Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = quasi-vertical profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 18373 KB  
Article
Meteorological Characteristics of a Continuous Ice-Covered Event on Ultra-High Voltage Transmission Lines in Yunnan Region in 2021
by Sen He, Yunhai Song, Heyan Huang, Yuhao He, Shaohui Zhou and Zhiqiu Gao
Atmosphere 2024, 15(4), 389; https://doi.org/10.3390/atmos15040389 - 22 Mar 2024
Cited by 4 | Viewed by 1512
Abstract
Yunnan plays a pivotal role in transmitting electricity from west to east within China’s Southern Power Grid. During 7–13 January 2021, a large-scale continuous ice-covering event of ultra-high voltage (UHV) transmission lines occurred in the Qujing area of eastern Yunnan Province. Based on [...] Read more.
Yunnan plays a pivotal role in transmitting electricity from west to east within China’s Southern Power Grid. During 7–13 January 2021, a large-scale continuous ice-covering event of ultra-high voltage (UHV) transmission lines occurred in the Qujing area of eastern Yunnan Province. Based on ERA5 reanalysis data and meteorological observation data of UHV transmission line icing in China’s Southern Power Grid, the synoptic causes of the icing are comprehensively analyzed from various perspectives, including weather situations, vertical stratification of temperature and humidity, local meteorological elements, and atmospheric circulation indices. The results indicate a strong East Asian trough and a blocking high directing northern airflow southward ahead of the ridge. Cold air enters the Qujing area and combines with warm and moist air from the subtropical high pressure of 50–110° E. As warm and cold air masses form a quasi-stationary front over the northern mountainous area of Qujing due to topographic uplift, the mechanism of “supercooling and warm rain” caused by the “warm–cold” temperature profile structure leads to freezing rain events. Large-scale circulation indices in the Siberian High, East Asian Trough, and 50–110° E Subtropical High regions provided clear precursor signals within 0–2 days before the icing events. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

29 pages, 7909 KB  
Article
Diurnal Cycle of Tropospheric Winds over West Sumatra and Its Variability Associated with Various Climate and Weather Modes
by Wojciech Ryszard Szkolka, Dariusz Bartłomiej Baranowski, Maria K. Flatau, Marzuki Marzuki, Toyoshi Shimomai and Hiroyuki Hashiguchi
Atmosphere 2023, 14(10), 1521; https://doi.org/10.3390/atmos14101521 - 30 Sep 2023
Cited by 3 | Viewed by 2073
Abstract
The typical diurnal variability of tropospheric winds over West Sumatra and their changes associated with El Niño Southern Oscillation, Quasi-Biennial Oscillation, Madden–Julian Oscillations and convectively coupled Kelvin waves during the extended boreal winter season are investigated based on nineteen years of observations from [...] Read more.
The typical diurnal variability of tropospheric winds over West Sumatra and their changes associated with El Niño Southern Oscillation, Quasi-Biennial Oscillation, Madden–Julian Oscillations and convectively coupled Kelvin waves during the extended boreal winter season are investigated based on nineteen years of observations from Equatorial Atmosphere Radar in Kototabang, Indonesia. Sub-diurnal wind variability is assessed based on the amplitude and phase of the diurnal (24 h) and semidiurnal (12 h) modes.The results show that composite diurnal variability is dominated by cloud-induced circulation and thermal tides. Although these sub-diurnal modes do not change the daily mean wind direction, they modulate velocities throughout the day. Typical diurnal evolution of the vertical wind component is consistent with changes in the latent heating profiles associated with the evolution of a cloud field from cumulus before noon to deep convection in the afternoon and stratiform clouds in the evening. El Niño Southern Oscillation and Quasi-Biennial Oscillation affect the mean tropospheric winds, throughout the troposphere and above 250 hPa, respectively, but do not affect sub-diurnal amplitudes. Eastward propagating Madden–Julian Oscillations and convectively coupled Kelvin waves impact both the mean and sub-diurnal tropospheric wind variability. Both horizontal and vertical winds show the largest variability in the lower and mid troposphere (below 400 hPa). The observed variability in the vertical wind component highlights that large-scale phenomena interact with both the local evolution and progression of a cloud field through dynamical feedback. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

