Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = quantum anomalous Hall effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3461 KB  
Article
Magnetotransport Measurements in Overdoped Mn:Bi2Te3 Thin Films
by Angadjit Singh, Varun S. Kamboj, Crispin H. W. Barnes and Thorsten Hesjedal
Crystals 2025, 15(6), 557; https://doi.org/10.3390/cryst15060557 - 11 Jun 2025
Viewed by 934
Abstract
Introducing magnetic dopants into topological insulators (TIs) provides a pathway to realizing novel quantum phenomena, including the quantum anomalous Hall effect (QAHE) and axionic states. One of the most commonly used 3d transition metal dopants is Mn, despite its known tendency to [...] Read more.
Introducing magnetic dopants into topological insulators (TIs) provides a pathway to realizing novel quantum phenomena, including the quantum anomalous Hall effect (QAHE) and axionic states. One of the most commonly used 3d transition metal dopants is Mn, despite its known tendency to be highly mobile and to cause phase segregation. In this study, we present a detailed magnetotransport investigation of Mn-overdoped Bi2Te3 thin films using field-effect transistor architectures. Building on our previous structural investigations of these samples, we examine how high Mn content influences their electronic transport properties. From our earlier studies, we know that high Mn doping concentrations lead to the formation of secondary phases, which significantly alter weak antilocalization behavior and suppress topological surface transport. To probe the gate response of these doped films over extended areas, we fabricate field-effect transistor structures, and we observe uniform electrostatic control of conduction across the magnetic phase. Inspired by recent developments in intrinsic topological systems such as the MnTe-Bi2Te3 septuple-layer compounds, we explore the influence of embedded ferromagnetic chalcogenide inclusions as an alternative route to engineer magnetic topological states and potentially expand the operational temperature range of QAHE-enabled devices. Full article
(This article belongs to the Special Issue Advances in Thin-Film Materials and Their Applications)
Show Figures

Figure 1

14 pages, 5161 KB  
Article
First-Principles Study on the High Spin-Polarized Ferromagnetic Semiconductor of Vanadium-Nitride Monolayer and Its Heterostructures
by Guiyuan Hua, Xuming Wu, Xujin Ge, Tianhang Zhou and Zhibin Shao
Molecules 2025, 30(10), 2156; https://doi.org/10.3390/molecules30102156 - 14 May 2025
Viewed by 667
Abstract
The newly discovered 2D spin-gapless magnetic materials, which provide new opportunities for combining spin polarization and the quantum anomalous Hall effect, provide a new method for the design and application of memory and nanoscale devices. However, a low Curie temperature (TC [...] Read more.
The newly discovered 2D spin-gapless magnetic materials, which provide new opportunities for combining spin polarization and the quantum anomalous Hall effect, provide a new method for the design and application of memory and nanoscale devices. However, a low Curie temperature (TC) is a common limitation in most 2D ferromagnetic materials, and research on the topological properties of nontrivial 2D spin-gapless materials is still limited. We predict a novel spin-gapless semiconductor of monolayer h-VN, which has a high Curie temperature (~543 K), 100% spin polarization, and nontrivial topological properties. A nontrivial band gap is opened in the spin-gapless state when considering the spin–orbit coupling (SOC); it can increase with the intensity of spin–orbit coupling and the band gap increases linearly with SOC. By calculating the Chern number and edge states, we find that when the SOC strength is less than 250%, the monolayer h-VN is a quantum anomalous Hall insulator with a Chern number C = 1. In addition, the monolayer h-VN still belongs to the quantum anomalous Hall insulators with its tensile strain. Interestingly, the quantum anomalous Hall effect with a non-zero Chern number can be maintained when using h-BN as the substrate, making the designed structure more suitable for experimental implementation. Our results provide an ideal candidate material for achieving the QAHE at a high Curie temperature. Full article
(This article belongs to the Special Issue Novel Two-Dimensional Energy-Environmental Materials)
Show Figures

