Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = quasi-phase matching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 14203 KB  
Article
Low-Profile Omnidirectional and Wide-Angle Beam Scanning Antenna Array Based on Epsilon-Near-Zero and Fabry–Perot Co-Resonance
by Jiaxin Li, Lin Zhao, Dan Long and Hui Xie
Electronics 2025, 14(10), 2012; https://doi.org/10.3390/electronics14102012 - 15 May 2025
Viewed by 1219
Abstract
To address the inherent contradiction between low-profile design and high gain in traditional omnidirectional antennas, as well as the narrow bandwidth constraints of ENZ antennas, this study presents a dual-mode ENZ-FP collaborative resonant antenna array design utilizing a substrate-integrated waveguide (SIW). Through systematic [...] Read more.
To address the inherent contradiction between low-profile design and high gain in traditional omnidirectional antennas, as well as the narrow bandwidth constraints of ENZ antennas, this study presents a dual-mode ENZ-FP collaborative resonant antenna array design utilizing a substrate-integrated waveguide (SIW). Through systematic analysis of ENZ media’s quasi-static field distribution, we innovatively integrated it with Fabry–Perot (F–P) resonance, achieving unprecedented dual-band omnidirectional radiation at 5.18 GHz and 5.72 GHz within a single ENZ antenna configuration for the first time. The directivity of both frequencies reached 12.0 dBi, with a remarkably low profile of only 0.018λ. We then extended this design to an ENZ-FP dual-mode beam-scanning array. By incorporating phase control technology, we achieved wide-angle scanning despite low-profile constraints. The measured 3 dB beam coverage angles at the dual frequencies were ±63° and ±65°, respectively. Moreover, by loading the impedance matching network, the −10 dB impedance bandwidth of the antenna array was further extended to 2.4% and 2.7%, respectively, thus overcoming the narrowband limitations of the ENZ antenna and enhancing practical applicability. The antennas were manufactured using PCB (Printed Circuit Board) technology, offering high integration and cost efficiency. This provides a new paradigm for UAV (Unmanned Aerial Vehicle) communication and radar detection systems featuring multi-band operation, a low-profile design, and flexible beam control capabilities. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

20 pages, 2153 KB  
Article
Water Resource Tax and Green Industrial Development: Reform from the Largest Emerging Economy
by Haiyan Lu, Yongxin Zhu and Yongqing Kang
Sustainability 2025, 17(10), 4478; https://doi.org/10.3390/su17104478 - 14 May 2025
Viewed by 625
Abstract
The global challenge of water resource management presents a policy dilemma: while water resource tax aims to foster green development, it may hinder the economic potential of micro entities. This paper evaluates the efficacy of a trial of water resource tax reform in [...] Read more.
The global challenge of water resource management presents a policy dilemma: while water resource tax aims to foster green development, it may hinder the economic potential of micro entities. This paper evaluates the efficacy of a trial of water resource tax reform in China regarding the green total factor productivity of listed Chinese industrial enterprises over the period spanning 2012–2019 by employing a quasi-natural experiment. This study utilizes multi-period Difference-in-Differences (DID) and propensity score matching methodologies to deal with the self-selection bias inherent in choosing pilot areas. The findings illustrate that the reform exerted a crucial beneficial impact on the GTFP of industrial enterprises. The main takeaway of this study is that the phased reform, integrating water resource taxes with the adaptation of micro entities, offers a pathway for economies to balance resource restrictions with sustainable development. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

9 pages, 344 KB  
Communication
Quadratic Cascading in Quasi-Phase-Matching: An Alternative Route to Efficient Third-Harmonic Generation
by Usman Sapaev and Gaetano Assanto
Electronics 2024, 13(22), 4348; https://doi.org/10.3390/electronics13224348 - 6 Nov 2024
Viewed by 993
Abstract
We report on the theoretical/numerical investigation of simultaneous second- and third-harmonic generation from a single wavelength input in quasi-phase-matched crystals. The presented technique consists of a quadratic crystal with two first-order quasi-phase-matched sections: one designed for quasi-phase-matching to second-harmonic generation and the other [...] Read more.
We report on the theoretical/numerical investigation of simultaneous second- and third-harmonic generation from a single wavelength input in quasi-phase-matched crystals. The presented technique consists of a quadratic crystal with two first-order quasi-phase-matched sections: one designed for quasi-phase-matching to second-harmonic generation and the other for quasi-phase-matching to third-harmonic generation via sum-frequency generation. We identify an optimal length ratio (optimal number of domains) for these sections in order to enhance the conversion to the third harmonic, achieving nearly complete energy transfer. The advantages of the method are demonstrated both numerically and analytically, with a specific example using periodically poled lithium niobate. Quadratic cascading with quasi-phase-matching proves to be an effective approach for achieving cubic-like effects with high conversion efficiencies. Full article
(This article belongs to the Section Optoelectronics)
Show Figures

