Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = quartz crystal nonlinearity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7633 KB  
Article
Mechanical Behavior Characteristics of Sandstone and Constitutive Models of Energy Damage Under Different Strain Rates
by Wuyan Xu and Cun Zhang
Appl. Sci. 2025, 15(14), 7954; https://doi.org/10.3390/app15147954 - 17 Jul 2025
Viewed by 330
Abstract
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock [...] Read more.
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock samples with different strain rates were also discussed. The research results show that with the increases in the strain rate, peak stress, and elastic modulus show a monotonically increasing trend, while the peak strain decreases in the reverse direction. At a low strain rate, the proportion of the mass fraction of complete rock blocks in the rock sample is relatively high, and the shape integrity is good, while rock samples with a high strain rate retain more small-sized fragmented rock blocks. This indicates that under high-rate loading, the bifurcation phenomenon of secondary cracks is obvious. The rock samples undergo a failure form dominated by small-sized fragments, with severe damage to the rock samples and significant fractal characteristics of the fragments. At the initial stage of loading, the primary fractures close, and the rock samples mainly dissipate energy in the forms of frictional slip and mineral fragmentation. In the middle stage of loading, the residual fractures are compacted, and the dissipative strain energy keeps increasing continuously. In the later stage of loading, secondary cracks accelerate their expansion, and elastic strain energy is released sharply, eventually leading to brittle failure of the rock sample. Under a low strain rate, secondary cracks slowly expand along the clay–quartz interface and cause intergranular failure of the rock sample. However, a high strain rate inhibits the stress relaxation of the clay, forces the energy to transfer to the quartz crystal, promotes the penetration of secondary cracks through the quartz crystal, and triggers transgranular failure. A constitutive model based on energy damage was further constructed, which can accurately characterize the nonlinear hardening characteristics and strength-deformation laws of rock samples with different strain rates. The evolution process of its energy damage can be divided into the unchanged stage, the slow growth stage, and the accelerated growth stage. The characteristics of this stage reveal the sudden change mechanism from the dissipation of elastic strain energy of rock samples to the unstable propagation of secondary cracks, clarify the cumulative influence of strain rate on damage, and provide a theoretical basis for the dynamic assessment of surrounding rock damage and disaster early warning when the mine roof comes under pressure. Full article
Show Figures

Figure 1

17 pages, 4970 KB  
Article
Virtual Quartz Crystal Microbalance: Bioinspired Resonant Frequency Tracking
by Ioan Burda
Biomimetics 2022, 7(4), 156; https://doi.org/10.3390/biomimetics7040156 - 8 Oct 2022
Cited by 4 | Viewed by 2336
Abstract
The reference acoustic properties of the quartz crystal used as a resonator are ensured by its high-quality factor (Q-factor). The microbalance of the quartz crystal (QCM) exploits the bulk acoustic properties of the quartz crystal. Turning a network analyzer or impedance analyzer into [...] Read more.
The reference acoustic properties of the quartz crystal used as a resonator are ensured by its high-quality factor (Q-factor). The microbalance of the quartz crystal (QCM) exploits the bulk acoustic properties of the quartz crystal. Turning a network analyzer or impedance analyzer into a QCM with a decent measurement rate is a challenge. The use of a virtual instrument to implement an impedance analyzer (VIA) provides greater flexibility to the virtual QCM. In this paper, VIA’s flexibility is exploited for the experimental evaluation of conventional scanning procedures and the influence of associated parameters, in order to identify elements that can lead to a limitation of the performance of a virtual QCM. The results of the experimental investigation justify the use of an innovative and optimized bioinspired scanning procedure to effectively track the serial resonance frequency of the QCM sensor. Variable-resolution spatial sampling of the human retina and the ability of the eye to refocus on the area of interest is the source of bioinspiration for achieving an adaptive virtual QCM. The design methodology and physics are described in detail, and the experimental investigations demonstrate the effectiveness of the proposed bioinspired scanning procedure. Full article
(This article belongs to the Special Issue Bioinspired Functional Structures)
Show Figures

