Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = random convolutional kernel transform (ROCKET)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2735 KB  
Article
Time Series Classification of Autism Spectrum Disorder Using the Light-Adapted Electroretinogram
by Sergey Chistiakov, Anton Dolganov, Paul A. Constable, Aleksei Zhdanov, Mikhail Kulyabin, Dorothy A. Thompson, Irene O. Lee, Faisal Albasu, Vasilii Borisov and Mikhail Ronkin
Bioengineering 2025, 12(9), 951; https://doi.org/10.3390/bioengineering12090951 - 2 Sep 2025
Viewed by 1054
Abstract
The clinical electroretinogram (ERG) is a non-invasive diagnostic test used to assess the functional state of the retina by recording changes in the bioelectric potential following brief flashes of light. The recorded ERG waveform offers ways for diagnosing both retinal dystrophies and neurological [...] Read more.
The clinical electroretinogram (ERG) is a non-invasive diagnostic test used to assess the functional state of the retina by recording changes in the bioelectric potential following brief flashes of light. The recorded ERG waveform offers ways for diagnosing both retinal dystrophies and neurological disorders such as autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and Parkinson’s disease. In this study, different time-series-based machine learning methods were used to classify ERG signals from ASD and typically developing individuals with the aim of interpreting the decisions made by the models to understand the classification process made by the models. Among the time-series classification (TSC) algorithms, the Random Convolutional Kernel Transform (ROCKET) algorithm showed the most accurate results with the fewest number of predictive errors. For the interpretation analysis of the model predictions, the SHapley Additive exPlanations (SHAP) algorithm was applied to each of the models’ predictions, with the ROCKET and KNeighborsTimeSeriesClassifier (TS-KNN) algorithms showing more suitability for ASD classification as they provided better-defined explanations by discarding the uninformative non-physiological part of the ERG waveform baseline signal and focused on the time regions incorporating the clinically significant a- and b-waves of the ERG. With the potential broadening scope of practice for visual electrophysiology within neurological disorders, TSC may support the identification of important regions in the ERG time series to support the classification of neurological disorders and potential retinal diseases. Full article
(This article belongs to the Special Issue Retinal Biomarkers: Seeing Diseases in the Eye)
Show Figures

Figure 1

23 pages, 5062 KB  
Article
Audio-Based Engine Fault Diagnosis with Wavelet, Markov Blanket, ROCKET, and Optimized Machine Learning Classifiers
by Bernardo Luis Tuleski, Cristina Keiko Yamaguchi, Stefano Frizzo Stefenon, Leandro dos Santos Coelho and Viviana Cocco Mariani
Sensors 2024, 24(22), 7316; https://doi.org/10.3390/s24227316 - 15 Nov 2024
Cited by 5 | Viewed by 2102
Abstract
Engine fault diagnosis is a critical task in automotive aftermarket management. Developing appropriate fault-labeled datasets can be challenging due to nonlinearity variations and divergence in feature distribution among different engine kinds or operating scenarios. To solve this task, this study experimentally measures audio [...] Read more.
Engine fault diagnosis is a critical task in automotive aftermarket management. Developing appropriate fault-labeled datasets can be challenging due to nonlinearity variations and divergence in feature distribution among different engine kinds or operating scenarios. To solve this task, this study experimentally measures audio emission signals from compression ignition engines in different vehicles, simulating injector failures, intake hose failures, and absence of failures. Based on these faults, a hybrid approach is applied to classify different conditions that help the planning and decision-making of the automobile industry. The proposed hybrid approach combines the wavelet packet transform (WPT), Markov blanket feature selection, random convolutional kernel transform (ROCKET), tree-structured Parzen estimator (TPE) for hyperparameters tuning, and ten machine learning (ML) classifiers, such as ridge regression, quadratic discriminant analysis (QDA), naive Bayes, k-nearest neighbors (k-NN), support vector machine (SVM), multilayer perceptron (MLP), random forest (RF), extra trees (ET), gradient boosting machine (GBM), and LightGBM. The audio data are broken down into sub-time series with various frequencies and resolutions using the WPT. These data are subsequently utilized as input for obtaining an informative feature subset using a Markov blanket-based selection method. This feature subset is then fed into the ROCKET method, which is paired with ML classifiers, and tuned using Optuna using the TPE approach. The generalization performance applying the proposed hybrid approach outperforms other standard ML classifiers. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