Figure 1

13 pages, 3290 KB  
Article
A Bidirectional Quasi-Endfire Patch Antenna with Low Elevation Angle
by Ziling Zhou, Jin Shi, Gu Liu, Kai Xu and Ruirui Jiang
Micromachines 2024, 15(6), 777; https://doi.org/10.3390/mi15060777 - 12 Jun 2024
Cited by 1 | Viewed by 1511
Abstract
A bidirectional quasi-endfire patch antenna with a low elevation angle has promising applications for wireless communication systems that are vehicle-based, airborne, and shipborne. In this paper, the shortened patch resonators and open patch resonator are integrated to form a bidirectional quasi-endfire patch antenna [...] Read more.
A bidirectional quasi-endfire patch antenna with a low elevation angle has promising applications for wireless communication systems that are vehicle-based, airborne, and shipborne. In this paper, the shortened patch resonators and open patch resonator are integrated to form a bidirectional quasi-endfire patch antenna with low elevation angle. The open patch resonator operates with a TM20 mode to realize bidirectional radiation. The two shortened patch resonators operate with a TM01 mode coupled with a TM20 mode to control the phase difference between them at a suitable angle, so that the shortened patch resonators act as directors to tilt the dual beams toward the endfire direction and achieve low elevation angle. Compared with reported patch antennas with dual beams, the proposed antenna has the lowest elevation angle and a compact structure. For demonstration purposes, an antenna prototype operating at 3.5 GHz is fabricated and measured, exhibiting a low elevation angle of ±28°, a −10 dB impedance matching bandwidth from 3.44 GHz to 3.61 GHz, and a size of 1.36 λ0 × 0.57 λ0 with a profile of 0.036 λ0. A prototype with two pair of shortened patch directors further reduces the elevation angle to ±19° with the size of 2.3 λ0 × 0.57 λ0. Full article
Show Figures

Figure 1

18 pages, 3776 KB  
Review
Research Progress on Femtosecond Laser Poling of Ferroelectrics
by Yan Sheng, Xin Chen, Tianxiang Xu, Shan Liu, Ruwei Zhao and Wieslaw Krolikowski
Photonics 2024, 11(5), 447; https://doi.org/10.3390/photonics11050447 - 10 May 2024
Cited by 6 | Viewed by 2063
Abstract
Ferroelectric domain engineering has wide applications in optical and electronic industries. Compared with traditional electric field poling, femtosecond laser poling has many advantages, such as higher fabrication resolution, 3D engineering applicability, and lower costs of production. In this review, the recent research progress [...] Read more.
Ferroelectric domain engineering has wide applications in optical and electronic industries. Compared with traditional electric field poling, femtosecond laser poling has many advantages, such as higher fabrication resolution, 3D engineering applicability, and lower costs of production. In this review, the recent research progress on ferroelectric domain engineering with femtosecond laser pulses is presented. We show the latest results, including complex domain structures fabricated in various kinds of ferroelectric crystals, and discuss the influence of laser poling parameters and conditions on the morphologies of inverted domains and their physical mechanisms. The technical challenges to overcome in future are also briefly discussed. Full article
Show Figures