17 pages, 4240 KB  
Article
Upwellings and Downwellings Caused by Mesoscale Water Dynamics in the Coastal Zone of Northeastern Black Sea
by Oleg I. Podymov, Vladimir V. Ocherednik, Ksenia P. Silvestrova and Andrei G. Zatsepin
J. Mar. Sci. Eng. 2023, 11(8), 1628; https://doi.org/10.3390/jmse11081628 - 20 Aug 2023
Cited by 5 | Viewed by 1753
Abstract
The paper analyzes quasiperiodic upwellings and downwellings on the shelf and upper part of continental slope of the northeastern Black Sea. It is shown that these processes are related to changes in intensity and direction of alongshore current and the following geostrophic adjustment [...] Read more.
The paper analyzes quasiperiodic upwellings and downwellings on the shelf and upper part of continental slope of the northeastern Black Sea. It is shown that these processes are related to changes in intensity and direction of alongshore current and the following geostrophic adjustment of the density field. The source of such changes is the meandering of the Black Sea Rim Current (RC). It leads to a quasiperiodic change in direction of the alongshore current, from northwestern (cyclonic RC meander) to southeastern (anticyclonic RC meander, or eddy). These cycles, or phases, have an average duration of about 10 days. During the northwestern phase, the permanent Black Sea pycnohalocline (hereafter pycnocline) and seasonal thermocline descend, their thickness increases, and so does the thickness of the upper mixed layer (UML). During the southeastern phase, both the pycnocline and seasonal thermocline ascend and become thinner, along with the UML, which also becomes thinner. In both phases, isopycnals in the pycnocline and isotherms in the thermocline demonstrate quasi-in-phase vertical oscillations, which have a good correlation with the speed and direction of the alongshore current. These correlations allow estimation of the magnitude of upwellings and downwellings in the shelf–slope area of the northeastern Black Sea using data series of current velocity profiles. Full article
(This article belongs to the Special Issue Upwelling Systems in a Changing Ocean)
Show Figures

Figure 1

24 pages, 3584 KB  
Article
Terahertz Radiation from High Electron Mobility Avalanche Transit Time Sources Prospective for Biomedical Spectroscopy
by Sahanowaj Khan, Aritra Acharyya, Hiroshi Inokawa, Hiroaki Satoh, Arindam Biswas, Rudra Sankar Dhar, Amit Banerjee and Alexey Y. Seteikin
Photonics 2023, 10(7), 800; https://doi.org/10.3390/photonics10070800 - 10 Jul 2023
Cited by 13 | Viewed by 2402
Abstract
A Schottky barrier high-electron-mobility avalanche transit time (HEM-ATT) structure is proposed for terahertz (THz) wave generation. The structure is laterally oriented and based on AlGaN/GaN two-dimensional electron gas (2-DEG). Trenches are introduced at different positions of the top AlGaN barrier layer for realizing [...] Read more.
A Schottky barrier high-electron-mobility avalanche transit time (HEM-ATT) structure is proposed for terahertz (THz) wave generation. The structure is laterally oriented and based on AlGaN/GaN two-dimensional electron gas (2-DEG). Trenches are introduced at different positions of the top AlGaN barrier layer for realizing different sheet carrier density profiles at the 2-DEG channel; the resulting devices are equivalent to high–low, low–high and low-high–low quasi-Read structures. The DC, large-signal and noise simulations of the HEM-ATTs were carried out using the Silvaco ATLAS platform, non-sinusoidal-voltage-excited large-signal and double-iterative field-maximum small-signal simulation models, respectively. The breakdown voltages of the devices estimated via simulation were validated by using experimental measurements; they were found to be around 17–18 V. Under large-signal conditions, the series resistance of the device is estimated to be around 20 Ω. The large-signal simulation shows that the HEM-ATT source is capable of delivering nearly 300 mW of continuous-wave peak power with 11% conversion efficiency at 1.0 THz, which is a significant improvement over the achievable THz power output and efficiency from the conventional vertical GaN double-drift region (DDR) IMPATT THz source. The noise performance of the THz source was found to be significantly improved by using the quasi-Read HEM-ATT structures compared to the conventional vertical Schottky barrier IMPATT structure. These devices are compatible with the state-of-the-art medium-scale semiconductor device fabrication processes, with scope for further miniaturization, and may have significant potential for application in compact biomedical spectroscopy systems as THz solid-state sources. Full article
(This article belongs to the Special Issue Biomedical Spectroscopy: Techniques and Applications)
Show Figures