16 pages, 1464 KB  
Article
Classification of Major Solar Flares from Extremely Imbalanced Multivariate Time Series Data Using Minimally Random Convolutional Kernel Transform
by Kartik Saini, Khaznah Alshammari, Shah Muhammad Hamdi and Soukaina Filali Boubrahimi
Universe 2024, 10(6), 234; https://doi.org/10.3390/universe10060234 - 24 May 2024
Cited by 4 | Viewed by 2160
Abstract
Solar flares are characterized by sudden bursts of electromagnetic radiation from the Sun’s surface, and are caused by the changes in magnetic field states in active solar regions. Earth and its surrounding space environment can suffer from various negative impacts caused by solar [...] Read more.
Solar flares are characterized by sudden bursts of electromagnetic radiation from the Sun’s surface, and are caused by the changes in magnetic field states in active solar regions. Earth and its surrounding space environment can suffer from various negative impacts caused by solar flares, ranging from electronic communication disruption to radiation exposure-based health risks to astronauts. In this paper, we address the solar flare prediction problem from magnetic field parameter-based multivariate time series (MVTS) data using multiple state-of-the-art machine learning classifiers that include MINImally RandOm Convolutional KErnel Transform (MiniRocket), Support Vector Machine (SVM), Canonical Interval Forest (CIF), Multiple Representations Sequence Learner (Mr-SEQL), and a Long Short-Term Memory (LSTM)-based deep learning model. Our experiment is conducted on the Space Weather Analytics for Solar Flares (SWAN-SF) benchmark data set, which is a partitioned collection of MVTS data of active region magnetic field parameters spanning over nine years of operation of the Solar Dynamics Observatory (SDO). The MVTS instances of the SWAN-SF dataset are labeled by GOES X-ray flux-based flare class labels, and attributed to extreme class imbalance because of the rarity of the major flaring events (e.g., X and M). As a performance validation metric in this class-imbalanced dataset, we used the True Skill Statistic (TSS) score. Finally, we demonstrate the advantages of the MVTS learning algorithm MiniRocket, which outperformed the aforementioned classifiers without the need for essential data preprocessing steps such as normalization, statistical summarization, and class imbalance handling heuristics. Full article
(This article belongs to the Special Issue Solar and Stellar Activity: Exploring the Cosmic Nexus)
Show Figures

Figure 1

24 pages, 2022 KB  
Article
Random Convolutional Kernel Transform with Empirical Mode Decomposition for Classification of Insulators from Power Grid
by Anne Carolina Rodrigues Klaar, Laio Oriel Seman, Viviana Cocco Mariani and Leandro dos Santos Coelho
Sensors 2024, 24(4), 1113; https://doi.org/10.3390/s24041113 - 8 Feb 2024
Cited by 8 | Viewed by 2173
Abstract
The electrical energy supply relies on the satisfactory operation of insulators. The ultrasound recorded from insulators in different conditions has a time series output, which can be used to classify faulty insulators. The random convolutional kernel transform (Rocket) algorithms use convolutional filters to [...] Read more.
The electrical energy supply relies on the satisfactory operation of insulators. The ultrasound recorded from insulators in different conditions has a time series output, which can be used to classify faulty insulators. The random convolutional kernel transform (Rocket) algorithms use convolutional filters to extract various features from the time series data. This paper proposes a combination of Rocket algorithms, machine learning classifiers, and empirical mode decomposition (EMD) methods, such as complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), empirical wavelet transform (EWT), and variational mode decomposition (VMD). The results show that the EMD methods, combined with MiniRocket, significantly improve the accuracy of logistic regression in insulator fault diagnosis. The proposed strategy achieves an accuracy of 0.992 using CEEMDAN, 0.995 with EWT, and 0.980 with VMD. These results highlight the potential of incorporating EMD methods in insulator failure detection models to enhance the safety and dependability of power systems. Full article
Show Figures

Figure 1

27 pages, 4998 KB  
Article
A Space Infrared Dim Target Recognition Algorithm Based on Improved DS Theory and Multi-Dimensional Feature Decision Level Fusion Ensemble Classifier
by Xin Chen, Hao Zhang, Shenghao Zhang, Jiapeng Feng, Hui Xia, Peng Rao and Jianliang Ai
Remote Sens. 2024, 16(3), 510; https://doi.org/10.3390/rs16030510 - 29 Jan 2024
Cited by 8 | Viewed by 2026
Abstract
Space infrared dim target recognition is an important applications of space situational awareness (SSA). Due to the weak observability and lack of geometric texture of the target, it may be unreliable to rely only on grayscale features for recognition. In this paper, an [...] Read more.
Space infrared dim target recognition is an important applications of space situational awareness (SSA). Due to the weak observability and lack of geometric texture of the target, it may be unreliable to rely only on grayscale features for recognition. In this paper, an intelligent information decision-level fusion method for target recognition which takes full advantage of the ensemble classifier and Dempster–Shafer (DS) theory is proposed. To deal with the problem that DS produces counterintuitive results when evidence conflicts, a contraction–expansion function is introduced to modify the body of evidence to mitigate conflicts between pieces of evidence. In this method, preprocessing and feature extraction are first performed on the multi-frame dual-band infrared images to obtain the features of the target, which include long-wave radiant intensity, medium–long-wave radiant intensity, temperature, emissivity–area product, micromotion period, and velocity. Then, the radiation intensities are fed to the random convolutional kernel transform (ROCKET) architecture for recognition. For the micromotion period feature, a support vector machine (SVM) classifier is used, and the remaining categories of the features are input into the long short-term memory network (LSTM) for recognition, respectively. The posterior probabilities corresponding to each category, which are the result outputs of each classifier, are constructed using the basic probability assignment (BPA) function of the DS. Finally, the discrimination of the space target category is implemented according to improved DS fusion rules and decision rules. Continuous multi-frame infrared images of six flight scenes are used to evaluate the effectiveness of the proposed method. The experimental results indicate that the recognition accuracy of the proposed method in this paper can reach 93% under the strong noise level (signal-to-noise ratio is 5). Its performance outperforms single-feature recognition and other benchmark algorithms based on DS theory, which demonstrates that the proposed method can effectively enhance the recognition accuracy of space infrared dim targets. Full article
Show Figures