Figure 1

12 pages, 1216 KB  
Article
Wafer-Scale Periodic Poling of Thin-Film Lithium Niobate
by Mengwen Chen, Chenyu Wang, Xiao-Hui Tian, Jie Tang, Xiaowen Gu, Guang Qian, Kunpeng Jia, Hua-Ying Liu, Zhong Yan, Zhilin Ye, Zhijun Yin, Shi-Ning Zhu and Zhenda Xie
Materials 2024, 17(8), 1720; https://doi.org/10.3390/ma17081720 - 9 Apr 2024
Cited by 5 | Viewed by 3890
Abstract
Periodically poled lithium niobate on insulator (PPLNOI) offers an admirably promising platform for the advancement of nonlinear photonic integrated circuits (PICs). In this context, domain inversion engineering emerges as a key process to achieve efficient nonlinear conversion. However, periodic poling processing of thin-film [...] Read more.
Periodically poled lithium niobate on insulator (PPLNOI) offers an admirably promising platform for the advancement of nonlinear photonic integrated circuits (PICs). In this context, domain inversion engineering emerges as a key process to achieve efficient nonlinear conversion. However, periodic poling processing of thin-film lithium niobate has only been realized on the chip level, which significantly limits its applications in large-scale nonlinear photonic systems that necessitate the integration of multiple nonlinear components on a single chip with uniform performances. Here, we demonstrate a wafer-scale periodic poling technique on a 4-inch LNOI wafer with high fidelity. The reversal lengths span from 0.5 to 10.17 mm, encompassing an area of ~1 cm2 with periods ranging from 4.38 to 5.51 μm. Efficient poling was achieved with a single manipulation, benefiting from the targeted grouped electrode pads and adaptable comb line widths in our experiment. As a result, domain inversion is ultimately implemented across the entire wafer with a 100% success rate and 98% high-quality rate on average, showcasing high throughput and stability, which is fundamentally scalable and highly cost-effective in contrast to traditional size-restricted chiplet-level poling. Our study holds significant promise to dramatically promote ultra-high performance to a broad spectrum of applications, including optical communications, photonic neural networks, and quantum photonics. Full article
Show Figures

Figure 1

8 pages, 3374 KB  
Communication
Cascaded Third-Harmonic Generation in Optically Induced 3D Nonlinear Photonic Crystals
by Tianxiang Xu, Sen Wang, Jing Zeng, Dawei Liu, Ruwei Zhao, Yuming Yao, Yuhao Zhao, Hui Zhao, Tiefeng Xu and Yan Sheng
Photonics 2024, 11(4), 313; https://doi.org/10.3390/photonics11040313 - 28 Mar 2024
Cited by 2 | Viewed by 2188
Abstract
Nonlinear photonic crystals with 3D orthorhombic lattice structures were fabricated using the femtosecond laser-poling technique in ferroelectric Sr0.28Ba0.72Nb2O6 (SBN) crystals. The crystals were used to demonstrate the possibility of generating cascaded third-harmonic waves in optically poled [...] Read more.
Nonlinear photonic crystals with 3D orthorhombic lattice structures were fabricated using the femtosecond laser-poling technique in ferroelectric Sr0.28Ba0.72Nb2O6 (SBN) crystals. The crystals were used to demonstrate the possibility of generating cascaded third-harmonic waves in optically poled ferroelectric structures. The spectral response and conversion efficiency of the third-harmonic process were experimentally investigated. While the nonlinear cascading processes can be commonly realized in electric-field-poled ferroelectric crystals, their generation in optically poled ferroelectric domain structures have not been reported elsewhere. In addition to the fully phase-matched nonlinear interaction, Cherenkov-type third-harmonic generation that fulfills the longitudinal phase-matching condition was also experimentally studied. Our study contributes to exploring the full potential of optically induced nonlinear photonic crystals and provides a new choice of materials for third-harmonic generation. Full article
(This article belongs to the Special Issue Emerging Trends in Photonic Crystals)
Show Figures