Graphical abstract

11 pages, 4544 KB  
Article
Magnetic Exchange Mechanism and Quantized Anomalous Hall Effect in Bi2Se3 Film with a CrWI6 Monolayer
by He Huang, Fan He, Qiya Liu, You Yu and Min Zhang
Molecules 2024, 29(17), 4101; https://doi.org/10.3390/molecules29174101 - 29 Aug 2024
Viewed by 1514
Abstract
Magnetizing the surface states of topological insulators without damaging their topological features is a crucial step for realizing the quantum anomalous Hall (QAH) effect and remains a challenging task. The TI–ferromagnetic material interface system was constructed and studied by the density functional theory [...] Read more.
Magnetizing the surface states of topological insulators without damaging their topological features is a crucial step for realizing the quantum anomalous Hall (QAH) effect and remains a challenging task. The TI–ferromagnetic material interface system was constructed and studied by the density functional theory (DFT). A two-dimensional magnetic semiconductor CrWI6 has been proven to effectively magnetize topological surface states (TSSs) via the magnetic proximity effect. The non-trivial phase was identified in the Bi2Se3 (BS) films with six quantum layers (QL) within the CrWI6/BS/CrWI6 heterostructure. BS thin films exhibit the generation of spin splitting near the TSSs, and a band gap of approximately 2.9 meV is observed at the Γ in the Brillouin zone; by adjusting the interface distance of the heterostructure, we increased the non-trivial band gap to 7.9 meV, indicating that applying external pressure is conducive to realizing the QAH effect. Furthermore, the topological non-triviality of CrWI6/6QL-BS/CrWI6 is confirmed by the nonzero Chern number. This study furnishes a valuable guideline for the implementation of the QAH effect at elevated temperatures within heterostructures comprising two-dimensional (2D) magnetic monolayers (MLs) and topological insulators. Full article
(This article belongs to the Special Issue Two-Dimensional Materials: From Synthesis to Applications)
Show Figures

Figure 1

11 pages, 9639 KB  
Article
Ferrovalley and Quantum Anomalous Hall Effect in Janus TiTeCl Monolayer
by Yufang Chang, Zhijun Zhang, Li Deng, Yanzhao Wu and Xianmin Zhang
Materials 2024, 17(13), 3331; https://doi.org/10.3390/ma17133331 - 5 Jul 2024
Cited by 3 | Viewed by 1386
Abstract
Ferrovalley materials are garnering significant interest for their potential roles in advancing information processing and enhancing data storage capabilities. This study utilizes first-principles calculations to determine that the Janus monolayer TiTeCl exhibits the properties of a ferrovalley semiconductor. This material demonstrates valley polarization [...] Read more.
Ferrovalley materials are garnering significant interest for their potential roles in advancing information processing and enhancing data storage capabilities. This study utilizes first-principles calculations to determine that the Janus monolayer TiTeCl exhibits the properties of a ferrovalley semiconductor. This material demonstrates valley polarization with a notable valley splitting of 80 meV. Additionally, the Berry curvature has been computed across the first Brillouin zone of the monolayer TiTeCl. The research also highlights that topological phase transitions ranging from ferrovalley and half-valley metals to quantum anomalous Hall effect states can occur in monolayer TiTeCl under compressive strains ranging from −1% to 0%. Throughout these strain changes, monolayer TiTeCl maintains its ferromagnetic coupling. These characteristics make monolayer TiTeCl a promising candidate for the development of new valleytronic and topological devices. Full article
Show Figures

