , 0.5 ] × R 2 P ( R ) by
E t , y 1 ( t ) , y 2 ( t ) = 0 , t | sin ( y 1 ( t ) ) | 48 ( 1 + t 2 ) ( 1 + | sin ( y 1 ( t ) ) | ) + 2 t | y 2 ( t ) | 96 ( 1 + 2 t ) 1 + | y 2 ( t ) | ,
for each t [ 0 , 0.5 ] . The function α C ( [ 0 , 0.5 ] , [ 0 , ) ) is chosen so that α ( t ) = t 8 for each t [ 0 , 0.5 ] . So, α = sup t [ 0 , 0.5 ] | t 8 | = 0.5 8 = 0.0625 . Also, choose the function θ : [ 0 , ) [ 0 , ) as θ ( t ) = t 6 for almost all t > 0 . Note that θ is non-decreasing and upper semi-continuous. In this case, lim inf t ( t θ ( t ) ) > 0 and θ ( t ) < t for all t > 0 . Now, (23) and (30) give
L 1 = 0.196 Γ ( 0.5 ; 0.45 ) ( 4.35 ) + 0.196 Γ ( 0.5 ; 0.45 ) ( 2.56 ) Γ ( 0.5 ; 0.45 ) ( 3.79 ) 0.028804 , L 2 = 1.3568 Γ ( 0.5 ; 0.45 ) ( 0.56 ) + 0.098 Γ ( 0.5 ; 0.45 ) ( 0.21 ) Γ ( 0.5 ; 0.45 ) ( 4.35 ) + 0.098 1 + Γ ( 0.5 ; 0.45 ) ( 0.21 ) Γ ( 0.5 ; 0.45 ) ( 3.79 ) Γ ( 0.5 ; 0.45 ) ( 0.21 ) Γ ( 0.5 ; 0.45 ) ( 3.79 ) Γ ( 0.5 ; 0.45 ) ( 2.56 ) 1.898857 ,
and
α 1 = α L 1 0.00180025 and α 2 = α L 2 0.1186785625 .
For every y 1 , y 2 , y 1 ˜ , y 2 ˜ R , we get
H d ( E t , y 1 ( t ) , y 2 ( t ) , E t , y 1 ˜ ( t ) , y 2 ˜ ( t ) ) t 8 . 1 6 ( | y 1 ( t ) y 1 ˜ ( t ) | + | y 2 ( t ) y 2 ˜ ( t ) | ) = t 8 θ ( | y 1 ( t ) y 1 ˜ ( t ) | + | y 2 ( t ) y 2 ˜ ( t ) | ) α ( t ) θ ( | y 1 ( t ) y 1 ˜ ( t ) | + | y 2 ( t ) y 2 ˜ ( t ) | ) 1 α 1 + α 2 .
In the last step, a set-valued map F : X * P ( X * ) is defined as
F ( y ) = X * : F ¯ ( S ) E , y so that ( t ) = g ˇ ( t ) t I ( 0.5 ; 0.45 ) 0.25 = [ 0 . 0.5 ] ,
where
g ˇ ( t ) = 1 Γ ( 0.5 ; 0.45 ) ( 3.35 ) 0 . 5 3.35 2 0 t ( t 0.45 v ) ( 0.5 ; 0.45 ) ( 2.35 ) F ¯ v 0 . 5 2.35 d ( p ; q ) v 0.5 t 0.25 Γ ( 0.5 ; 0.45 ) ( 3.35 ) 0 . 5 3.35 2 0 0.5 ( 0.5 0.45 v ) ( 0.5 ; 0.45 ) 2.35 F ¯ v 0 . 5 2.35 d ( p ; q ) v + 0 . 5 2 ( 0.5 ) 2.79 t 0.125 t 2.79 0.0625 Γ ( 0.5 ; 0.45 ) ( 3.79 ) Γ ( 0.5 ; 0.45 ) ( 1.56 ) 0 . 5 1.56 2 0 0.5 ( 0.5 0.45 v ) ( 0.5 ; 0.45 ) 0.56 F ¯ v 0 . 5 0.56 d ( p ; q ) v .
Finally, Theorem 9 implies that the generalized sequential ( p ; q ) -difference Navier inclusion problem (34) of the elastic beam has a solution.