Figure 1

15 pages, 3516 KB  
Article
Multiple Quartz Crystals Connected in Parallel for High-Resolution Sensing of Capacitance Changes
by Vojko Matko
Sensors 2022, 22(13), 5030; https://doi.org/10.3390/s22135030 - 3 Jul 2022
Cited by 5 | Viewed by 2879
Abstract
We present a new highly sensitive, low-value capacitance sensor method that uses multiple quartz crystals connected in parallel inside the oscillator. In the experimental setup, the measured (sensible) reactance (capacitance) is connected in parallel to the total shunt capacitance of the quartz crystals, [...] Read more.
We present a new highly sensitive, low-value capacitance sensor method that uses multiple quartz crystals connected in parallel inside the oscillator. In the experimental setup, the measured (sensible) reactance (capacitance) is connected in parallel to the total shunt capacitance of the quartz crystals, oscillating in the oscillator. Because AT-cut crystals have a certain nonlinear frequency–temperature dependence, we use the switching mode method, by which we achieve a temperature compensation of the AT-cut crystals’ frequency–temperature characteristics in the temperature range between 050 °C. The oscillator switching method also compensates for any other influences on the frequency of the oscillator, such as ageing of the crystals and oscillator elements, supply voltage fluctuations, and other parasitic impedances in the oscillating circuit. Subsequently using two 50-ms-delayed switches between the measuring and reference capacitors, the experimental error in measuring the capacitance is lowered for measurements under a dynamic temperature variation in the range of 050 °C. The experimental results show that the switching method, which includes a multiple quartz connection and high-temperature compensation improvement of the quartz crystals’ characteristics, enables a sub-aF resolution. It converts capacitance changes in the range 10 zF200 fF to frequencies in the range 4 kHz100 kHz. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 3028 KB  
Article
Method for QCM Resonator Device Equivalent Circuit Parameter Extraction and Electrode Quality Assessment
by Dong Liu, Xiaoting Xiao, Ziqiao Tang, Qiao Chen, Haoran Li, Xiaoxiong Wang and Yan Yan
Micromachines 2021, 12(9), 1086; https://doi.org/10.3390/mi12091086 - 9 Sep 2021
Cited by 8 | Viewed by 3405
Abstract
Quartz crystal microbalance (QCM) resonators are used in a wide range of sensors. Current QCM resonators achieve a simultaneous measurement of multiple physical quantities by analyzing lumped-element equivalent parameters, which are obtained via the introduction of external devices. This introduction of external devices [...] Read more.
Quartz crystal microbalance (QCM) resonators are used in a wide range of sensors. Current QCM resonators achieve a simultaneous measurement of multiple physical quantities by analyzing lumped-element equivalent parameters, which are obtained via the introduction of external devices. This introduction of external devices will probably increase measurement error. To realize the measurement of multiple physical quantities while eliminating the measurement error caused by external devices, this paper proposes a measurement method for the lumped-element equivalent parameters of QCM resonators without the need for extra external devices. Accordingly, a numerical method for solving nonlinear equations with fewer data points required and a higher accuracy was adopted. A standard crystal resonator parameter extraction experiment is described. The extracted parameters were consistent with the nominal parameters, which confirms the accuracy of this method. Furthermore, six QCM resonator device samples with different electrode diameters and materials were produced and used in the parameter measurement experiment. The linear relationship between the electrode material conductivity and motional resistance R1 is discussed. The ability of this method to characterize the electrode material and to detect the rust status of the electrode is also demonstrated. These abilities support the potential utility of the proposed method for an electrode quality assessment of piezoelectric devices. Full article
Show Figures