Figure 1

16 pages, 8520 KB  
Article
A Millimeter-Wave Broadband Multi-Mode Substrate-Integrated Gap Waveguide Traveling-Wave Antenna with Orbit Angular Momentum
by Qiu-Hua Lin, Da Hou, Lihui Wang, Pengpeng Chen and Zhiyong Luo
Sensors 2024, 24(4), 1184; https://doi.org/10.3390/s24041184 - 11 Feb 2024
Cited by 2 | Viewed by 1745
Abstract
Orbit angular momentum (OAM) has been considered a new dimension for improving channel capacity in recent years. In this paper, a millimeter-wave broadband multi-mode waveguide traveling-wave antenna with OAM is proposed by innovatively utilizing the transmitted electromagnetic waves (EMWs) characteristic of substrate-integrated gap [...] Read more.
Orbit angular momentum (OAM) has been considered a new dimension for improving channel capacity in recent years. In this paper, a millimeter-wave broadband multi-mode waveguide traveling-wave antenna with OAM is proposed by innovatively utilizing the transmitted electromagnetic waves (EMWs) characteristic of substrate-integrated gap waveguides (SIGWs) to introduce phase delay, resulting in coupling to the radiate units with a phase jump. Nine “L”-shaped slot radiate elements are cut in a circular order at a certain angle on the SIGW to generate spin angular momentum (SAM) and OAM. To generate more OAM modes and match the antenna, four “Π”-shaped slot radiate units with a 90° relationship to each other are designed in this circular array. The simulation results show that the antenna operates at 28 GHz, with a −10 dB fractional bandwidth (FBW) = 35.7%, ranging from 25.50 to 35.85 GHz and a VSWR ≤ 1.5 dB from 28.60 to 32.0 GHz and 28.60 to 32.0 GHz. The antenna radiates a linear polarization (LP) mode with a gain of 9.3 dBi at 34.0~37.2 GHz, a l = 2 SAM–OAM (i.e., circular polarization OAM (CP–OAM)) mode with 8.04 dBi at 25.90~28.08 GHz, a l = 1 and l = 2 hybrid OAM mode with 5.7 dBi at 28.08~29.67 GHz, a SAM (i.e., left/right hand circular polarization (L/RHCP) mode with 4.6 dBi at 29.67~30.41 GHz, and a LP mode at 30.41~35.85 GHz. In addition, the waveguide transmits energy with a bandwidth ranging from 26.10 to 38.46 GHz. Within the in-band, only a quasi-TEM mode is transmitted with an energy transmission loss |S21| ≤ 2 dB. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

12 pages, 7970 KB  
Article
Fabrication and Characterization of 2D Nonlinear Structures Based on DAST Nanocrystals and SU-8 Photoresist for Terahertz Application
by Tamara Pogosian, Isabelle Ledoux-Rak, Igor Denisyuk, Maria Fokina and Ngoc Diep Lai
Micromachines 2024, 15(2), 203; https://doi.org/10.3390/mi15020203 - 29 Jan 2024
Cited by 1 | Viewed by 1727
Abstract
We demonstrate a method for the realization of highly nonlinear optical 4-(4-dimethylaminostyryl)- 1-methylpyridinium tosylate (DAST) two-dimensional structures by a double-step technique. The desired polymeric structures were first fabricated by using the multiple exposure of the two-beam interference technique, and the DAST nanoscrystals were [...] Read more.
We demonstrate a method for the realization of highly nonlinear optical 4-(4-dimethylaminostyryl)- 1-methylpyridinium tosylate (DAST) two-dimensional structures by a double-step technique. The desired polymeric structures were first fabricated by using the multiple exposure of the two-beam interference technique, and the DAST nanoscrystals were then prepared inside the air-voids of these photoresist templates, resulting in nonlinear periodic structures. The nonlinear properties were characterized by optical and scanning microscopies, as well as by second-harmonic generation technique. This nonlinear modulation is very promising for the enhancement of nonlinear conversion rates, such as terahertz generation, by using the quasi-phase matching technique. Full article
(This article belongs to the Special Issue Cutting-Edge Terahertz Technology)
Show Figures