Figure 1

16 pages, 4785 KB  
Article
Analysis of Seasonal and Long-Term Variations in the Surface and Vertical Structures of the Lofoten Vortex
by Yu Liu, Jing Meng, Jianhui Wang, Guoqing Han, Xiayan Lin, Junming Chen and Qiyan Ji
Remote Sens. 2023, 15(7), 1903; https://doi.org/10.3390/rs15071903 - 2 Apr 2023
Cited by 1 | Viewed by 2053
Abstract
The Lofoten Vortex (LV) is a quasi-permanent anticyclonic eddy with the characteristic of periodic regeneration in the Lofoten Basin (LB), which is one of the major areas of deep vertical mixing in the Nordic Sea. Our analysis of the LV contributes to our [...] Read more.
The Lofoten Vortex (LV) is a quasi-permanent anticyclonic eddy with the characteristic of periodic regeneration in the Lofoten Basin (LB), which is one of the major areas of deep vertical mixing in the Nordic Sea. Our analysis of the LV contributes to our understanding of the variations in convective mixing in the LB. Based on drifter data and satellite altimeter data, the climatological results show that the LV has the sea surface characteristics of relative stability in terms of its spatial position and significant seasonal variations in its physical characteristics. Combined with the temperature and salinity data of Argo profiles, the vertical structures of the LV are presented here in terms of their spatial distribution and monthly variations. The wavelet analysis of the satellite sea surface temperature (SST) data shows that the period of SST anomaly (SSTA) in the LV sea area is 8–16 years. In the stage marked by a decreasing (increasing) trend of SSTA, the vertical mixing is strengthened (weakened). Current vertical mixing is clearly revealed by the Argo profiles, and the SSTA shows a significant impact of cooling. However, against a background of warming and freshening, this vertical mixing will be greatly weakened in the next increasing trending stage of the SSTA. Full article
Show Figures

Figure 1

9 pages, 2258 KB  
Article
Spatial Self-Phase Modulation in Graphene-Oxide Monolayer
by Tikaram Neupane, Bagher Tabibi, Wan-Joong Kim and Felix Jaetae Seo
Crystals 2023, 13(2), 271; https://doi.org/10.3390/cryst13020271 - 4 Feb 2023
Cited by 12 | Viewed by 2420
Abstract
The spatial self-phase modulation (SSPM) of the optical field revealed the magnitude and polarity of nonlinear refraction coefficients of the graphene-oxide (GO) atomic layers in an aqueous base solution with a resonant excitation using a chopped quasi-static laser at 532 nm. The SSPM [...] Read more.
The spatial self-phase modulation (SSPM) of the optical field revealed the magnitude and polarity of nonlinear refraction coefficients of the graphene-oxide (GO) atomic layers in an aqueous base solution with a resonant excitation using a chopped quasi-static laser at 532 nm. The SSPM of the optical field as a result of the intrinsic nonlinear refraction coefficient of GO atomic layers and the spatial distribution of intensity displayed the concentric diffraction rings at the far field due to the coherent superposition of transverse wave vectors. The number of concentric rings as a function of the applied intensity revealed the nonlinear refraction coefficient of GO which was estimated to be ~–6.65 × 10−12 m2/W for the laser-excitation duration of ~0.32 s, where the negative polarity of nonlinear refraction coefficient was confirmed with the interference image profile of SSPM. The upper and vertical distortion of concentric rings at the far field at the longer laser-excitation duration of ~0.8 s indicates the distortion of the coherent superposition of transverse wave vectors due to the localized thermal vortex of GO in the aqueous solution that offers novel platforms of thermal metrology based on localized optical nonlinearity and temperature-sensitive all-optical switching. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

