Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (671)

Search Parameters:
Keywords = quantum gravity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1865 KB  
Article
Bayesian Analysis of the Nexus Paradigm Predictions for Supermassive Black Hole Observations by the Event Horizon Telescope
by Stuart Marongwe, Moletlanyi Tshipa and Christian Corda
Universe 2025, 11(9), 289; https://doi.org/10.3390/universe11090289 - 26 Aug 2025
Viewed by 306
Abstract
We present a Bayesian statistical analysis to evaluate the Nexus Paradigm (NP) of quantum gravity, using horizon-scale observations of supermassive black holes (SMBHs) Sagittarius A* (Sgr A*) and M87* from the Event Horizon Telescope (EHT). The NP predicts angular diameters for the dark [...] Read more.
We present a Bayesian statistical analysis to evaluate the Nexus Paradigm (NP) of quantum gravity, using horizon-scale observations of supermassive black holes (SMBHs) Sagittarius A* (Sgr A*) and M87* from the Event Horizon Telescope (EHT). The NP predicts angular diameters for the dark depression, emission ring, and base diameter, which we compare to EHT measurements. Employing Gaussian likelihoods and priors informed by mass-to-distance ratio uncertainties, we compute the posterior distribution for the angular scale parameter θg, achieving a combined χ20.0062 (four degrees of freedom) corresponding to a 4.37 σ (99.9972%) confidence level. Individual features show deviations <0.1 σ supporting the NP’s claim of 99th percentile agreement. Compared to General Relativity (GR), which predicts a shadow diameter inconsistent with the observed dark depression (χ2168, ~12.97 σ) the NP is favored with a Bayes factor of ~1036. These results validate the NP’s predictions and highlight its potential as a quantum gravity framework, though refined uncertainties and broader model comparisons are recommended. Full article
(This article belongs to the Special Issue Quantum Gravity Phenomenology: Insights and Advances)
Show Figures