Graphical abstract

79 pages, 16234 KB  
Review
Studying Soft Interfaces with Shear Waves: Principles and Applications of the Quartz Crystal Microbalance (QCM)
by Diethelm Johannsmann, Arne Langhoff and Christian Leppin
Sensors 2021, 21(10), 3490; https://doi.org/10.3390/s21103490 - 17 May 2021
Cited by 77 | Viewed by 11950
Abstract
The response of the quartz crystal microbalance (QCM, also: QCM-D for “QCM with Dissipation monitoring”) to loading with a diverse set of samples is reviewed in a consistent frame. After a brief introduction to the advanced QCMs, the governing equation (the small-load approximation) [...] Read more.
The response of the quartz crystal microbalance (QCM, also: QCM-D for “QCM with Dissipation monitoring”) to loading with a diverse set of samples is reviewed in a consistent frame. After a brief introduction to the advanced QCMs, the governing equation (the small-load approximation) is derived. Planar films and adsorbates are modeled based on the acoustic multilayer formalism. In liquid environments, viscoelastic spectroscopy and high-frequency rheology are possible, even on layers with a thickness in the monolayer range. For particulate samples, the contact stiffness can be derived. Because the stress at the contact is large, the force is not always proportional to the displacement. Nonlinear effects are observed, leading to a dependence of the resonance frequency and the resonance bandwidth on the amplitude of oscillation. Partial slip, in particular, can be studied in detail. Advanced topics include structured samples and the extension of the small-load approximation to its tensorial version. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

28 pages, 8899 KB  
Article
Rippite, K2(Nb,Ti)2(Si4O12)O(O,F), a New K-Nb-Cyclosilicate from Chuktukon Carbonatite Massif, Chadobets Upland, Krasnoyarsk Territory, Russia
by Victor V. Sharygin, Anna G. Doroshkevich, Yurii V. Seryotkin, Nikolai S. Karmanov, Elena V. Belogub, Tatyana N. Moroz, Elena N. Nigmatulina, Alexander P. Yelisseyev, Vitalii N. Vedenyapin and Igor N. Kupriyanov
Minerals 2020, 10(12), 1102; https://doi.org/10.3390/min10121102 - 8 Dec 2020
Cited by 4 | Viewed by 4451
Abstract
Rippite K2(Nb,Ti)2(Si4O12)(O,F)2, a new K-Nb-cyclosilicate, has been discovered in calciocarbonatites from the Chuktukon massif (Chadobets upland, SW Siberian Platform, Krasnoyarsk Territory, Russia). It was found in a primary mineral assemblage, which also includes [...] Read more.
Rippite K2(Nb,Ti)2(Si4O12)(O,F)2, a new K-Nb-cyclosilicate, has been discovered in calciocarbonatites from the Chuktukon massif (Chadobets upland, SW Siberian Platform, Krasnoyarsk Territory, Russia). It was found in a primary mineral assemblage, which also includes calcite, fluorcalciopyrochlore, tainiolite, fluorapatite, fluorite, Nb-rich rutile, olekminskite, K-feldspar, Fe-Mn–dolomite and quartz. Goethite, francolite (Sr-rich carbonate–fluorapatite) and psilomelane (romanèchite ± hollandite) aggregates as well as barite, monazite-(Ce), parisite-(Ce), synchysite-(Ce) and Sr-Ba-Pb-rich keno-/hydropyrochlore are related to a stage of metasomatic (hydrothermal) alteration of carbonatites. The calcite–dolomite coexistence assumes crystallization temperature near 837 °C for the primary carbonatite paragenesis. Rippite is tetragonal: P4bm, a = 8.73885(16), c = 8.1277(2) Å, V = 620.69(2) Å3, Z = 2. It is closely identical in the structure and cell parameters to synthetic K2Nb2(Si4O12)O2 (or KNbSi2O7). Similar to synthetic phase, the mineral has nonlinear properties. Some optical and physical properties for rippite are: colorless; Mohs’ hardness—4–5; cleavage—(001) very perfect, (100) perfect to distinct; density (meas.)—3.17(2) g/cm3; density (calc.)—3.198 g/cm3; optically uniaxial (+); ω = 1.737-1.739; ε = 1.747 (589 nm). The empirical formula of the holotype rippite (mean of 120 analyses) is K2(Nb1.90Ti0.09Zr0.01)[Si4O12](O1.78OH0.12F0.10). Majority of rippite prismatic crystals are weakly zoned and show Ti-poor composition K2(Nb1.93Ti0.05Zr0.02)[Si4O12](O1.93F0.07). Raman and IR spectroscopy, and SIMS data indicate very low H2O content (0.09–0.23 wt %). Some grains may contain an outermost zone, which is enriched in Ti (+Zr) and F, up to K2(Nb1.67Ti0.32Zr0.01)[Si4O12](O1.67F0.33). It strongly suggests the incorporation of (Ti,Zr) and F in the structure of rippite via the isomorphism Nb5+ + O2− → (Ti,Zr)4+ + F1−. The content of a hypothetical end-member K2Ti2[Si4O12]F2 may be up to 17 mol. %. Rippite represents a new structural type among [Si4O12]-cyclosilicates because of specific type of connection of the octahedral chains and [Si4O12]8− rings. In structural and chemical aspects it seems to be in close with the labuntsovite-supergroup minerals, namely with vuoriyarvite-(K), K2(Nb,Ti)2(Si4O12)(O,OH)2∙4H2O. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Figure 1