18 pages, 4591 KB  
Article
Use of Satellite Images to Determine the Temperature of Urban Surfaces for Landscape Management Purposes, Case Study Bratislava (Slovak Republic)
by Martin Šalkovič and Eva Pauditšová
Land 2023, 12(2), 384; https://doi.org/10.3390/land12020384 - 31 Jan 2023
Cited by 3 | Viewed by 3312
Abstract
This contribution deals with the use of data obtained from Landsat 8 satellite imaging to identify surface temperature variability in the example of the city of Bratislava, with an emphasis on identifying hotspots outside the built-up area, for example, on agricultural land—locations which [...] Read more.
This contribution deals with the use of data obtained from Landsat 8 satellite imaging to identify surface temperature variability in the example of the city of Bratislava, with an emphasis on identifying hotspots outside the built-up area, for example, on agricultural land—locations which are part of the European Network of Protected Areas. Surface temperature variability is presented in two time periods, on the daytime image taken on 26 July 2021 and on the nighttime image from 28 June 2021. Surface temperature is projected in a profile cut of the area. It vertically illustrates the temperatures of individual types of surfaces. Surfaces are classified by Urban Atlas classes. Areas reflecting the spatial distribution of the residential development in the city of Bratislava have been identified by satellite images in the studied area, and they represent a phenomenon of the urban heat island. Such areas were also identified outside the built-up area, in agricultural areas. The results of our research show that it is important to deal with UHI outside the built-up areas of cities and to orient the attention the territory planning and also to the proposal of measures for the management of these areas. Especially if these areas also include territories of the European system of protected areas, as it is in the case of Bratislava city (e.g., SPA029 Sysľovské polia). The results of reducing the impacts of climate change in cities concern not only the residents. In spatial planning, it is also necessary to address the management of non-built-up areas—localities with a quasi-natural character (e.g., areas with diverse vegetation cover). In order to recognize UHI within residential areas, it is essential to identify areas with significant differences between daytime and nighttime surface temperatures. Large differences between night and daytime surface temperatures can be seen in areas outside the built-up area in Bratislava on arable land where the difference is up to 8.0 °C (in the continuous housing class where the proportion of impermeable surfaces is higher than 80% with a temperature difference of 7.6 °C). Identification of overheated surfaces in the territory makes an important basis for modification of the landscape management and management of nature protection areas. It is important to propose measures related to the reduction in the negative impacts of climate change on the landscape and biodiversity. Full article
(This article belongs to the Section Land–Climate Interactions)
Show Figures

Figure 1

18 pages, 6478 KB  
Article
Numerical Study on Parameters of the Airborne VLF Antenna by Quasi-Stationary Model
by Jiangfeng Cheng, Xueqiang Liu and Feng Deng
Aerospace 2023, 10(1), 29; https://doi.org/10.3390/aerospace10010029 - 29 Dec 2022
Cited by 2 | Viewed by 2461
Abstract
When a Very-Low-Frequency (VLF) antenna is towed in a circular flightpath at a constant altitude, the spatial configuration of the antenna can become relatively stationary with the orbiting aircraft. Accordingly, a quasi-stationary model of the towed antenna is established based on the force [...] Read more.
When a Very-Low-Frequency (VLF) antenna is towed in a circular flightpath at a constant altitude, the spatial configuration of the antenna can become relatively stationary with the orbiting aircraft. Accordingly, a quasi-stationary model of the towed antenna is established based on the force balance, which can efficiently solve a large number of parameter optimization problems. This work studies the influence law of all relevant parameters, including the physical properties of the drogue and the towline, the flight conditions, the wind profile, and the phase of the flight. The results show that the towline verticality and towing force are highly sensitive to the flight conditions, wind profile, and the phase of the flight; followed by sensitivity to the towline itself, and slight sensitivity to the drogue. The flight conditions of the aircraft can change the verticality of the towline from 15% to 80% or more. In addition, as the maximum monthly average wind speed exceeds 7 m/s, the antenna system in hover will oscillate seriously, resulting in a range of up to 50% variation in towline verticality between different positions. Full article
Show Figures