Figure 1

11 pages, 2038 KB  
Article
Synthesis and Characterization of 2D Ternary Compound TMD Materials Ta3VSe8
by Yuanji Ma, Yuhan Du, Wenbin Wu, Zeping Shi, Xianghao Meng and Xiang Yuan
Micromachines 2024, 15(5), 591; https://doi.org/10.3390/mi15050591 - 28 Apr 2024
Viewed by 2379
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) are garnering considerable scientific interest, prompting discussion regarding their prospective applications in the fields of nanoelectronics and spintronics while also fueling groundbreaking discoveries in phenomena such as the fractional quantum anomalous Hall effect (FQAHE) and exciton dynamics. [...] Read more.
Two-dimensional (2D) transition metal dichalcogenides (TMDs) are garnering considerable scientific interest, prompting discussion regarding their prospective applications in the fields of nanoelectronics and spintronics while also fueling groundbreaking discoveries in phenomena such as the fractional quantum anomalous Hall effect (FQAHE) and exciton dynamics. The abundance of binary compound TMDs, such as MX2 (M = Mo, W; X = S, Se, Te), has unlocked myriad avenues of exploration. However, the exploration of ternary compound TMDs remains relatively limited, with notable examples being Ta2NiS5 and Ta2NiSe5. In this study, we report the synthesis of a new 2D ternary compound TMD materials, Ta3VSe8, employing the chemical vapor transport (CVT) method. The as-grown bulk crystal is shiny and can be easily exfoliated. The crystal quality and structure are verified by X-ray diffraction (XRD), while the surface morphology, stoichiometric ratio, and uniformity are determined by scanning electron microscopy (SEM). Although the phonon property is found stable at different temperatures, magneto-resistivity evolves. These findings provide a possible approach for the realization and exploration of ternary compound TMDs. Full article
(This article belongs to the Special Issue 2D-Materials Based Fabrication and Devices)
Show Figures

Figure 1

11 pages, 5306 KB  
Article
Epitaxial Growth and Characterization of Nanoscale Magnetic Topological Insulators: Cr-Doped (Bi0.4Sb0.6)2Te3
by Pangihutan Gultom, Chia-Chieh Hsu, Min Kai Lee, Shu Hsuan Su and Jung-Chung-Andrew Huang
Nanomaterials 2024, 14(2), 157; https://doi.org/10.3390/nano14020157 - 11 Jan 2024
Cited by 1 | Viewed by 2010
Abstract
The exploration initiated by the discovery of the topological insulator (BixSb1−x)2Te3 has extended to unlock the potential of quantum anomalous Hall effects (QAHEs), marking a revolutionary era for topological quantum devices, low-power electronics, and spintronic [...] Read more.
The exploration initiated by the discovery of the topological insulator (BixSb1−x)2Te3 has extended to unlock the potential of quantum anomalous Hall effects (QAHEs), marking a revolutionary era for topological quantum devices, low-power electronics, and spintronic applications. In this study, we present the epitaxial growth of Cr-doped (Bi0.4Sb0.6)2Te3 (Cr:BST) thin films via molecular beam epitaxy, incorporating various Cr doping concentrations with varying Cr/Sb ratios (0.025, 0.05, 0.075, and 0.1). High-quality crystalline of the Cr:BST thin films deposited on a c-plane sapphire substrate has been rigorously confirmed through reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM) analyses. The existence of a Cr dopant has been identified with a reduction in the lattice parameter of BST from 30.53 ± 0.05 to 30.06 ± 0.04 Å confirmed by X-ray diffraction, and the valence state of Cr verified by X-ray photoemission (XPS) at binding energies of ~573.1 and ~583.5 eV. Additionally, the influence of Cr doping on lattice vibration was qualitatively examined by Raman spectroscopy, revealing a blue shift in peaks with increased Cr concentration. Surface characteristics, crucial for the functionality of topological insulators, were explored via Atomic Force Microscopy (AFM), illustrating a sevenfold reduction in surface roughness as the Cr concentration increased from 0 to 0.1. The ferromagnetic properties of Cr:BST were examined by a superconducting quantum interference device (SQUID) with a magnetic field applied in out-of-plane and in-plane directions. The Cr:BST samples exhibited a Curie temperature (Tc) above 50 K, accompanied by increased magnetization and coercivity with increasing Cr doping levels. The introduction of the Cr dopant induces a transition from n-type ((Bi0.4Sb0.6)2Te3) to p-type (Cr:(Bi0.4Sb0.6)2Te3) carriers, demonstrating a remarkable suppression of carrier density up to one order of magnitude, concurrently enhancing carrier mobility up to a factor of 5. This pivotal outcome is poised to significantly influence the development of QAHE studies and spintronic applications. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