Figure 1

17 pages, 331 KB  
Article
Extensive and Intensive Aspects of Astrophysical Systems and Fine-Tuning
by Meir Shimon
Universe 2025, 11(8), 269; https://doi.org/10.3390/universe11080269 - 15 Aug 2025
Viewed by 212
Abstract
Most astrophysical systems (except for very compact objects such as, e.g., black holes and neutron stars) in our Universe are characterized by shallow gravitational potentials, with dimensionless compactness |Φ|rs/R1, where rs and [...] Read more.
Most astrophysical systems (except for very compact objects such as, e.g., black holes and neutron stars) in our Universe are characterized by shallow gravitational potentials, with dimensionless compactness |Φ|rs/R1, where rs and R are their Schwarzschild radius and typical size, respectively. While the existence and characteristic scales of such virialized systems depend on gravity, we demonstrate that the value of |Φ|—and thus the non-relativistic nature of most astrophysical objects—arises from microphysical parameters, specifically the fine structure constant and the electron-to-proton mass ratio, and is fundamentally independent of the gravitational constant, G. In fact, the (generally extensive) gravitational potential becomes ‘locally’ intensive at the system boundary; the compactness parameter corresponds to the binding energy (or degeneracy energy, in the case of quantum degeneracy pressure-supported systems) per proton, representing the amount of work that needs to be done in order to allow proton extraction from the system. More generally, extensive properties of gravitating systems depend on G, whereas intensive properties do not. It then follows that peak rms values of large-scale astrophysical velocities and escape velocities associated with naturally formed astrophysical systems are determined by electromagnetic and atomic physics, not by gravitation, and that the compactness, |Φ|, is always set by microphysical scales—even for the most compact objects, such as neutron stars, where |Φ| is determined by quantities like the pion-to-proton mass ratio. This observation, largely overlooked in the literature, explains why the Universe is not dominated by relativistic, compact objects and connects the relatively low entropy of the observable Universe to underlying basic microphysics. Our results emphasize the central but underappreciated role played by dimensionless microphysical constants in shaping the macroscopic gravitational landscape of the Universe. In particular, we clarify that this independence of the compactness, |Φ|, from G applies specifically to entire, virialized, or degeneracy pressure-supported systems, naturally formed astrophysical systems—such as stars, galaxies, and planets—that have reached equilibrium between self-gravity and microphysical processes. In contrast, arbitrary subsystems (e.g., a piece cut from a planet) do not exhibit this property; well within/outside the gravitating object, the rms velocity is suppressed and G reappears. Finally, we point out that a clear distinction between intensive and extensive astrophysical/cosmological properties could potentially shed new light on the mass hierarchy and the cosmological constant problems; both may be related to the large complexity of our Universe. Full article
(This article belongs to the Section Gravitation)
14 pages, 299 KB  
Article
Chern–Simons States in SO(1,n)Yang–Mills Gauge Theory of Quantum Gravity
by Zbigniew Haba
Universe 2025, 11(8), 262; https://doi.org/10.3390/universe11080262 - 7 Aug 2025
Viewed by 181
Abstract
We discuss a quantization of the Yang–Mills theory with an internal symmetry group SO(1,n) treated as a unified theory of all interactions. In one-loop calculations, we show that Einstein gravity can be considered as an approximation to [...] Read more.
We discuss a quantization of the Yang–Mills theory with an internal symmetry group SO(1,n) treated as a unified theory of all interactions. In one-loop calculations, we show that Einstein gravity can be considered as an approximation to gauge theory. We discuss the role of the Chern–Simons wave functions in the quantization. Full article
11 pages, 317 KB  
Article
Phenomenological Charged Extensions of the Quantum Oppenheimer–Snyder Collapse Model
by S. Habib Mazharimousavi
Universe 2025, 11(8), 257; https://doi.org/10.3390/universe11080257 - 4 Aug 2025
Viewed by 244
Abstract
This work presents a semi-classical, quantum-corrected model of gravitational collapse for a charged, spherically symmetric dust cloud, extending the classical Oppenheimer–Snyder (OS) framework through loop quantum gravity effects. Our goal is to study phenomenological quantum modifications to geometry, without necessarily embedding them within [...] Read more.
This work presents a semi-classical, quantum-corrected model of gravitational collapse for a charged, spherically symmetric dust cloud, extending the classical Oppenheimer–Snyder (OS) framework through loop quantum gravity effects. Our goal is to study phenomenological quantum modifications to geometry, without necessarily embedding them within full loop quantum gravity (LQG). Building upon the quantum Oppenheimer–Snyder (qOS) model, which replaces the classical singularity with a nonsingular bounce via a modified Friedmann equation, we introduce electric and magnetic charges concentrated on a massive thin shell at the boundary of the dust ball. The resulting exterior spacetime generalizes the Schwarzschild solution to a charged, regular black hole geometry akin to a quantum-corrected Reissner–Nordström metric. The Israel junction conditions are applied to match the interior APS (Ashtekar–Pawlowski–Singh) cosmological solution to the charged exterior, yielding constraints on the shell’s mass, pressure, and energy. Stability conditions are derived, including a minimum radius preventing full collapse and ensuring positivity of energy density. This study also examines the geodesic structure around the black hole, focusing on null circular orbits and effective potentials, with implications for the observational signatures of such quantum-corrected compact objects. Full article
Show Figures