Figure 1

15 pages, 5005 KB  
Article
382 mW External-Cavity Frequency Doubling 461 nm Laser Based on Quasi-Phase Matching
by Yingxin Chen, Guodong Zhao, Wei Tan and Hong Chang
Photonics 2024, 11(1), 40; https://doi.org/10.3390/photonics11010040 - 30 Dec 2023
Viewed by 2607
Abstract
To rapidly improve strontium optical clocks, a high-power, high-efficiency, and high-beam-quality 461 nm laser is required. In blue lasers based on periodically poled KTiOPO4 crystals, the optical absorption in the crystals can induce thermal effects, which must be considered in the design [...] Read more.
To rapidly improve strontium optical clocks, a high-power, high-efficiency, and high-beam-quality 461 nm laser is required. In blue lasers based on periodically poled KTiOPO4 crystals, the optical absorption in the crystals can induce thermal effects, which must be considered in the design of high-efficiency external-cavity frequency doubling lasers. The interdependence between the absorption and the thermally induced quasi-phase mismatch was taken into account for the solution to the coupled wave equations. By incorporating multilayer crystal approximation, a theoretical model was developed to accurately determine the absorption of the frequency doubling laser. Based on experimental parameters, the temperature gradient in the crystal, the influence of the boundary temperature on the conversion efficiency, and the focal length of the thermal lens were simulated. Theoretical calculations were employed to optimize the parameters of the external-cavity frequency doubling experiment. In the experiment, in a bow-tie external cavity was demonstrated by pumping a 10 mm long periodically poled KTiOPO4 crystal with a 922 nm laser, a 461 nm laser with a maximum output power of 382 mW. The conversion efficiency of the incident fundamental laser was 66.2%. The M2 factor of the frequency doubling beam was approximately 1.4. Full article
(This article belongs to the Special Issue Narrow Linewidth Laser Sources and Their Applications)
Show Figures

Figure 1

22 pages, 4678 KB  
Review
A Brief Review on Nonlinear Photonic Crystals Induced by Direct Femtosecond Laser Writing
by Yaolan Tian, Qingbo Li, Lili Yan, Xiangdong Cao and Xian Zhao
Photonics 2023, 10(7), 833; https://doi.org/10.3390/photonics10070833 - 18 Jul 2023
Cited by 8 | Viewed by 2818
Abstract
Direct femtosecond laser writing or inscription is a useful technique, and it has been employed to engineer various materials in many applications including nonlinear photonic crystals, which are of periodically patterned second-order nonlinearity to get and control the coherent light at new frequencies. [...] Read more.
Direct femtosecond laser writing or inscription is a useful technique, and it has been employed to engineer various materials in many applications including nonlinear photonic crystals, which are of periodically patterned second-order nonlinearity to get and control the coherent light at new frequencies. By manipulation of second-order nonlinearity, either erased or poled, quasi-phase matching has been achieved in several crystals, especially three-dimensional nonlinear photonic crystals have been originally proposed and proved to be truly three-dimensional. Here we shortly review on the recent advances in the research field of nonlinear photonic crystals inscribed by femtosecond laser, as well as look into the future in this field. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

11 pages, 1261 KB  
Article
Transmission of Vortex Solitons in Three-Dimensional χ(2) Helical-Periodically Poled Ferroelectric Crystals
by Yixi Chen, Aowei Yang, Yangui Zhou, Hexiang He and Jianing Xie
Photonics 2023, 10(7), 818; https://doi.org/10.3390/photonics10070818 - 13 Jul 2023
Viewed by 1690
Abstract
It is well known that bright vortex solitons are unstable in the χ2 nonlinear media due to the strong azimuthal modulation instability. To solve this problem, a quadratic (χ2) LiNbO3 ferroelectric crystal with a special kind of [...] Read more.
It is well known that bright vortex solitons are unstable in the χ2 nonlinear media due to the strong azimuthal modulation instability. To solve this problem, a quadratic (χ2) LiNbO3 ferroelectric crystal with a special kind of helical-periodically poled structure is proposed. The proposed structure is designed by embedding topological charges into the crystal with a quasi-phase matching technique. Simulation results indicate that vortex solitons containing fundamental-frequency and second-harmonic waves can robustly propagate over a distance. Two types of vortex states are obtained: double vortices state and vortex–antivortex state. The dependence of effective area, propagation constants, and maximum light intensity on the control parameters are presented. These results provide a new solution for robust transmission of bright vortex solitons in a χ2 nonlinear media. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