13 pages, 872 KB  
Article
New Quartz Oscillator Switching Method for Nano-Henry Range Inductance Measurements
by Vojko Matko and Karel Jezernik
Sensors 2012, 12(3), 3105-3117; https://doi.org/10.3390/s120303105 - 6 Mar 2012
Cited by 9 | Viewed by 7937
Abstract
This article introduces a new method for nano-Henry inductance measurements at the frequency of 4.999 MHz with a single quartz crystal oscillating in the switching oscillating circuit. The real novelty of this method, however, lies in a considerable reduction of the temperature influence [...] Read more.
This article introduces a new method for nano-Henry inductance measurements at the frequency of 4.999 MHz with a single quartz crystal oscillating in the switching oscillating circuit. The real novelty of this method, however, lies in a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 0 °C and 50 °C through a switching method which compensates for the crystal’s natural temperature characteristics. This allows for the compensation of any influences on the crystal such as the compensation of the non-linear temperature characteristics and the ageing of both the crystal and other oscillating circuit elements, as well as the reduction of the output frequency measurement errors with the help of an additional reference frequency. The experimental results show that the switching method greatly improves the measurement of small inductance changes in the range between μH and nH, allowing as a result high-precision measurements (~0.35 fH) in this range. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

9 pages, 383 KB  
Article
Next Generation AT-Cut Quartz Crystal Sensing Devices
by Vojko Matko
Sensors 2011, 11(5), 4474-4482; https://doi.org/10.3390/s110504474 - 27 Apr 2011
Cited by 72 | Viewed by 10103
Abstract
Generally, AT-cut quartz crystals have a limited scope of use when it comes to high-precision measurement of very small impedance changes due to their nonlinear frequency-temperature characteristics in the range between 0 °C and 50 °C. The new method improving quartz oscillator frequency-temperature [...] Read more.
Generally, AT-cut quartz crystals have a limited scope of use when it comes to high-precision measurement of very small impedance changes due to their nonlinear frequency-temperature characteristics in the range between 0 °C and 50 °C. The new method improving quartz oscillator frequency-temperature characteristic compensation is switching between two impedance loads. By modifying the oscillator circuit with two logic switches and two impedance loads, the oscillator can switch oscillation between two resonance frequencies. The difference in resonance frequencies compensates the frequency-temperature characteristics influence as well as the influence of offset and quartz crystal ageing. The experimental results show that the new approach using the switching method highly improves second-to-second frequency stability from ±0.125 Hz to ±0.00001 Hz and minute-to-minute frequency stability from 0.1 Hz to 0.0001 Hz, which makes the high-precision measurement of aF and fH changes possible. Full article
(This article belongs to the Special Issue 10 Years Sensors - A Decade of Publishing)
Show Figures