Figure 1

17 pages, 310 KB  
Article
Statistical Entropy Based on the Generalized-Uncertainty-Principle-Induced Effective Metric
by Soon-Tae Hong, Yong-Wan Kim and Young-Jai Park
Universe 2025, 11(8), 256; https://doi.org/10.3390/universe11080256 - 2 Aug 2025
Viewed by 211
Abstract
We investigate the statistical entropy of black holes within the framework of the generalized uncertainty principle (GUP) by employing effective metrics that incorporate leading-order and all-order quantum gravitational corrections. We construct three distinct effective metrics induced by the GUP, which are derived from [...] Read more.
We investigate the statistical entropy of black holes within the framework of the generalized uncertainty principle (GUP) by employing effective metrics that incorporate leading-order and all-order quantum gravitational corrections. We construct three distinct effective metrics induced by the GUP, which are derived from the GUP-corrected temperature, entropy, and all-order GUP corrections, and analyze their impact on black hole entropy using ’t Hooft’s brick wall method. Our results show that, despite the differences in the effective metrics and the corresponding ultraviolet cutoffs, the statistical entropy consistently satisfies the Bekenstein–Hawking area law when expressed in terms of an invariant (coordinate-independent) distance near the horizon. Furthermore, we demonstrate that the GUP naturally regularizes the ultraviolet divergence in the density of states, eliminating the need for artificial cutoffs and yielding finite entropy even when counting quantum states only in the vicinity of the event horizon. These findings highlight the universality and robustness of the area law under GUP modifications and provide new insights into the interplay between quantum gravity effects and black hole thermodynamics. Full article
(This article belongs to the Collection Open Questions in Black Hole Physics)
22 pages, 2856 KB  
Article
Impact of Loop Quantum Gravity on the Topological Classification of Quantum-Corrected Black Holes
by Saeed Noori Gashti, İzzet Sakallı, Hoda Farahani, Prabir Rudra and Behnam Pourhassan
Universe 2025, 11(8), 247; https://doi.org/10.3390/universe11080247 - 27 Jul 2025
Viewed by 367
Abstract
We investigated the thermodynamic topology of quantum-corrected AdS-Reissner-Nordström black holes in Kiselev spacetime using non-extensive entropy formulation derived from Loop Quantum Gravity (LQG). Through systematic analysis, we examined how the Tsallis parameter λ influences topological charge classification with respect to various equation of [...] Read more.
We investigated the thermodynamic topology of quantum-corrected AdS-Reissner-Nordström black holes in Kiselev spacetime using non-extensive entropy formulation derived from Loop Quantum Gravity (LQG). Through systematic analysis, we examined how the Tsallis parameter λ influences topological charge classification with respect to various equation of state parameters. Our findings revealed a consistent pattern of topological transitions: for λ=0.1, the system exhibited a single topological charge (ω=1) with total charge W=1, as λ increased to 0.8, the system transitioned to a configuration with two topological charges (ω=+1,1) and total charge W=0. When λ=1, corresponding to the Bekenstein–Hawking entropy limit, the system displayed a single topological charge (ω=+1) with W=+1, signifying thermodynamic stability. The persistence of this pattern across different fluid compositions—from exotic negative pressure environments to radiation—demonstrates the universal nature of quantum gravitational effects on black hole topology. Full article
Show Figures