Figure 1

23 pages, 16222 KB  
Article
Analysis of the Characteristics and Evolution Mechanisms of a Bow-Shaped Squall Line in East China Observed with Dual-Polarization Doppler Radars
by Bin Wu, Ming Wei, Yanfang Li, Zhangwei Wang, Shuang Du and Chen Zhao
Remote Sens. 2022, 14(15), 3531; https://doi.org/10.3390/rs14153531 - 23 Jul 2022
Cited by 3 | Viewed by 2841
Abstract
To gain a deeper understanding of the formation and evolutionary mechanisms of a bow-shaped squall line (BSL) that occurred in East China on 10 May 2021, observations from S-band dual-polarization radars, a disdrometer and other instruments are used to investigate the characteristics and [...] Read more.
To gain a deeper understanding of the formation and evolutionary mechanisms of a bow-shaped squall line (BSL) that occurred in East China on 10 May 2021, observations from S-band dual-polarization radars, a disdrometer and other instruments are used to investigate the characteristics and evolution of the kinematic, microphysical and radar echo structure within the squall line during its formative and mature stages. The results are as follows. The updraft induced by upper-level divergence and vertical thermal instability induced by the cold source at the middle and top of the troposphere provided environmental conditions suitable for the formation and strengthening of a squall line. The characteristics of the vertical vorticity at the leading edge of the squall line provided a good indication of its echo structure and evolutionary trend. The mechanism behind a new echo phenomenon—double high-differential reflectivity (ZDR) bands—observed in plan position indicator scans produced by the dual-polarization radar is investigated from the kinematic and microphysical structural perspectives. The evolutionary characteristics of the microphysical structure of the bulk of the squall line and its trailing stratiform cloud region are analyzed based on the quasi-vertical profiles retrieved from the S-band dual-polarization radar in Quzhou. Moreover, a conceptual model describing this type of BSL with a trailing region of stratiform rain in the warm sector is developed to provide technical support for the monitoring and early warning of BSLs. Full article
(This article belongs to the Special Issue Synergetic Remote Sensing of Clouds and Precipitation)
Show Figures

Graphical abstract

19 pages, 6791 KB  
Article
Laboratory Study of Turbulent Mass Exchange in a Stratified Fluid
by Andrey G. Zatsepin, Valerii V. Gerasimov and Alexander G. Ostrovskii
J. Mar. Sci. Eng. 2022, 10(6), 756; https://doi.org/10.3390/jmse10060756 - 30 May 2022
Cited by 5 | Viewed by 2073
Abstract
In this study, a laboratory experiment was conducted to investigate quantitatively turbulent exchange between two quasi-homogeneous layers of equal thickness and different density (salinity), as well as the fine structure of the density transition zone (interface) between the layers. The fluid was continuously [...] Read more.
In this study, a laboratory experiment was conducted to investigate quantitatively turbulent exchange between two quasi-homogeneous layers of equal thickness and different density (salinity), as well as the fine structure of the density transition zone (interface) between the layers. The fluid was continuously stirred by a system of horizontally oscillating vertical rods, piercing through both layers and producing vertically homogeneous turbulent impact in a two-layered fluid. In every experimental run, the stirring process was carried out continuously from certain initial state up to the complete mixing of the layers. The buoyancy flux between the layers was estimated using the data on time changes of the salinity in both upper and lower layers. The fine structure of density interface was measured by vertically profiling conductivity microprobe. The results were presented in a dimensionless form and analyzed depending on two dimensionless parameters as follows: the Richardson number, Ri, and Reynolds number, Re. It was found that if Ri>RiRe where Ri is the critical Richardson number, the interface exists in “sharpening” mode and in “eroding” (diffusive) mode if Ri<RiRe. The maximum mixing efficiency was achieved at critical Richardson number, when the density interface was in a transition state between the sharpening and diffusive modes. Full article
(This article belongs to the Special Issue Technological Oceanography)
Show Figures