6. Conclusions

In this paper, we dealt with two different cases of an elastic beam modeling in the context of the notions of ( p ; q ) -calculus. In fact, in the framework of the existing mathematical definitions related to the single-valued and multi-valued functions, we generalized the fourth-order differential equation of the elastic beam changes to the two ( p ; q ) -difference Navier equation and ( p ; q ) -difference Navier inclusion, separately. Of course, we emphasize that the main goal of this study is to investigate the existence results of the solutions for both systems, not to obtain a new method for finding numerical ( p ; q ) -solutions. We recalled the main definitions about the ρ - θ -contractions and ρ -admissible functions, and then, by using the fixed point theorems and endpoint theorems, proved our desired theorems about the existence property of the solutions. Based on these results, one can extend the studies later for defining new ( p ; q ) -integral transforms or other new ( p ; q ) -algorithms to approximate the numerical solutions with the help of the real numerical data.

Author Contributions

Conceptualization: S.E. and S.K.N.; Formal Analysis: S.E., S.K.N., I.S. and J.T.; Investigation: S.E. and S.K.N.; Methodology: I.S. and J.T.; Software: S.E.; Writing—Original Draft: S.E. and S.K.N.; Writing—Review & Editing: I.S. and J.T. All authors have read and agreed to the last version of the manuscript.

Funding

This research budget was allocated by National Science, Research and Innovation Fund (NSRF) and King Mongkut’s University of Technology North Bangkok with Contract no. KMUTNB-FF-67-B-01.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments

The first author would like to thank Azarbaijan Shahid Madani University.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of the Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
  2. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
  3. Podlubny, I. Fractional Differential Equations; Accademic Press: New York, NY, USA, 1999. [Google Scholar]
  4. Abbas, M.I.; Ragusa, M.A. On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function. Symmetry 2021, 13, 264. [Google Scholar] [CrossRef]
  5. Kattan, D.A.; Hammad, H.A. Existence and stability results for piecewise Caputo-Fabrizio fractional differential equations with mixed delays. Fractal Fract. 2023, 7, 644. [Google Scholar] [CrossRef]
  6. Rezapour, S.; Ntouyas, S.K.; Iqbal, M.Q.; Hussain, A.; Etemad, S.; Tariboon, J. An analytical survey on the solutions of the generalized double-order φ-integrodifferential equation. J. Funct. Spaces 2021, 2021, 6667757. [Google Scholar] [CrossRef]
  7. Khan, A.; Shah, K.; Abdeljawad, T.; Alqudah, M.A. Existence of results and computational analysis of a fractional order two strain epidemic model. Res. Phys. 2022, 39, 105649. [Google Scholar] [CrossRef]
  8. Ayadi, S.; Ege, O.; De la Sen, M. On a coupled system of generalized hybrid pantograph equations involving fractional deformable derivatives. AIMS Math. 2023, 8, 10978–10996. [Google Scholar] [CrossRef]
  9. Ben Chikh, S.; Amara, A.; Etemad, S.; Rezapour, S. On Hyers-Ulam stability of a multi-order boundary value problems via Riemann-Liouville derivatives and integrals. Adv. Differ. Equ. 2020, 2020, 547. [Google Scholar] [CrossRef]
  10. Etemad, S.; Matar, M.M.; Ragusa, M.A.; Rezapour, S. Tripled fixed points and existence study to a tripled impulsive fractional differential system via measures of noncompactness. Mathematics 2022, 10, 25. [Google Scholar] [CrossRef]
  11. Jackson, F.H. On a q-definite integrals. Quart. J. Pure. Appl. Math. 1910, 41, 193–203. [Google Scholar]
  12. Jackson, F.H. q-difference equations. Amer. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
  13. Fock, V. Zur Theorie des Wasserstoffatoms. Z. Physik. 1935, 98, 145–154. [Google Scholar] [CrossRef]
  14. Ahmad, B.; Alsaedi, A.; Ntouyas, S.K. A study of second-order q-difference equations with boundary conditions. Adv. Differ. Equ. 2012, 2012, 35. [Google Scholar] [CrossRef]
  15. Boutiara, A.; Benbachir, M.; Kaabar, M.K.A.; Martinez, F.; Samei, M.E.; Kaplan, M. Explicit iteration and unbounded solutions for fractional q-difference equations with boundary conditions on an infinite interval. J. Inequal. Appl. 2022, 2022, 29. [Google Scholar] [CrossRef]
  16. Houas, M.; Samei, M.E. Existence and stability of solutions for linear and nonlinear damping of q-fractional Duffing–Rayleigh problem. Mediterr. J. Math. 2023, 20, 148. [Google Scholar] [CrossRef]
  17. Rezapour, S.; Imran, A.; Hussain, A.; Martinez, F.; Etemad, S.; Kaabar, M.K.A. Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs. Symmetry 2021, 13, 469. [Google Scholar] [CrossRef]
  18. Wannalookkhee, F.; Nonlaopon, K.; Sarikaya, M.Z.; Budak, H.; Ali, M.A. On some new quantum trapezoid-type inequalities for q-differentiable coordinated convex functions. J. Inequal. Appl. 2023, 2023, 5. [Google Scholar] [CrossRef]
  19. Alzabut, J.; Houas, M.; Abbas, M.I. Application of fractional quantum calculus on coupled hybrid differential systems within the sequential Caputo fractional q-derivatives. Demonstrat. Math. 2023, 56, 20220205. [Google Scholar] [CrossRef]
  20. Butt, S.I.; Budak, H.; Nonlaopon, K. New variants of quantum midpoint-type inequalities. Symmetry 2022, 14, 2599. [Google Scholar] [CrossRef]
  21. Chakrabarti, R.; Jagannathan, R. A (p, q)-oscillator realization of two-parameter quantum algebras. J. Phys. A Math. Gen. 1991, 24, 5683–5701. [Google Scholar] [CrossRef]
  22. Jebreen, H.B.; Mursaleen, M.; Ahasan, M. On the convergence of Lupas (p, q)-Bernstein operators via contraction principle. J. Inequal. Appl. 2019, 2019, 34. [Google Scholar] [CrossRef]
  23. Mursaleen, M.; Nasiruzzaman, M.; Khan, A.; Ansari, K.J. Some approximation results on Bleimann-Butzer-Hahn operators defined by (p, q)-integers. Filomat 2016, 30, 639–648. [Google Scholar] [CrossRef]
  24. Mursaleen, M.; Ansari, K.J.; Khan, A. Some approximation results by (p, q)-analogue of Bernstein-Stancu operators. Appl. Math. Comput. 2015, 264, 392–402, Erratum in: Appl. Math. Comput. 2015, 269, 744–746. [Google Scholar] [CrossRef]
  25. Khan, K.; Lobiyal, D.K. Bézier curves based on Lupas (p, q)-analogue of Bernstein functions in CAGD. J. Comput. Appl. Math. 2017, 317, 458–477. [Google Scholar] [CrossRef]
  26. Khan, A.; Sharma, V. Statistical approximation by (p, q)-analogue of Bernstein-Stancu operators. Azerb. J. Math. 2018, 8, 100–121. [Google Scholar]
  27. Sadjang, P.N. On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas. Results Math. 2018, 73, 39. [Google Scholar]
  28. Cheng, W.T.; Zhang, W.H.; Cai, Q.B. (p, q)-Gamma operators which preserve x2. J. Inequal. Appl. 2019, 2019, 108. [Google Scholar] [CrossRef]
  29. Milovanovic, G.V.; Gupta, V.; Malik, N. (p, q)-Beta functions and applications in approximation. Bol. Soc. Mat. Mexicana 2018, 24, 219–237. [Google Scholar] [CrossRef]
  30. Soontharanon, J.; Sitthiwirattham, T. On fractional (p, q)-calculus. Adv. Differ. Equ. 2020, 2020, 35. [Google Scholar] [CrossRef]
  31. Soontharanon, J.; Sitthiwirattham, T. Existence results of nonlocal Robin boundary value problems for fractional (p, q)-integrodifference equations. Adv. Differ. Equ. 2020, 2020, 342. [Google Scholar] [CrossRef]