8 pages, 2626 KB  
Article
Role of Gas Pressure in Quasi-Phase Matching in High Harmonics Driven by Two-Color Laser Field
by Sergey Stremoukhov
Atoms 2023, 11(7), 103; https://doi.org/10.3390/atoms11070103 - 7 Jul 2023
Cited by 2 | Viewed by 1551
Abstract
The results of a study on the effect of pressure in a medium consisting of a set of gas jets separated by vacuum gaps, interacting with two-color laser fields formed by the fundamental and the second harmonics of a laser, are presented herein. [...] Read more.
The results of a study on the effect of pressure in a medium consisting of a set of gas jets separated by vacuum gaps, interacting with two-color laser fields formed by the fundamental and the second harmonics of a laser, are presented herein. It has been demonstrated that a decrease in pressure leads to a shift in the region of harmonics where quasi-phase matching (QPM) occurs towards shorter wavelength radiation, accompanied by an increase in the efficiency of amplification of these harmonics. A feature of this process is the identical power-law character of the shift in the region and the increase in the efficiency of harmonic QPM amplification. Additionally, the study presents the results of the effect of inaccurately setting the width of the gas jets on the shape of the spectrum of harmonic QPM amplification. Full article
(This article belongs to the Special Issue Recent Progress in Strong-Field Atomic and Molecular Physics)
Show Figures

Figure 1

19 pages, 5594 KB  
Article
A Theoretical Study on Mid-Infrared Difference Frequency Generation Based on Periodically Poled Thin-Film LiNbO3
by Runze Jia, Meihong Liu, Jiamin Liu, Pingrang Hua and Delong Zhang
Photonics 2023, 10(4), 478; https://doi.org/10.3390/photonics10040478 - 21 Apr 2023
Cited by 2 | Viewed by 2634
Abstract
A mid-infrared difference frequency generator (DFG) based on a periodically poled thin-film lithium niobate rib waveguide on a sapphire substrate is theoretically studied. A mode analysis is carried out at the mid-infrared region, and the analysis focuses on the effects of waveguide geometry [...] Read more.
A mid-infrared difference frequency generator (DFG) based on a periodically poled thin-film lithium niobate rib waveguide on a sapphire substrate is theoretically studied. A mode analysis is carried out at the mid-infrared region, and the analysis focuses on the effects of waveguide geometry on effective refractive indices of a few lower-order modes. A complete theory suitable for modeling a DFG based on a waveguide structure is described. Its validity is confirmed by comparing the theoretical results with previously reported experimental data. Explicit expressions are presented for nonlinear conversion efficiency, thermal tunability and quasi-phase matching (QPM) bandwidth. The effects of waveguide geometry and mode hybridization on the effective mode field area and mode overlap factor, which are either inversely or linearly proportional to nonlinear conversion efficiency, are studied in detail. In this article, an optimized mid-infrared DFG with improved geometry that exhibits excellent performance, including a higher nonlinear conversion efficiency of 230–273% W−1cm−2 in the temperature range of 20–120 °C; a larger temperature tunability of 2.2 nm/°C; a larger QPM bandwidth of ~130 nm; and a higher idler wave output power, as much as −2 dBm when Pp = 20 dBm and Ps = 11.5 dBm, is suggested. Full article
(This article belongs to the Special Issue Integrated Waveguide-Based Photonic Devices)
Show Figures

Figure 1

8 pages, 4052 KB  
Article
Efficient Third-Harmonic Generation by Inhomogeneous Quasi-Phase-Matching in Quadratic Crystals
by Obid I. Sabirov, Gaetano Assanto and Usman K. Sapaev
Photonics 2023, 10(1), 76; https://doi.org/10.3390/photonics10010076 - 9 Jan 2023
Cited by 4 | Viewed by 2187
Abstract
We investigate the generation of optical third-harmonic frequency in quadratic crystals with a nonlinear domain lattice optimized with the aid of a random number generator. In the developed Monte Carlo algorithm and numerical experiments, we consider domain thicknesses to be taking either the [...] Read more.
We investigate the generation of optical third-harmonic frequency in quadratic crystals with a nonlinear domain lattice optimized with the aid of a random number generator. In the developed Monte Carlo algorithm and numerical experiments, we consider domain thicknesses to be taking either the values d1 or d2, with d1 and d2 being the coherence lengths for the cascaded parametric interactions 2ω=ω+ω and 3ω=2ω+ω, respectively. We focus on the cases with single segments formed by equal and/or different domains, showing that frequency tripling can be achieved with high conversion efficiency from an arbitrary input wavelength. The presented approach allows one to accurately determine the optimized random alternation of domain thicknesses d1 and d2 along the propagation length. Full article
Show Figures

Figure 1

Back to TopTop