Figure 1

18 pages, 305 KB  
Article
Entropic Dynamics Approach to Relational Quantum Mechanics
by Ariel Caticha and Hassaan Saleem
Entropy 2025, 27(8), 797; https://doi.org/10.3390/e27080797 - 26 Jul 2025
Cited by 1 | Viewed by 552
Abstract
The general framework of Entropic Dynamics (ED) is used to construct non-relativistic models of relational Quantum Mechanics from well-known inference principles—probability, entropy and information geometry. Although only partially relational—the absolute structures of simultaneity and Euclidean geometry are still retained—these models provide a useful [...] Read more.
The general framework of Entropic Dynamics (ED) is used to construct non-relativistic models of relational Quantum Mechanics from well-known inference principles—probability, entropy and information geometry. Although only partially relational—the absolute structures of simultaneity and Euclidean geometry are still retained—these models provide a useful testing ground for ideas that will prove useful in the context of more realistic relativistic theories. The fact that in ED the positions of particles have definite values, just as in classical mechanics, has allowed us to adapt to the quantum case some intuitions from Barbour and Bertotti’s classical framework. Here, however, we propose a new measure of the mismatch between successive states that is adapted to the information metric and the symplectic structures of the quantum phase space. We make explicit that ED is temporally relational and we construct non-relativistic quantum models that are spatially relational with respect to rigid translations and rotations. The ED approach settles the longstanding question of what form the constraints of a classical theory should take after quantization: the quantum constraints that express relationality are to be imposed on expectation values. To highlight the potential impact of these developments, the non-relativistic quantum model is parametrized into a generally covariant form and we show that the ED approach evades the analogue of what in quantum gravity has been called the problem of time. Full article
(This article belongs to the Section Quantum Information)
15 pages, 1420 KB  
Article
Spectral Dimensionality of Spacetime Around a Radiating Schwarzschild Black-Hole
by Mauricio Bellini, Juan Ignacio Musmarra, Pablo Alejandro Sánchez and Alan Sebastián Morales
Universe 2025, 11(8), 243; https://doi.org/10.3390/universe11080243 - 24 Jul 2025
Viewed by 220
Abstract
In this work we study the spectral dimensionality of spacetime around a radiating Schwarzschild black hole using a recently introduced formalism of quantum gravity, where the alterations of the gravitational field produced by the radiation are represented on an extended manifold, and describe [...] Read more.
In this work we study the spectral dimensionality of spacetime around a radiating Schwarzschild black hole using a recently introduced formalism of quantum gravity, where the alterations of the gravitational field produced by the radiation are represented on an extended manifold, and describe a non-commutative and nonlinear quantum algebra. The relation between classical and quantum perturbations of spacetime can be measured by the parameter z0. In this work we have found that when z=(1+3)/21.3660, a relativistic observer approaching the Schwarzschild horizon perceives a spectral dimension N(z)=4θ(z)12.8849, which is related to quantum gravitational interference effects in the environment of the black hole. Under these conditions, all studied Schwarzschild black holes with masses ranging from the Planck mass to 1046 times the Planck mass present the same stability configuration, which suggests the existence of a universal property of these objects under those particular conditions. The difference from the spectral dimension previously obtained at cosmological scales leads to the conclusion that the spacetime dimensionality is scale-dependent. Another important result presented here is the fundamental alteration of the effective gravitational potential near the horizon due to Hawking radiation. This quantum phenomenon prevents the potential from diverging to negative infinity as the observer approaches the Schwarzschild horizon. Full article
Show Figures

Figure 1

20 pages, 2059 KB  
Article
Deep Learning Spinfoam Vertex Amplitudes: The Euclidean Barrett–Crane Model
by Hanno Sahlmann and Waleed Sherif
Universe 2025, 11(7), 235; https://doi.org/10.3390/universe11070235 - 19 Jul 2025
Viewed by 285
Abstract
Spinfoam theories propose a well-defined path-integral formulation for quantum gravity, and it is hoped that they will provide the dynamics of loop quantum gravity. However, it is computationally hard to calculate spinfoam amplitudes. The well-studied Euclidean Barrett–Crane model provides an excellent setting for [...] Read more.
Spinfoam theories propose a well-defined path-integral formulation for quantum gravity, and it is hoped that they will provide the dynamics of loop quantum gravity. However, it is computationally hard to calculate spinfoam amplitudes. The well-studied Euclidean Barrett–Crane model provides an excellent setting for testing analytical and numerical tools to probe spinfoam models. We explore a data-driven approach to accelerating spinfoam computations by showing that the vertex amplitude is an object that can be learned from data using deep learning. We divide the learning process into a classification and a regression task: Two networks are independently engineered to decide whether the amplitude is zero or not and to predict the precise numerical value, respectively. The trained networks are tested with several accuracy measures. The classifier in particular demonstrates robust generalisation far outside the training domain, while the regressor demonstrates high predictive accuracy in the domain it is trained on. We discuss limitations, possible improvements, and implications for future work. Full article
Show Figures