Figure 1

17 pages, 2810 KB  
Article
The Annual Cycle in Mid-Latitude Stratospheric and Mesospheric Ozone Associated with Quasi-Stationary Wave Structure by the MLS Data 2011–2020
by Chenning Zhang, Oleksandr Evtushevsky, Gennadi Milinevsky, Andrew Klekociuk, Yulia Andrienko, Valery Shulga, Wei Han and Yu Shi
Remote Sens. 2022, 14(10), 2309; https://doi.org/10.3390/rs14102309 - 10 May 2022
Cited by 8 | Viewed by 2272
Abstract
The purpose of this work is to study quasi-stationary wave structure in the mid-latitude stratosphere and mesosphere (40–50°N) and its role in the formation of the annual ozone cycle. Geopotential height and ozone from Aura MLS data are used and winter climatology for [...] Read more.
The purpose of this work is to study quasi-stationary wave structure in the mid-latitude stratosphere and mesosphere (40–50°N) and its role in the formation of the annual ozone cycle. Geopotential height and ozone from Aura MLS data are used and winter climatology for January–February 2011–2020 is considered. The 10-degree longitude segment centered on Longfengshan Brewer station (44.73°N, 127.60°E), China, is examined in detail. The station is located in the region of the Aleutian Low associated with the quasi-stationary zonal maximum of total ozone. Annual and semi-annual oscillations in ozone using units of ozone volume mixing ratio and concentration, as well as changes in ozone peak altitude and in time series of ozone at individual pressure levels between 316 hPa (9 km) and 0.001 hPa (96 km) were compared. The ozone maximum in the vertical profile is higher in volume mixing ratio (VMR) values than in concentration by about 15 km (5 km) in the stratosphere (mesosphere), consistent with some previous studies. We found that the properties of the annual cycle are better resolved in the altitude range of the main ozone maximum: middle–upper stratosphere in VMR and lower stratosphere in concentration. Both approaches reveal annual and semi-annual changes in the ozone peak altitudes in a range of 4–6 km during the year. In the lower-stratospheric ozone of the Longfengshan domain, an earlier development of the annual cycle takes place with a maximum in February and a minimum in August compared to spring and autumn, respectively, in zonal means. This is presumably due to the higher rate of dynamical ozone accumulation in the region of the quasi-stationary zonal ozone maximum. The “no-annual-cycle” transition layers are found in the stratosphere and mesosphere. These layers with undisturbed ozone volume mixing ratio are of interest for more detailed future study. Full article
Show Figures

Figure 1

29 pages, 5820 KB  
Article
How High Is High Enough? Assessing Financial Risk for Vertical Farms Using Imprecise Probability
by Francis J. Baumont de Oliveira, Scott Ferson, Ronald A. D. Dyer, Jens M. H. Thomas, Paul D. Myers and Nicholas G. Gray
Sustainability 2022, 14(9), 5676; https://doi.org/10.3390/su14095676 - 8 May 2022
Cited by 17 | Viewed by 8219
Abstract
Vertical farming (VF) is a method of indoor agricultural production, involving stacked layers of crops, utilising technologies to increase yields per unit area. However, this emerging sector has struggled with profitability and a high failure rate. Practitioners and academics call for a comprehensive [...] Read more.
Vertical farming (VF) is a method of indoor agricultural production, involving stacked layers of crops, utilising technologies to increase yields per unit area. However, this emerging sector has struggled with profitability and a high failure rate. Practitioners and academics call for a comprehensive economic analysis of vertical farming, but efforts have been stifled by a lack of valid and available data as existing studies are unable to address risks and uncertainty that may support risk-empowered business planning. An adaptable economic analysis is necessary that considers imprecise variables and risks. The financial risk analysis presented uses with a first-hitting-time model with probability bounds to evaluate quasi-insolvency for two unique vertical farms. The UK farm results show that capital injection, robust data collection, frequent cleaning, efficient distribution and cheaper packaging are pathways to profitability and have a safer risk profile. For the Japanese farm, diversification of revenue streams like tours or education reduce financial risk associated with yield and sales. This is the first instance of applying risk and uncertainty quantification for VF business models and it can support wider agricultural projects. Enabling this complex sector to compute with uncertainty to estimate financials could improve access to funding and help other nascent industries. Full article
Show Figures

Figure 1

12 pages, 18283 KB  
Technical Note
A Method for Automatic Inversion of Oblique Ionograms
by Chunhua Jiang, Cong Zhao, Xuhui Zhang, Tongxin Liu, Ziwei Chen, Guobin Yang and Zhengyu Zhao
Remote Sens. 2022, 14(7), 1671; https://doi.org/10.3390/rs14071671 - 30 Mar 2022
Cited by 6 | Viewed by 3057
Abstract
In this study, a method is proposed to carry out automatic inversion of oblique ionograms to extract the parameters and electron density profile of the ionosphere. The proposed method adopts the quasi-parabolic segments (QPS) model to represent the ionosphere. Firstly, numerous candidate electron [...] Read more.
In this study, a method is proposed to carry out automatic inversion of oblique ionograms to extract the parameters and electron density profile of the ionosphere. The proposed method adopts the quasi-parabolic segments (QPS) model to represent the ionosphere. Firstly, numerous candidate electron density profiles and corresponding vertical traces were, respectively, calculated and synthesized by adjusting the parameters of the QPS model. Then, the candidate vertical traces were transformed to oblique traces by the secant theorem and Martyn’s equivalent path theorem. On the other hand, image processing technology and characteristics of oblique echoes were adopted to automatically scale the key parameters (the maximum observable frequency and minimum group path, etc.) from oblique ionograms. The synthesized oblique traces, whose parameters were close to autoscaled parameters, were selected as the candidate traces to produce a correlation with measured oblique ionograms. Lastly, the proposed algorithm searched the best-fit synthesized oblique trace by comparing the synthesized traces with oblique ionograms. To test its feasibility, oblique ionograms were automatically scaled by the proposed method and these autoscaled parameters were compared with manual scaling results. The preliminary results show that the accuracy of autoscaled maximum observable frequency and minimum group path of the ordinary trace of the F2 layer is, respectively, about 91.98% and 86.41%, which might be accurate enough for space weather specifications. It inspires us to improve the proposed method in future studies. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing)
Show Figures