  32. Neang, P.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Ahmad, B. Nonlocal boundary value problems of nonlinear fractional (p, q)-difference equations. Fractal Fract. 2021, 5, 270. [Google Scholar] [CrossRef]
  33. Neang, P.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Ahmad, B. Existence and uniqueness results for fractional (p, q)-difference equations with separated boundary conditions. Mathematics 2022, 10, 767. [Google Scholar] [CrossRef]
  34. Soontharanon, J.; Sitthiwirattham, T. On sequential fractional Caputo (p, q)-integrodifference equations via three-point fractional Riemann-Liouville (p, q)-difference boundary condition. AIMS Math. 2022, 7, 704–722. [Google Scholar] [CrossRef]
  35. Luangboon, W.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Budak, H. On generalizations of some integral inequalities for preinvex functions via (p, q)-calculus. J. Inequal. Appl. 2022, 2022, 157. [Google Scholar] [CrossRef]
  36. Sitthiwirattham, T.; Ali, M.A.; Budak, H.; Etemad, S.; Rezapour, S. A new version of (p, q)-Hermite-Hadamard’s midpoint and trapezoidal inequalities via special operators in (p, q)-calculus. Bound. Value Probl. 2022, 2022, 84. [Google Scholar] [CrossRef]
  37. Qin, Z.; Sun, S. On a nonlinear fractional (p, q)-difference Schrödinger equation. J. Appl. Math. Comp. 2022, 68, 1685–1698. [Google Scholar] [CrossRef]
  38. Boutiara, A.; Alzabut, J.; Ghaderi, M.; Rezapour, S. On a coupled system of fractional (p, q)-differential equation with Lipschitzian matrix in generalized metric space. AIMS Math. 2023, 8, 1566–1591. [Google Scholar] [CrossRef]
  39. Agarwal, R.P.; Al-Hutami, H.; Ahmad, B. On solvability of fractional (p, q)-difference equations with (p, q)-difference anti-periodic boundary conditions. Mathematics 2022, 10, 4419. [Google Scholar] [CrossRef]
  40. Rahimi, Z.; Sumelka, W.; Yang, X.J. A new fractional nonlocal model and its application in free vibration of Timoshenko and Euler-Bernoulli beams. Eur. Phys. J. Plus 2017, 132, 479. [Google Scholar] [CrossRef]
  41. Patnaik, S.; Sidhardh, S.; Semperlotti, F. A Ritz-based finite element method for a fractional-order boundary value problem of nonlocal elasticity. Int. J. Solids Struct. 2020, 202, 398–417. [Google Scholar] [CrossRef]
  42. Drapaca, C.S.; Sivaloganathan, S. A fractional model of continuum mechanics. J. Elast. 2012, 107, 105–123. [Google Scholar] [CrossRef]
  43. Reiss, E.L.; Callegari, A.J.; Ahluwalia, D.S. Ordinary Differential Equations with Applications; Holt, Rinehart and Winston: New York, NY, USA, 1976. [Google Scholar]
  44. Aftabizadeh, A.R. Existence and uniqueness theorems for fourth-order boundary value problems. J. Math. Anal. Appl. 1986, 116, 415–426. [Google Scholar] [CrossRef]
  45. Ma, R.; Zhang, J.; Fu, S. The method of lower and upper solutions for fourth-order two-point boundary value problems. J. Math. Anal. Appl. 1997, 215, 415–422. [Google Scholar]
  46. Bai, Z.; Ge, W.; Wang, Y. The method of lower and upper solutions for some fourth-order equations. J. Inequal. Pure Appl. Math. 2004, 5, 13–18. [Google Scholar]
  47. Bachar, I.; Eltayeb, H. Existence and uniqueness results for fractional Navier boundary value problems. Adv. Differ. Equ. 2020, 2020, 609. [Google Scholar] [CrossRef]
  48. Etemad, S.; Ntouyas, S.K.; Imran, A.; Hussain, A.; Baleanu, D.; Rezapour, S. Application of some special operators on the analysis of a new generalized fractional Navier problem in the context of q-calculus. Adv. Differ. Equ. 2021, 2021, 402. [Google Scholar] [CrossRef]
  49. Smart, D.R. Fixed Point Theorems; Cambridge University Press: New York, NY, USA, 1980. [Google Scholar]
  50. Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
  51. Mohammadi, B.; Rezapour, S.; Shahzad, N. Some results on fixed points of α-ψ-Ciric generalized multifunctions. Fixed Point Theory Appl. 2013, 2013, 24. [Google Scholar] [CrossRef]
  52. Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 2007, 1, 311–323. [Google Scholar]
  53. Adams, C.R. The general theory of a class of linear partial q-difference equations. Trans. Amer. Math. Soc. 1924, 26, 283–312. [Google Scholar] [CrossRef]
  54. Graef, J.R.; Kong, L. Positive solutions for a class of higher order boundary value problems with fractional q-derivatives. Appl. Math. Comput. 2012, 218, 9682–9689. [Google Scholar] [CrossRef]
  55. Ferreira, R.A.C. Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math. Appl. 2011, 61, 367–373. [Google Scholar] [CrossRef]
  56. Amini-Harandi, A. Endpoints of set-valued contractions in metric spaces. Nonlinear Anal. 2010, 72, 132–134. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Etemad, S.; Ntouyas, S.K.; Stamova, I.; Tariboon, J. On Solutions of Two Post-Quantum Fractional Generalized Sequential Navier Problems: An Application on the Elastic Beam. Fractal Fract. 2024, 8, 236. https://doi.org/10.3390/fractalfract8040236

AMA Style

Etemad S, Ntouyas SK, Stamova I, Tariboon J. On Solutions of Two Post-Quantum Fractional Generalized Sequential Navier Problems: An Application on the Elastic Beam. Fractal and Fractional. 2024; 8(4):236. https://doi.org/10.3390/fractalfract8040236

Chicago/Turabian Style

Etemad, Sina, Sotiris K. Ntouyas, Ivanka Stamova, and Jessada Tariboon. 2024. "On Solutions of Two Post-Quantum Fractional Generalized Sequential Navier Problems: An Application on the Elastic Beam" Fractal and Fractional 8, no. 4: 236. https://doi.org/10.3390/fractalfract8040236

Article Metrics

Back to TopTop