Figure 1

14 pages, 281 KB  
Article
Leading Logarithm Quantum Gravity
by S. P. Miao, N. C. Tsamis and R. P. Woodard
Universe 2025, 11(7), 223; https://doi.org/10.3390/universe11070223 - 4 Jul 2025
Cited by 1 | Viewed by 259
Abstract
The continual production of long wavelength gravitons during primordial inflation endows graviton loop corrections with secular growth factors. During a prolonged period of inflation, these factors eventually overwhelm the small loop-counting parameter of GH2, causing perturbation theory to break down. [...] Read more.
The continual production of long wavelength gravitons during primordial inflation endows graviton loop corrections with secular growth factors. During a prolonged period of inflation, these factors eventually overwhelm the small loop-counting parameter of GH2, causing perturbation theory to break down. A technique was recently developed for summing the leading secular effects at each order in non-linear sigma models, which possess the same kind of derivative interactions as gravity. This technique combines a variant of Starobinsky’s stochastic formalism with a variant of the renormalization group. Generalizing the technique to quantum gravity is a two-step process, the first of which is the determination of the gauge fixing condition that will allow this summation to be realized; this is the subject of this paper. Moreover, we briefly discuss the second step, which shall obtain the Langevin equation, in which secular changes in gravitational phenomena are driven by stochastic fluctuations of the graviton field. Full article
23 pages, 5294 KB  
Article
CMB Parity Asymmetry from Unitary Quantum Gravitational Physics
by Enrique Gaztañaga and K. Sravan Kumar
Symmetry 2025, 17(7), 1056; https://doi.org/10.3390/sym17071056 - 4 Jul 2025
Viewed by 413
Abstract
Longstanding anomalies in the Cosmic Microwave Background (CMB), including the low quadrupole moment and hemispherical power asymmetry, have recently been linked to an underlying parity asymmetry. We show here how this parity asymmetry naturally arises within a quantum framework that explicitly incorporates the [...] Read more.
Longstanding anomalies in the Cosmic Microwave Background (CMB), including the low quadrupole moment and hemispherical power asymmetry, have recently been linked to an underlying parity asymmetry. We show here how this parity asymmetry naturally arises within a quantum framework that explicitly incorporates the construction of a geometric quantum vacuum based on parity (P) and time-reversal (T) transformations. This framework restores unitarity in quantum field theory in curved spacetime (QFTCS). When applied to inflationary quantum fluctuations, this unitary QFTCS formalism predicts parity asymmetry as a natural consequence of cosmic expansion, which inherently breaks time-reversal symmetry. Observational data strongly favor this unitary QFTCS approach, with a Bayes factor, the ratio of marginal likelihoods associated with the model given the data pM|D, exceeding 650 times that of predictions from the standard inflationary framework. This Bayesian approach contrasts with the standard practice in the CMB community, which evaluates pD|M, the likelihood of the data under the model, which undermines the importance of low- physics. Our results, for the first time, provide compelling evidence for the quantum gravitational origins of CMB parity asymmetry on large scales. Full article
(This article belongs to the Special Issue Quantum Gravity and Cosmology: Exploring the Astroparticle Interface)
Show Figures

Figure 1

18 pages, 353 KB  
Article
Massive Graviton from Diffeomorphism Invariance
by João M. L. de Freitas and Iberê Kuntz
Universe 2025, 11(7), 219; https://doi.org/10.3390/universe11070219 - 2 Jul 2025
Viewed by 304
Abstract
In this work, we undertake a comprehensive study of the functional measure of gravitational path integrals within a general framework involving non-trivial configuration spaces. As in Riemannian geometry, the integration over non-trival configuration spaces requires a metric. We examine the interplay between the [...] Read more.
In this work, we undertake a comprehensive study of the functional measure of gravitational path integrals within a general framework involving non-trivial configuration spaces. As in Riemannian geometry, the integration over non-trival configuration spaces requires a metric. We examine the interplay between the functional measure and the dynamics of spacetime for general configuration-space metrics. The functional measure gives an exact contribution to the effective action at the one-loop level. We discuss the implications and phenomenological consequences of this correction, shedding light on the role of the functional measure in quantum gravity theories. In particular, we describe a mechanism in which the graviton acquires a mass from the functional measure without violating the diffeomorphism symmetry nor including Stückelberg fields. Since gauge invariance is not violated, the number of degrees of freedom goes as in general relativity. For the same reason, Boulware–Deser ghosts and the vDVZ discontinuity do not show up. The graviton thus becomes massive at the quantum level while avoiding the usual issues of massive gravity. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