18 pages, 3665 KB  
Review
Manipulating Topological Phases in Magnetic Topological Insulators
by Gang Qiu, Hung-Yu Yang, Su Kong Chong, Yang Cheng, Lixuan Tai and Kang L. Wang
Nanomaterials 2023, 13(19), 2655; https://doi.org/10.3390/nano13192655 - 27 Sep 2023
Cited by 5 | Viewed by 4597
Abstract
Magnetic topological insulators (MTIs) are a group of materials that feature topological band structures with concurrent magnetism, which can offer new opportunities for technological advancements in various applications, such as spintronics and quantum computing. The combination of topology and magnetism introduces a rich [...] Read more.
Magnetic topological insulators (MTIs) are a group of materials that feature topological band structures with concurrent magnetism, which can offer new opportunities for technological advancements in various applications, such as spintronics and quantum computing. The combination of topology and magnetism introduces a rich spectrum of topological phases in MTIs, which can be controllably manipulated by tuning material parameters such as doping profiles, interfacial proximity effect, or external conditions such as pressure and electric field. In this paper, we first review the mainstream MTI material platforms where the quantum anomalous Hall effect can be achieved, along with other exotic topological phases in MTIs. We then focus on highlighting recent developments in modulating topological properties in MTI with finite-size limit, pressure, electric field, and magnetic proximity effect. The manipulation of topological phases in MTIs provides an exciting avenue for advancing both fundamental research and practical applications. As this field continues to develop, further investigations into the interplay between topology and magnetism in MTIs will undoubtedly pave the way for innovative breakthroughs in the fundamental understanding of topological physics as well as practical applications. Full article
(This article belongs to the Special Issue Topological Materials in Low Dimensions)
Show Figures

Figure 1

14 pages, 1741 KB  
Review
Review of Orbital Magnetism in Graphene-Based Moiré Materials
by Priyamvada Jadaun and Bart Soreé
Magnetism 2023, 3(3), 245-258; https://doi.org/10.3390/magnetism3030019 - 28 Aug 2023
Cited by 4 | Viewed by 4632
Abstract
Recent years have seen the emergence of moiré materials as an attractive platform for observing a host of novel correlated and topological phenomena. Moiré heterostructures are generated when layers of van der Waals materials are stacked such that consecutive layers are slightly mismatched [...] Read more.
Recent years have seen the emergence of moiré materials as an attractive platform for observing a host of novel correlated and topological phenomena. Moiré heterostructures are generated when layers of van der Waals materials are stacked such that consecutive layers are slightly mismatched in their lattice orientation or unit cell size. This slight lattice mismatch gives rise to a long-wavelength moiré pattern that modulates the electronic structure and leads to novel physics. The moiré superlattice results in flat superlattice bands, electron–electron interactions and non-trivial topology that have led to the observation of superconductivity, the quantum anomalous Hall effect and orbital magnetization, among other interesting properties. This review focuses on the experimental observation and theoretical analysis of orbital magnetism in moiré materials. These systems are novel in their ability to host magnetism that is dominated by the orbital magnetic moment of Bloch electrons. This orbital magnetic moment is easily tunable using external electric fields and carrier concentration since it originates in the quantum anomalous Hall effect. As a result, the orbital magnetism found in moiré superlattices can be highly attractive for a wide array of applications including spintronics, ultra-low-power magnetic memories, spin-based neuromorphic computing and quantum information technology. Full article
(This article belongs to the Special Issue Topological Spin Textures and Their Applications)
Show Figures