Graphical abstract

21 pages, 4483 KB  
Article
The Multi-Scale Layering-Structure of Thermal Microscale Profiles
by Andrew Folkard
Water 2021, 13(21), 3042; https://doi.org/10.3390/w13213042 - 1 Nov 2021
Viewed by 2179
Abstract
Thermal microstructure profiling is an established technique for investigating turbulent mixing and stratification in lakes and oceans. However, it provides only quasi-instantaneous, 1-D snapshots. Other approaches to measuring these phenomena exist, but each has logistic and/or quality weaknesses. Hence, turbulent mixing and stratification [...] Read more.
Thermal microstructure profiling is an established technique for investigating turbulent mixing and stratification in lakes and oceans. However, it provides only quasi-instantaneous, 1-D snapshots. Other approaches to measuring these phenomena exist, but each has logistic and/or quality weaknesses. Hence, turbulent mixing and stratification processes remain greatly under-sampled. This paper contributes to addressing this problem by presenting a novel analysis of thermal microstructure profiles, focusing on their multi-scale stratification structure. Profiles taken in two small lakes using a Self-Contained Automated Micro-Profiler (SCAMP) were analysed. For each profile, buoyancy frequency (N), Thorpe scales (LT), and the coefficient of vertical turbulent diffusivity (KZ) were determined. To characterize the multi-scale stratification, profiles of d2T/dz2 at a spectrum of scales were calculated and the number of turning points in them counted. Plotting these counts against the scale gave pseudo-spectra, which were characterized by the index D of their power law regression lines. Scale-dependent correlations of D with N, LT and KZ were found, and suggest that this approach may be useful for providing alternative estimates of the efficiency of turbulent mixing and measures of longer-term averages of KZ than current methods provide. Testing these potential uses will require comparison of field measurements of D with time-integrated KZ values and numerical simulations. Full article
(This article belongs to the Special Issue Physical Processes in Lakes)
Show Figures

Figure 1

23 pages, 672 KB  
Article
MHD Laminar Boundary Layer Flow of a Jeffrey Fluid Past a Vertical Plate Influenced by Viscous Dissipation and a Heat Source/Sink
by Hillary Muzara and Stanford Shateyi
Mathematics 2021, 9(16), 1896; https://doi.org/10.3390/math9161896 - 9 Aug 2021
Cited by 13 | Viewed by 2808
Abstract
This study investigates the effects of viscous dissipation and a heat source or sink on the magneto-hydrodynamic laminar boundary layer flow of a Jeffrey fluid past a vertical plate. The governing boundary layer non-linear partial differential equations are reduced to non-linear ordinary differential [...] Read more.
This study investigates the effects of viscous dissipation and a heat source or sink on the magneto-hydrodynamic laminar boundary layer flow of a Jeffrey fluid past a vertical plate. The governing boundary layer non-linear partial differential equations are reduced to non-linear ordinary differential equations using suitable similarity transformations. The resulting system of dimensionless differential equations is then solved numerically using the bivariate spectral quasi-linearisation method. The effects of some physical parameters that include the Schmidt number, Eckert number, radiation parameter, magnetic field parameter, heat generation parameter, and the ratio of relaxation to retardation times on the velocity, temperature, and concentration profiles are presented graphically. Additionally, the influence of some physical parameters on the skin friction coefficient, local Nusselt number, and the local Sherwood number are displayed in tabular form. Full article
(This article belongs to the Special Issue New Trends and Developments in Numerical Analysis)
Show Figures

Figure 1

Back to TopTop