Graphical abstract

16 pages, 2408 KB  
Article
Random Convolutional Kernels for Space-Detector Based Gravitational Wave Signals
by Ruben Poghosyan and Yuan Luo
Electronics 2023, 12(20), 4360; https://doi.org/10.3390/electronics12204360 - 20 Oct 2023
Viewed by 2262
Abstract
Neural network models have entered the realm of gravitational wave detection, proving their effectiveness in identifying synthetic gravitational waves. However, these models rely on learned parameters, which necessitates time-consuming computations and expensive hardware resources. To address this challenge, we propose a gravitational wave [...] Read more.
Neural network models have entered the realm of gravitational wave detection, proving their effectiveness in identifying synthetic gravitational waves. However, these models rely on learned parameters, which necessitates time-consuming computations and expensive hardware resources. To address this challenge, we propose a gravitational wave detection model tailored specifically for binary black hole mergers, inspired by the Random Convolutional Kernel Transform (ROCKET) family of models. We conduct a rigorous analysis by factoring in realistic signal-to-noise ratios in our datasets, demonstrating that conventional techniques lose predictive accuracy when applied to ground-based detector signals. In contrast, for space-based detectors with high signal-to-noise ratios, our method not only detects signals effectively but also enhances inference speed due to its streamlined complexity—a notable achievement. Compared to previous gravitational wave models, we observe a significant acceleration in training time while maintaining acceptable performance metrics for ground-based detector signals and achieving equal or even superior metrics for space-based detector signals. Our experiments on synthetic data yield impressive results, with the model achieving an AUC score of 96.1% and a perfect recall rate of 100% on a dataset with a 1:3 class imbalance for ground-based detectors. For high signal-to-noise ratio signals, we achieve flawless precision and recall of 100% without losing precision on datasets with low-class ratios. Additionally, our approach reduces inference time by a factor of 1.88. Full article
Show Figures

Figure 1

20 pages, 12566 KB  
Article
Single-Trial Recognition of Video Gamer’s Expertise from Brain Haemodynamic and Facial Emotion Responses
by Ana R. Andreu-Perez, Mehrin Kiani, Javier Andreu-Perez, Pratusha Reddy, Jaime Andreu-Abela, Maria Pinto and Kurtulus Izzetoglu
Brain Sci. 2021, 11(1), 106; https://doi.org/10.3390/brainsci11010106 - 14 Jan 2021
Cited by 16 | Viewed by 4709
Abstract
With an increase in consumer demand of video gaming entertainment, the game industry is exploring novel ways of game interaction such as providing direct interfaces between the game and the gamers’ cognitive or affective responses. In this work, gamer’s brain activity has been [...] Read more.
With an increase in consumer demand of video gaming entertainment, the game industry is exploring novel ways of game interaction such as providing direct interfaces between the game and the gamers’ cognitive or affective responses. In this work, gamer’s brain activity has been imaged using functional near infrared spectroscopy (fNIRS) whilst they watch video of a video game (League of Legends) they play. A video of the face of the participants is also recorded for each of a total of 15 trials where a trial is defined as watching a gameplay video. From the data collected, i.e., gamer’s fNIRS data in combination with emotional state estimation from gamer’s facial expressions, the expertise level of the gamers has been decoded per trial in a multi-modal framework comprising of unsupervised deep feature learning and classification by state-of-the-art models. The best tri-class classification accuracy is obtained using a cascade of random convolutional kernel transform (ROCKET) feature extraction method and deep classifier at 91.44%. This is the first work that aims at decoding expertise level of gamers using non-restrictive and portable technologies for brain imaging, and emotional state recognition derived from gamers’ facial expressions. This work has profound implications for novel designs of future human interactions with video games and brain-controlled games. Full article
Show Figures

Figure 1

Back to TopTop