Figure 1

17 pages, 3174 KB  
Article
Bond-Orbital-Resolved Piezoelectricity in Sp2-Hybridized Monolayer Semiconductors
by Zongtan Wang, Yulan Liu and Biao Wang
Materials 2022, 15(21), 7788; https://doi.org/10.3390/ma15217788 - 4 Nov 2022
Cited by 1 | Viewed by 2028
Abstract
Sp2-hybridized monolayer semiconductors (e.g., planar group III-V and IV-IV binary compounds) with inversion symmetry breaking (ISB) display piezoelectricity governed by their σ- and π-bond electrons. Here, we studied their bond-orbital-resolved electronic piezoelectricity (i.e., the σ- and π-piezoelectricity). We formulated a tight-binding [...] Read more.
Sp2-hybridized monolayer semiconductors (e.g., planar group III-V and IV-IV binary compounds) with inversion symmetry breaking (ISB) display piezoelectricity governed by their σ- and π-bond electrons. Here, we studied their bond-orbital-resolved electronic piezoelectricity (i.e., the σ- and π-piezoelectricity). We formulated a tight-binding piezoelectric model to reveal the different variations of σ- and π-piezoelectricity with the ISB strength (Δ). As Δ varied from positive to negative, the former decreased continuously, but the latter increased piecewise and jumped at Δ=0 due to the criticality of the π-electrons’ ground-state geometry near this quantum phase-transition point. This led to a piezoelectricity predominated by the π-electrons for a small |Δ|. By constructing an analytical model, we clarified the microscopic mechanisms underlying the anomalous π-piezoelectricity and its subtle relations with the valley Hall effect. The validation of our models was justified by applying them to the typical sp2 monolayers including hexagonal silicon carbide, Boron-X (X = N, P, As, Ab), and a BN-doped graphene superlattice. Full article
(This article belongs to the Special Issue Metasurfaces Meet Two-Dimensional Materials)
Show Figures

Figure 1

10 pages, 952 KB  
Article
Topological Properties of the 2D 2-Band System with Generalized W-Shaped Band Inversion
by Zoran Rukelj and Danko Radić
Quantum Rep. 2022, 4(4), 476-485; https://doi.org/10.3390/quantum4040034 - 2 Nov 2022
Cited by 4 | Viewed by 2330
Abstract
We report the topological properties, in terms of the Berry phase, of the 2D noninteracting system with electron–hole band inversion, described by the two-band generalized analogue of the low-energy Bernevig–Hughes–Zhang Hamiltonian, yielding the W-shaped energy bands in the form of two intersecting cones [...] Read more.
We report the topological properties, in terms of the Berry phase, of the 2D noninteracting system with electron–hole band inversion, described by the two-band generalized analogue of the low-energy Bernevig–Hughes–Zhang Hamiltonian, yielding the W-shaped energy bands in the form of two intersecting cones with the gap along the closed continuous loop. We identify the range of parameters where the Berry phase attains qualitatively different values: (a) the integer multiplier of 2π, (b) the integer multiplier of π, and (c) the nontrivial value between the latter two, which depends on the system parameters. The system thus exhibits the anomalous quantum Hall effect associated with the nontrivial geometric phase, which is presumably tunable through the choice of parameters at hand. Full article
Show Figures

