Statistical Entropy Based on the Generalized-Uncertainty-Principle-Induced Effective Metric
Abstract
1. Introduction
2. GUP to Leading and All Orders in the Planck Length
3. GUP-Induced Effective Metric
3.1. Effective Metric from the Leading-Order GUP-Corrected Temperature
3.2. Effective Metric from the Leading-Order GUP-Corrected Entropy
3.3. Effective Metric from the All-Order GUP-Corrected Temperature
4. Revisiting the Brick Wall Model Using Effective Metrics
5. Statistical Entropy Based on the GUP Induced Effective Metrics
5.1. Leading-Order GUP Correction
5.2. All-Order GUP Correction
6. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amati, D.; Ciafaloni, M.; Veneziano, G. Superstring Collisions at Planckian Energies. Phys. Lett. B 1987, 197, 81–88. [Google Scholar] [CrossRef]
- Gross, D.J.; Mende, P.F. The High-Energy Behavior of String Scattering Amplitudes. Phys. Lett. B 1987, 197, 129–134. [Google Scholar] [CrossRef]
- Amati, D.; Ciafaloni, M.; Veneziano, G. Can Space-Time Be Probed Below the String Size? Phys. Lett. B 1989, 216, 41–47. [Google Scholar] [CrossRef]
- Konishi, K.; Paffuti, G.; Provero, P. Minimum Physical Length and the Generalized Uncertainty Principle in String Theory. Phys. Lett. B 1990, 234, 276–284. [Google Scholar] [CrossRef]
- Ashtekar, A.; Baez, J.; Corichi, A.; Krasnov, K. Quantum geometry and black hole entropy. Phys. Rev. Lett. 1998, 80, 904–907. [Google Scholar] [CrossRef]
- Smolin, L. Loop quantum gravity and Planck scale phenomenology. Lect. Notes Phys. 2005, 669, 363–408. [Google Scholar]
- Bojowald, M.; Kempf, A. Generalized uncertainty principles and localization of a particle in discrete space. Phys. Rev. D 2012, 86, 085017. [Google Scholar] [CrossRef]
- Bojowald, M. Black-Hole Models in Loop Quantum Gravity. Universe 2020, 6, 125. [Google Scholar] [CrossRef]
- Maggiore, M. A Generalized uncertainty principle in quantum gravity. Phys. Lett. B 1993, 304, 65–69. [Google Scholar] [CrossRef]
- Garay, L.J. Quantum gravity and minimum length. Int. J. Mod. Phys. A 1995, 10, 145–166. [Google Scholar] [CrossRef]
- Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 1995, 52, 1108–1118. [Google Scholar] [CrossRef]
- Kempf, A.; Mangano, G. Minimal length uncertainty relation and ultraviolet regularization. Phys. Rev. D 1997, 55, 7909–7920. [Google Scholar] [CrossRef]
- Scardigli, F. Generalized uncertainty principle in quantum gravity from micro-black hole Gedanken experiment. Phys. Lett. B 1999, 452, 39–44. [Google Scholar] [CrossRef]
- Adler, R.J.; Santiago, D.I. On gravity and the uncertainty principle. Mod. Phys. Lett. A 1999, 14, 1371–1381. [Google Scholar] [CrossRef]
- Nicolini, P. Noncommutative Black Holes, The Final Appeal To Quantum Gravity: A Review. Int. J. Mod. Phys. A 2009, 24, 1229–1308. [Google Scholar] [CrossRef]
- Das, S.; Vagenas, E.C. Universality of Quantum Gravity Corrections. Phys. Rev. Lett. 2008, 101, 221301. [Google Scholar] [CrossRef] [PubMed]
- Adler, R.J.; Chen, P.; Santiago, D.I. The Generalized uncertainty principle and black hole remnants. Gen. Rel. Grav. 2001, 33, 2101–2108. [Google Scholar] [CrossRef]
- Nozari, K.; Mehdipour, S.H. Gravitational uncertainty and black hole remnants. Mod. Phys. Lett. A 2005, 20, 2937–2948. [Google Scholar] [CrossRef]
- Banerjee, R.; Ghosh, S. Generalised Uncertainty Principle, Remnant Mass and Singularity Problem in Black Hole Thermodynamics. Phys. Lett. B 2010, 688, 224–229. [Google Scholar] [CrossRef]