16 pages, 356 KB  
Article
A Z-axis Quartz Cross-fork Micromachined Gyroscope Based on Shear Stress Detection
by Liqiang Xie, Xuezhong Wu, Shengyi Li, Haoxu Wang, Jianbin Su and Peitao Dong
Sensors 2010, 10(3), 1573-1588; https://doi.org/10.3390/s100301573 - 1 Mar 2010
Cited by 18 | Viewed by 11093
Abstract
Here we propose a novel quartz micromachined gyroscope. The sensor has a simple cross-fork structure in the x-y plane of quartz crystal. Shear stress rather than normal stress is utilized to sense Coriolis’ force generated by the input angular rate signal. Compared to [...] Read more.
Here we propose a novel quartz micromachined gyroscope. The sensor has a simple cross-fork structure in the x-y plane of quartz crystal. Shear stress rather than normal stress is utilized to sense Coriolis’ force generated by the input angular rate signal. Compared to traditional quartz gyroscopes, which have two separate sense electrodes on each sidewall, there is only one electrode on each sidewall of the sense beam. As a result, the fabrication of the electrodes is simplified and the structure can be easily miniaturized. In order to increase sensitivity, a pair of proof masses is attached to the ends of the drive beam, and the sense beam has a tapered design. The structure is etched from a z-cut quartz wafer and the electrodes are realized by direct evaporation using the aperture mask method. The drive mode frequency of the prototype is 13.38 kHz, and the quality factor is approximately 1,000 in air. Therefore, the gyroscope can work properly without a vacuum package. The measurement ability of the shear stress detection design scheme is validated by the Coriolis’ force test. The performance of the sensor is characterized on a precision rate table using a specially designed readout circuit. The experimentally obtained scale factor is 1.45 mV/°/s and the nonlinearity is 3.6% in range of ±200 °/s. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

14 pages, 287 KB  
Article
Optical and Nonlinear Optical Response of Light Sensor Thin Films
by H. Liu, A. J. Rua, O. Vasquez, V. S. Vikhnin, L. F.E. Fernandez, F. Fonseca, O. Resto and S. Z. Weisz
Sensors 2005, 5(4), 185-198; https://doi.org/10.3390/s5040185 - 27 Apr 2005
Cited by 18 | Viewed by 11222
Abstract
For potential ultrafast optical sensor application, both VO2 thin films andnanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates weresuccessfully prepared using pulsed laser deposition (PLD) and RF co-sputteringtechniques. In photoluminescence (PL) measurement c-Si/SiO2 film containsnanoparticles of crystal [...] Read more.
For potential ultrafast optical sensor application, both VO2 thin films andnanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates weresuccessfully prepared using pulsed laser deposition (PLD) and RF co-sputteringtechniques. In photoluminescence (PL) measurement c-Si/SiO2 film containsnanoparticles of crystal Si exhibits strong red emission with the band maximum rangingfrom 580 to 750 nm. With ultrashort pulsed laser excitation all films show extremelyintense and ultrafast nonlinear optical (NLO) response. The recorded holography fromall these thin films in a degenerate-four-wave-mixing configuration shows extremelylarge third-order response. For VO2 thin films, an optically induced semiconductor-tometalphase transition (PT) immediately occurred upon laser excitation. it accompanied.It turns out that the fast excited state dynamics was responsible to the induced PT. For c-Si/SiO2 film, its NLO response comes from the contribution of charge carriers created bylaser excitation in conduction band of the c-Si nanoparticles. It was verified byintroducing Eu3+ which is often used as a probe sensing the environment variations. Itturns out that the entire excited state dynamical process associated with the creation,movement and trapping of the charge carriers has a characteristic 500 ps duration. Full article
(This article belongs to the Special Issue Papers presented at I3S2004, Nanjing)
Show Figures

Back to TopTop