Figure 1

41 pages, 479 KB  
Article
Topological Quantization of Fractional Quantum Hall Conductivity
by J. Miller and M. A. Zubkov
Symmetry 2022, 14(10), 2095; https://doi.org/10.3390/sym14102095 - 8 Oct 2022
Cited by 2 | Viewed by 1676
Abstract
We derive a novel topological expression for the Hall conductivity. To that degree we consider the quantum Hall effect (QHE) in a system of interacting electrons. Our formalism is valid for systems in the presence of an external magnetic field, as well as [...] Read more.
We derive a novel topological expression for the Hall conductivity. To that degree we consider the quantum Hall effect (QHE) in a system of interacting electrons. Our formalism is valid for systems in the presence of an external magnetic field, as well as for systems with a nontrivial band topology. That is, the expressions for the conductivity derived are valid for both the ordinary QHE and for the intrinsic anomalous QHE. The expression for the conductivity applies to external fields that may vary in an arbitrary way, and takes into account disorder. Properties related to symmetry and topology are revealed in the fractional quantization of the Hall conductivity. It is assumed that the ground state of the system is degenerate. We represent the QHE conductivity as e2h×NK, where K is the degeneracy of the ground state, while N is the topological invariant composed of the Wigner-transformed multi-leg Green functions, which takes discrete values. Full article
(This article belongs to the Special Issue Mathematical Modelling of Physical Systems 2021)
30 pages, 5742 KB  
Article
Fledgling Quantum Spin Hall Effect in Pseudo Gap Phase of Bi2212
by Udai Prakash Tyagi, Kakoli Bera and Partha Goswami
Symmetry 2022, 14(8), 1746; https://doi.org/10.3390/sym14081746 - 22 Aug 2022
Cited by 1 | Viewed by 2354
Abstract
We studied the emergence of the quantum spin Hall (QSH) states for the pseudo-gap (PG) phase of Bi2212 bilayer system, assumed to be D-density wave (DDW) ordered, starting with a strong Rashba spin-orbit coupling (SOC) armed, and the time reversal symmetry (TRS) complaint [...] Read more.
We studied the emergence of the quantum spin Hall (QSH) states for the pseudo-gap (PG) phase of Bi2212 bilayer system, assumed to be D-density wave (DDW) ordered, starting with a strong Rashba spin-orbit coupling (SOC) armed, and the time reversal symmetry (TRS) complaint Bloch Hamiltonian. The presence of strong SOC gives rise to non-trivial, spin-momentum locked spin texture tunable by electric field. The emergence of quantum anomalous Hall effect with TRS broken Chiral DDW Hamiltonian of Das Sarma et al. is found to be possible. Full article
(This article belongs to the Special Issue Magnetism, Skyrmions and Chirality)
Show Figures