- Dutta, A.; Gangopadhyay, S. Remnant mass and entropy of black holes and modified uncertainty principle. Gen. Rel. Grav. 2014, 46, 1747. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1976, 43, 199–220, Erratum in Commun. Math. Phys. 1976, 46, 206. [Google Scholar] [CrossRef]
- ’t Hooft, G. On the Quantum Structure of a Black Hole. Nucl. Phys. B 1985, 256, 727–745. [Google Scholar] [CrossRef]
- Li, X. Black hole entropy without brick walls. Phys. Lett. B 2002, 540, 9–13. [Google Scholar] [CrossRef]
- Liu, W.B.; Zhao, Z. The entropy calculated via brick-wall method comes from a thin film near the event horizon. Int. J. Mod. Phys. A 2001, 16, 3793–3803. [Google Scholar] [CrossRef]
- Liu, W.B. Reissner-Nordstrom black hole entropy inside and outside the brick wall. Chin. Phys. Lett. 2003, 20, 440–443. [Google Scholar] [CrossRef]
- Zhao, R.; Wu, Y.Q.; Zhang, L.C. Spherically symmetric black-hole entropy without brick walls. Class. Quant. Grav. 2003, 20, 4885–4890. [Google Scholar]
- Liu, C.Z.; Li, X.; Zhao, Z. Quantum entropy of the Garfinkle-Horowitz-Strominger dilaton black hole. Gen. Rel. Grav. 2004, 36, 1135–1142. [Google Scholar]
- Kim, W.; Kim, Y.W.; Park, Y.J. Entropy of the Randall-Sundrum brane world with the generalized uncertainty principle. Phys. Rev. D 2006, 74, 104001. [Google Scholar] [CrossRef]
- Nouicer, K. Quantum-corrected black hole thermodynamics to all orders in the Planck length. Phys. Lett. B 2007, 646, 63–71. [Google Scholar] [CrossRef]
- Kim, W.; Kim, Y.W.; Park, Y.J. Entropy of a charged black hole in two dimensions without cutoff. Phys. Rev. D 2007, 75, 127501. [Google Scholar] [CrossRef]
- Kim, Y.W.; Park, Y.J. Entropy of the Schwarzschild black hole to all orders in the Planck length. Phys. Lett. B 2007, 655, 172–177. [Google Scholar] [CrossRef]
- Eune, M.; Kim, W. Lifshitz scalar, brick wall method, and GUP in Hořava-Lifshitz Gravity. Phys. Rev. D 2010, 82, 124048. [Google Scholar] [CrossRef]
- Anacleto, M.A.; Brito, F.A.; Passos, E.; Santos, W.P. The entropy of the noncommutative acoustic black hole based on generalized uncertainty principle. Phys. Lett. B 2014, 737, 6–11. [Google Scholar] [CrossRef]
- Tang, H.; Sun, C.Y.; Yue, R.H. Entropy of Schwarzschild-de Sitter Black Hole with Generalized Uncertainty Principle Revisited(*). Commun. Theor. Phys. 2017, 68, 64. [Google Scholar] [CrossRef]
- Vagenas, E.C.; Ali, A.F.; Hemeda, M.; Alshal, H. Linear and Quadratic GUP, Liouville Theorem, Cosmological Constant, and Brick Wall Entropy. Eur. Phys. J. C 2019, 79, 398. [Google Scholar] [CrossRef]
- Li, G.Q. Quantum gravity effect on the entropy of a novel four-dimensional Gauss-Bonnet black hole. Europhys. Lett. 2021, 135, 30002. [Google Scholar] [CrossRef]
- Hong, S.T.; Kim, Y.W.; Park, Y.J. GUP corrected entropy of the Schwarzschild black hole in holographic massive gravity. Mod. Phys. Lett. A 2022, 37, 2250186. [Google Scholar] [CrossRef]
- Li, G. Effects of Quantum Gravity on Thermodynamic Quantities of Gases around a Novel Neutral Four-Dimensional Gauss-Bonnet Black Hole. Universe 2023, 9, 253. [Google Scholar] [CrossRef]
- Nouicer, K. Black holes thermodynamics to all order in the Planck length in extra dimensions. Class. Quant. Grav. 2007, 24, 5917–5934, Erratum in Class. Quant. Grav. 2007, 24, 6435. [Google Scholar] [CrossRef]