14 pages, 805 KB  
Article
Ultra-Cold Neutrons in qBounce Experiments as Laboratory for Test of Chameleon Field Theories and Cosmic Acceleration
by Derar Altarawneh and Roman Höllwieser
J. Nucl. Eng. 2025, 6(3), 20; https://doi.org/10.3390/jne6030020 - 26 Jun 2025
Viewed by 461
Abstract
The study of scalar field theories like the chameleon field model is of increasing interest due to the Universe’s accelerated expansion, which is believed to be caused in part by dark energy. These fields can elude experimental bounds set on them in high-density [...] Read more.
The study of scalar field theories like the chameleon field model is of increasing interest due to the Universe’s accelerated expansion, which is believed to be caused in part by dark energy. These fields can elude experimental bounds set on them in high-density environments since they interact with matter in a density-dependent way. This paper analyzes the effect of chameleon fields on the quantum gravitational states of ultra-cold neutrons (UCNs) in qBounce experiments with mirrors. We discuss the deformation of the neutron wave function due to chameleon interactions and quantum systems in potential wells from gravitational forces and chameleon fields. Unlike other works that aim to put bounds on the chameleon field parameters, this work focuses on the quantum mechanics of the chameleonic neutron. The results deepen our understanding of the interplay between quantum states and modified gravity, as well as fundamental physics experiments carried out in the laboratory. Full article
Show Figures

Figure 1

18 pages, 1269 KB  
Article
Many Phases in a Hairy Box in Three Dimensions
by Shoichiro Miyashita
Universe 2025, 11(7), 208; https://doi.org/10.3390/universe11070208 - 25 Jun 2025
Viewed by 255
Abstract
In this paper, I investigate gravitational thermodynamics of the Einstein–Maxwell–scalar system in three dimensions without a cosmological constant. In a previous work by Krishnan, Shekhar, and Bala Subramanian, it was argued that this system has no BH saddles, but has only empty (flat [...] Read more.
In this paper, I investigate gravitational thermodynamics of the Einstein–Maxwell–scalar system in three dimensions without a cosmological constant. In a previous work by Krishnan, Shekhar, and Bala Subramanian, it was argued that this system has no BH saddles, but has only empty (flat space) saddles and boson star saddles. It was then concluded that the structure of the thermodynamic phase space is much simpler than in the higher-dimensional cases. I will show that, in addition to the known boson star and empty saddles, three more types of saddles exist in this system: the BG saddle, its hairy generalization, and a novel configuration called the boson star-PL saddle. As a result, the structure is richer than one might naively expect and is very similar to the higher-dimensional ones. Full article
Show Figures

Figure 1

47 pages, 700 KB  
Review
Probes for String-Inspired Foam, Lorentz, and CPT Violations in Astrophysics
by Chengyi Li and Bo-Qiang Ma
Symmetry 2025, 17(6), 974; https://doi.org/10.3390/sym17060974 - 19 Jun 2025
Viewed by 1283
Abstract
Lorentz invariance is such a basic principle in fundamental physics that it must be constantly tested and any proposal of its violation and breakdown of CPT symmetry that might characterize some approaches to quantum gravity should be treated with care. In this review, [...] Read more.
Lorentz invariance is such a basic principle in fundamental physics that it must be constantly tested and any proposal of its violation and breakdown of CPT symmetry that might characterize some approaches to quantum gravity should be treated with care. In this review, we examine, among other scenarios, such instances in supercritical (Liouville) string theory, particularly in some brane models for “quantum foam”. Using the phenomenological formalism introduced here, we analyze the observational hints of Lorentz violation in time-of-flight lags of cosmic photons and neutrinos which fit excellently stringy space–time foam scenarios. We further demonstrate how stringent constraints from other astrophysical data, including the recent first detections of multi-TeV events in γ-ray burst 221009A and PeV cosmic photons by the Large High Altitude Air Shower Observatory (LHAASO), are satisfied in this context. Such models thus provide a unified framework for all currently observed phenomenologies of space–time symmetry breaking at Planckian scales. Full article
(This article belongs to the Special Issue Lorentz Invariance Violation and Space–Time Symmetry Breaking)
Back to TopTop