Figure 1

23 pages, 396 KB  
Article
Topological BF Description of 2D Accelerated Chiral Edge Modes
by Erica Bertolini, Filippo Fecit and Nicola Maggiore
Symmetry 2022, 14(4), 675; https://doi.org/10.3390/sym14040675 - 24 Mar 2022
Cited by 8 | Viewed by 2486
Abstract
In this paper, we consider the topological abelian BF theory with radial boundary on a generic 3D manifold, as we were motivated by the recently discovered accelerated edge modes on certain Hall systems. Our aim was to research if, where, and how the [...] Read more.
In this paper, we consider the topological abelian BF theory with radial boundary on a generic 3D manifold, as we were motivated by the recently discovered accelerated edge modes on certain Hall systems. Our aim was to research if, where, and how the boundary keeps the memory of the details of the background metrics. We discovered that some features were topologically protected and did not depend on the bulk metric. The outcome was that these edge excitations were accelerated, as a direct consequence of the non-flat nature of the bulk spacetime. We found three possibilities for the motion of the edge quasiparticles: same directions, opposite directions, and a single-moving mode. However, requiring that the Hamiltonian of the 2D theory is bounded by below, the case of the edge modes moving in the same direction was ruled out. Systems involving parallel Hall currents (for instance, a fractional quantum Hall effect with ν=2/5) cannot be described by a BF theory with the boundary, independently from the geometry of the bulk spacetime, because of positive energy considerations. Thus, we were left with physical situations characterized by edge excitations moving with opposite velocities (for example, the fractional quantum Hall effect with ν=11/n, with the n positive integer, and the helical Luttinger liquids phenomena) or a single-moving mode (quantum anomalous Hall). A strong restriction was obtained by requiring time reversal symmetry, which uniquely identifies modes with equal and opposite velocities, and we know that this is the case of topological insulators. The novelty, with respect to the flat bulk background, is that the modes have local velocities, which correspond to topological insulators with accelerated edge modes. Full article
(This article belongs to the Special Issue Physics and Symmetry Section: Feature Papers 2021)
22 pages, 4921 KB  
Article
Majorana Anyon Composites in Magneto-Photoluminescence Spectra of Natural Quantum Hall Puddles
by Alexander M. Mintairov, Dmitrii V. Lebedev, Alexey S. Vlasov and Steven A. Blundell
Nanomaterials 2022, 12(6), 1016; https://doi.org/10.3390/nano12061016 - 20 Mar 2022
Cited by 3 | Viewed by 2773
Abstract
In magneto-photoluminescence (magneto-PL) spectra of quasi two-dimensional islands (quantum dots) having seven electrons and Wigner–Seitz radius rs~1.5, we revealed a suppression of magnetic field (B) dispersion, paramagnetic shifts, and jumps of the energy of the emission components for filling [...] Read more.
In magneto-photoluminescence (magneto-PL) spectra of quasi two-dimensional islands (quantum dots) having seven electrons and Wigner–Seitz radius rs~1.5, we revealed a suppression of magnetic field (B) dispersion, paramagnetic shifts, and jumps of the energy of the emission components for filling factors ν > 1 (B < 10 T). Additionally, we observed B-hysteresis of the jumps and a dependence of all these anomalous features on rs. Using a theoretical description of the magneto-PL spectra and an analysis of the electronic structure of these dots based on the single-particle Fock–Darwin spectrum and many-particle configuration-interaction calculations, we show that these observations can be described by the rs-dependent formation of the anyon (magneto-electron) composites (ACs) involving single-particle states having non-zero angular momentum and that the anyon states observed involve Majorana modes (MMs), including zero-B modes having an equal number of vortexes and anti-vortexes, which can be considered as Majorana anyons. We show that the paramagnetic shift corresponds to a destruction of the equilibrium self-formed ν~5/2 AC by the external magnetic field and that the jumps and their hysteresis can be described in terms of Majorana qubit states controlled by B and rs. Our results show a critical role of quantum confinement in the formation of magneto-electrons and implies the liquid-crystal nature of fractional quantum Hall effect states, the Majorana anyon origin of the states having even ν, i.e., composite fermions, which provide new opportunities for topological quantum computing. Full article
(This article belongs to the Special Issue Quantum Dots)
Show Figures

Figure 1

9 pages, 2634 KB  
Article
MnBi2Se4-Based Magnetic Modulated Heterostructures
by Evgeniy K. Petrov, Vladimir M. Kuznetsov and Sergey V. Eremeev
Magnetism 2022, 2(1), 1-9; https://doi.org/10.3390/magnetism2010001 - 4 Jan 2022
Cited by 1 | Viewed by 3314
Abstract
Thin films of magnetic topological insulators (TIs) are expected to exhibit a quantized anomalous Hall effect when the magnetizations on the top and bottom surfaces are parallel and a quantized topological magnetoelectric effect when the magnetizations have opposite orientations. Progress in the observation [...] Read more.
Thin films of magnetic topological insulators (TIs) are expected to exhibit a quantized anomalous Hall effect when the magnetizations on the top and bottom surfaces are parallel and a quantized topological magnetoelectric effect when the magnetizations have opposite orientations. Progress in the observation of these quantum effects was achieved earlier in the films with modulated magnetic doping. On the other hand, the molecular-beam-epitaxy technique allowing the growth of stoichiometric magnetic van der Waals blocks in combination with blocks of topological insulator was developed. This approach should allow the construction of modulated heterostructures with the desired architecture. In the present paper, based on the first-principles calculations, we study the electronic structure of symmetric thin film heterostructures composed of magnetic MnBi2Se4 blocks (septuple layers, SLs) and blocks of Bi2Se3 TI (quintuple layers, QLs) in dependence on the depth of the magnetic SLs relative to the film surface and the TI spacer between them. Among considered heterostructures we have revealed those characterized by nontrivial band topology. Full article
Show Figures

Figure 1

Back to TopTop