- Pedram, P. A Higher Order GUP with Minimal Length Uncertainty and Maximal Momentum. Phys. Lett. B 2012, 714, 317–323. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Diab, A.M. Generalized Uncertainty Principle: Approaches and Applications. Int. J. Mod. Phys. D 2014, 23, 1430025. [Google Scholar] [CrossRef]
- Chung, W.S.; Hassanabadi, H. A new higher order GUP: One dimensional quantum system. Eur. Phys. J. C 2019, 79, 213. [Google Scholar] [CrossRef]
- Petruzziello, L. Generalized uncertainty principle with maximal observable momentum and no minimal length indeterminacy. Class. Quant. Grav. 2021, 38, 135005. [Google Scholar] [CrossRef]
- Du, X.D.; Long, C.Y. New generalized uncertainty principle with parameter adaptability for the minimum length. J. High Energy Phys. 2022, 10, 63. [Google Scholar] [CrossRef]
- Hemeda, M.; Alshal, H.; Ali, A.F.; Vagenas, E.C. Gravitational observations and LQGUP. Nucl. Phys. B 2024, 1000, 116456. [Google Scholar] [CrossRef]
- Sonnino, G. Prigogine’s Second Law and Determination of the EUP and GUP Parameters in Small Black Hole Thermodynamics. Universe 2024, 10, 390. [Google Scholar] [CrossRef]
- Scardigli, F.; Casadio, R. Gravitational tests of the Generalized Uncertainty Principle. Eur. Phys. J. C 2015, 75, 425. [Google Scholar] [CrossRef]
- Contreras, E.; Villalba, F.; Bargueño, P. Effective geometries and generalized uncertainty principle corrections to the Bekenstein-Hawking entropy. Europhys. Lett. 2016, 114, 50009. [Google Scholar] [CrossRef]
- Anacleto, M.A.; Brito, F.A.; Campos, J.A.V.; Passos, E. Quantum-corrected scattering and absorption of a Schwarzschild black hole with GUP. Phys. Lett. B 2020, 810, 135830. [Google Scholar] [CrossRef]
- Ong, Y.C. A critique on some aspects of GUP effective metric. Eur. Phys. J. C 2023, 83, 209. [Google Scholar] [CrossRef]
- Hong, S.T.; Kim, Y.W.; Park, Y.J. Tidal effects based on a GUP-induced effective metric. Commun. Theor. Phys. 2024, 76, 095402. [Google Scholar] [CrossRef]
- Ong, Y.C. GUP Effective Metric Without GUP: Implications for the Sign of GUP Parameter and Quantum Bounce. arXiv 2025, arXiv:2505.07972. [Google Scholar] [CrossRef]
- Corless, R.M.; Gonnet, G.H.; Hare, D.E.G.; Jeffrey, D.J.; Knuth, D.E. On the LambertW function. Adv. Comput. Math. 1996, 5, 329–359. [Google Scholar] [CrossRef]
- Medved, A.J.M.; Vagenas, E.C. On Hawking radiation as tunneling with logarithmic corrections. Mod. Phys. Lett. A 2005, 20, 1723–1728. [Google Scholar] [CrossRef]
- Arzano, M.; Medved, A.J.M.; Vagenas, E.C. Hawking radiation as tunneling through the quantum horizon. J. High Energy Phys. 2005, 9, 37. [Google Scholar] [CrossRef]
Metric | Cutoff h Formula | Invariant Distance |
---|---|---|
Schwarzschild | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, S.-T.; Kim, Y.-W.; Park, Y.-J. Statistical Entropy Based on the Generalized-Uncertainty-Principle-Induced Effective Metric. Universe 2025, 11, 256. https://doi.org/10.3390/universe11080256
Hong S-T, Kim Y-W, Park Y-J. Statistical Entropy Based on the Generalized-Uncertainty-Principle-Induced Effective Metric. Universe. 2025; 11(8):256. https://doi.org/10.3390/universe11080256
Chicago/Turabian StyleHong, Soon-Tae, Yong-Wan Kim, and Young-Jai Park. 2025. "Statistical Entropy Based on the Generalized-Uncertainty-Principle-Induced Effective Metric" Universe 11, no. 8: 256. https://doi.org/10.3390/universe11080256
APA StyleHong, S.-T., Kim, Y.-W., & Park, Y.-J. (2025). Statistical Entropy Based on the Generalized-Uncertainty-Principle-Induced Effective Metric. Universe, 11(8), 256. https://doi.org/10.3390/universe11080256